package catala

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file optimizations.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
(* This file is part of the Catala compiler, a specification language for tax
   and social benefits computation rules. Copyright (C) 2022 Inria,
   contributors: Alain Delaët <alain.delaet--tixeuil@inria.fr>, Denis Merigoux
   <denis.merigoux@inria.fr>

   Licensed under the Apache License, Version 2.0 (the "License"); you may not
   use this file except in compliance with the License. You may obtain a copy of
   the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
   WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
   License for the specific language governing permissions and limitations under
   the License. *)
open Utils
open Ast

type partial_evaluation_ctx = {
  var_values : typed marked_expr Ast.VarMap.t;
  decl_ctx : decl_ctx;
}

let rec partial_evaluation (ctx : partial_evaluation_ctx) (e : 'm marked_expr) :
    'm marked_expr Bindlib.box =
  let pos = Marked.get_mark e in
  let rec_helper = partial_evaluation ctx in
  match Marked.unmark e with
  | EApp
      ( (( EOp (Unop Not), _
         | EApp ((EOp (Unop (Log _)), _), [(EOp (Unop Not), _)]), _ ) as op),
        [e1] ) ->
    (* reduction of logical not *)
    (Bindlib.box_apply (fun e1 ->
         match e1 with
         | ELit (LBool false), _ -> ELit (LBool true), pos
         | ELit (LBool true), _ -> ELit (LBool false), pos
         | _ -> EApp (op, [e1]), pos))
      (rec_helper e1)
  | EApp
      ( (( EOp (Binop Or), _
         | EApp ((EOp (Unop (Log _)), _), [(EOp (Binop Or), _)]), _ ) as op),
        [e1; e2] ) ->
    (* reduction of logical or *)
    (Bindlib.box_apply2 (fun e1 e2 ->
         match e1, e2 with
         | (ELit (LBool false), _), new_e | new_e, (ELit (LBool false), _) ->
           new_e
         | (ELit (LBool true), _), _ | _, (ELit (LBool true), _) ->
           ELit (LBool true), pos
         | _ -> EApp (op, [e1; e2]), pos))
      (rec_helper e1) (rec_helper e2)
  | EApp
      ( (( EOp (Binop And), _
         | EApp ((EOp (Unop (Log _)), _), [(EOp (Binop And), _)]), _ ) as op),
        [e1; e2] ) ->
    (* reduction of logical and *)
    (Bindlib.box_apply2 (fun e1 e2 ->
         match e1, e2 with
         | (ELit (LBool true), _), new_e | new_e, (ELit (LBool true), _) ->
           new_e
         | (ELit (LBool false), _), _ | _, (ELit (LBool false), _) ->
           ELit (LBool false), pos
         | _ -> EApp (op, [e1; e2]), pos))
      (rec_helper e1) (rec_helper e2)
  | EVar x -> Bindlib.box_apply (fun x -> x, pos) (Bindlib.box_var x)
  | ETuple (args, s_name) ->
    Bindlib.box_apply
      (fun args -> ETuple (args, s_name), pos)
      (List.map rec_helper args |> Bindlib.box_list)
  | ETupleAccess (arg, i, s_name, typs) ->
    Bindlib.box_apply
      (fun arg -> ETupleAccess (arg, i, s_name, typs), pos)
      (rec_helper arg)
  | EInj (arg, i, e_name, typs) ->
    Bindlib.box_apply
      (fun arg -> EInj (arg, i, e_name, typs), pos)
      (rec_helper arg)
  | EMatch (arg, arms, e_name) ->
    Bindlib.box_apply2
      (fun arg arms ->
        match arg, arms with
        | (EInj (e1, i, e_name', _ts), _), _
          when Ast.EnumName.compare e_name e_name' = 0 ->
          (* iota reduction *)
          EApp (List.nth arms i, [e1]), pos
        | _ -> EMatch (arg, arms, e_name), pos)
      (rec_helper arg)
      (List.map rec_helper arms |> Bindlib.box_list)
  | EArray args ->
    Bindlib.box_apply
      (fun args -> EArray args, pos)
      (List.map rec_helper args |> Bindlib.box_list)
  | ELit l -> Bindlib.box (ELit l, pos)
  | EAbs (binder, typs) ->
    let vars, body = Bindlib.unmbind binder in
    let new_body = rec_helper body in
    let new_binder = Bindlib.bind_mvar vars new_body in
    Bindlib.box_apply (fun binder -> EAbs (binder, typs), pos) new_binder
  | EApp (f, args) ->
    Bindlib.box_apply2
      (fun f args ->
        match Marked.unmark f with
        | EAbs (binder, _ts) ->
          (* beta reduction *)
          Bindlib.msubst binder (List.map fst args |> Array.of_list)
        | _ -> EApp (f, args), pos)
      (rec_helper f)
      (List.map rec_helper args |> Bindlib.box_list)
  | EAssert e1 -> Bindlib.box_apply (fun e1 -> EAssert e1, pos) (rec_helper e1)
  | EOp op -> Bindlib.box (EOp op, pos)
  | EDefault (exceptions, just, cons) ->
    Bindlib.box_apply3
      (fun exceptions just cons ->
        (* TODO: mechanically prove each of these optimizations correct :) *)
        match
          ( List.filter
              (fun except ->
                match Marked.unmark except with
                | ELit LEmptyError -> false
                | _ -> true)
              exceptions
            (* we can discard the exceptions that are always empty error *),
            just,
            cons )
        with
        | exceptions, just, cons
          when List.fold_left
                 (fun nb except -> if is_value except then nb + 1 else nb)
                 0 exceptions
               > 1 ->
          (* at this point we know a conflict error will be triggered so we just
             feed the expression to the interpreter that will print the
             beautiful right error message *)
          Interpreter.evaluate_expr ctx.decl_ctx
            (EDefault (exceptions, just, cons), pos)
        | [except], _, _ when is_value except ->
          (* if there is only one exception and it is a non-empty value it is
             always chosen *)
          except
        | ( [],
            ( ( ELit (LBool true)
              | EApp ((EOp (Unop (Log _)), _), [(ELit (LBool true), _)]) ),
              _ ),
            cons ) ->
          cons
        | ( [],
            ( ( ELit (LBool false)
              | EApp ((EOp (Unop (Log _)), _), [(ELit (LBool false), _)]) ),
              _ ),
            _ ) ->
          ELit LEmptyError, pos
        | [], just, cons when not !Cli.avoid_exceptions_flag ->
          (* without exceptions, a default is just an [if then else] raising an
             error in the else case. This exception is only valid in the context
             of compilation_with_exceptions, so we desactivate with a global
             flag to know if we will be compiling using exceptions or the option
             monad. *)
          EIfThenElse (just, cons, (ELit LEmptyError, pos)), pos
        | exceptions, just, cons -> EDefault (exceptions, just, cons), pos)
      (List.map rec_helper exceptions |> Bindlib.box_list)
      (rec_helper just) (rec_helper cons)
  | EIfThenElse (e1, e2, e3) ->
    Bindlib.box_apply3
      (fun e1 e2 e3 ->
        match Marked.unmark e1, Marked.unmark e2, Marked.unmark e3 with
        | ELit (LBool true), _, _
        | EApp ((EOp (Unop (Log _)), _), [(ELit (LBool true), _)]), _, _ ->
          e2
        | ELit (LBool false), _, _
        | EApp ((EOp (Unop (Log _)), _), [(ELit (LBool false), _)]), _, _ ->
          e3
        | ( _,
            ( ELit (LBool true)
            | EApp ((EOp (Unop (Log _)), _), [(ELit (LBool true), _)]) ),
            ( ELit (LBool false)
            | EApp ((EOp (Unop (Log _)), _), [(ELit (LBool false), _)]) ) ) ->
          e1
        | _ when equal_exprs e2 e3 -> e2
        | _ -> EIfThenElse (e1, e2, e3), pos)
      (rec_helper e1) (rec_helper e2) (rec_helper e3)
  | ErrorOnEmpty e1 ->
    Bindlib.box_apply (fun e1 -> ErrorOnEmpty e1, pos) (rec_helper e1)

