Source file ast.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
[@@@ocaml.warning "-7-34"]
open Utils
module Runtime = Runtime_ocaml.Runtime
module ScopeName : Uid.Id with type info = Uid.MarkedString.info =
Uid.Make (Uid.MarkedString) ()
module StructName : Uid.Id with type info = Uid.MarkedString.info =
Uid.Make (Uid.MarkedString) ()
module StructFieldName : Uid.Id with type info = Uid.MarkedString.info =
Uid.Make (Uid.MarkedString) ()
module StructMap : Map.S with type key = StructName.t = Map.Make (StructName)
module EnumName : Uid.Id with type info = Uid.MarkedString.info =
Uid.Make (Uid.MarkedString) ()
module EnumConstructor : Uid.Id with type info = Uid.MarkedString.info =
Uid.Make (Uid.MarkedString) ()
module EnumMap : Map.S with type key = EnumName.t = Map.Make (EnumName)
type typ_lit = TBool | TUnit | TInt | TRat | TMoney | TDate | TDuration
type marked_typ = typ Marked.pos
and typ =
| TLit of typ_lit
| TTuple of marked_typ list * StructName.t option
| TEnum of marked_typ list * EnumName.t
| TArrow of marked_typ * marked_typ
| TArray of marked_typ
| TAny
type date = Runtime.date
type duration = Runtime.duration
type integer = Runtime.integer
type decimal = Runtime.decimal
type money = Runtime.money
type lit =
| LBool of bool
| LEmptyError
| LInt of integer
| LRat of decimal
| LMoney of money
| LUnit
| LDate of date
| LDuration of duration
type op_kind = KInt | KRat | KMoney | KDate | KDuration
type ternop = Fold
type binop =
| And
| Or
| Xor
| Add of op_kind
| Sub of op_kind
| Mult of op_kind
| Div of op_kind
| Lt of op_kind
| Lte of op_kind
| Gt of op_kind
| Gte of op_kind
| Eq
| Neq
| Map
| Concat
| Filter
type log_entry = VarDef of typ | BeginCall | EndCall | PosRecordIfTrueBool
type unop =
| Not
| Minus of op_kind
| Log of log_entry * Utils.Uid.MarkedString.info list
| Length
| IntToRat
| MoneyToRat
| RatToMoney
| GetDay
| GetMonth
| GetYear
| FirstDayOfMonth
| LastDayOfMonth
| RoundMoney
| RoundDecimal
type operator = Ternop of ternop | Binop of binop | Unop of unop
(** Some structures used for type inference *)
module Infer = struct
module Any =
Utils.Uid.Make
(struct
type info = unit
let format_info fmt () = Format.fprintf fmt "any"
end)
()
type unionfind_typ = typ Marked.pos UnionFind.elem
(** We do not reuse {!type: Dcalc.Ast.typ} because we have to include a new
[TAny] variant. Indeed, error terms can have any type and this has to be
captured by the type sytem. *)
and typ =
| TLit of typ_lit
| TArrow of unionfind_typ * unionfind_typ
| TTuple of unionfind_typ list * StructName.t option
| TEnum of unionfind_typ list * EnumName.t
| TArray of unionfind_typ
| TAny of Any.t
let rec typ_to_ast (ty : unionfind_typ) : marked_typ =
let ty, pos = UnionFind.get (UnionFind.find ty) in
match ty with
| TLit l -> TLit l, pos
| TTuple (ts, s) -> TTuple (List.map typ_to