let optimize_expr (decl_ctx : decl_ctx) (e : 'm marked_expr) =
  partial_evaluation { var_values = VarMap.empty; decl_ctx } e

let rec scope_lets_map
    (t : 'a -> 'm marked_expr -> 'm marked_expr Bindlib.box)
    (ctx : 'a)
    (scope_body_expr : ('m expr, 'm) scope_body_expr) :
    ('m expr, 'm) scope_body_expr Bindlib.box =
  match scope_body_expr with
  | Result e -> Bindlib.box_apply (fun e' -> Result e') (t ctx e)
  | ScopeLet scope_let ->
    let var, next = Bindlib.unbind scope_let.scope_let_next in
    let new_scope_let_expr = t ctx scope_let.scope_let_expr in
    let new_next = scope_lets_map t ctx next in
    let new_next = Bindlib.bind_var var new_next in
    Bindlib.box_apply2
      (fun new_scope_let_expr new_next ->
        ScopeLet
          {
            scope_let with
            scope_let_expr = new_scope_let_expr;
            scope_let_next = new_next;
          })
      new_scope_let_expr new_next

let rec scopes_map
    (t : 'a -> 'm marked_expr -> 'm marked_expr Bindlib.box)
    (ctx : 'a)
    (scopes : ('m expr, 'm) scopes) : ('m expr, 'm) scopes Bindlib.box =
  match scopes with
  | Nil -> Bindlib.box Nil
  | ScopeDef scope_def ->
    let scope_var, scope_next = Bindlib.unbind scope_def.scope_next in
    let scope_arg_var, scope_body_expr =
      Bindlib.unbind scope_def.scope_body.scope_body_expr
    in
    let new_scope_body_expr = scope_lets_map t ctx scope_body_expr in
    let new_scope_body_expr =
      Bindlib.bind_var scope_arg_var new_scope_body_expr
    in
    let new_scope_next = scopes_map t ctx scope_next in
    let new_scope_next = Bindlib.bind_var scope_var new_scope_next in
    Bindlib.box_apply2
      (fun new_scope_body_expr new_scope_next ->
        ScopeDef
          {
            scope_def with
            scope_next = new_scope_next;
            scope_body =
              {
                scope_def.scope_body with
                scope_body_expr = new_scope_body_expr;
              };
          })
      new_scope_body_expr new_scope_next

let program_map
    (t : 'a -> 'm marked_expr -> 'm marked_expr Bindlib.box)
    (ctx : 'a)
    (p : 'm program) : 'm program Bindlib.box =
  Bindlib.box_apply
    (fun new_scopes -> { p with scopes = new_scopes })
    (scopes_map t ctx p.scopes)

let optimize_program (p : 'm program) : untyped program =
  Bindlib.unbox
    (program_map partial_evaluation
       { var_values = VarMap.empty; decl_ctx = p.decl_ctx }
       p)
  |> untype_program
OCaml

Innovation. Community. Security.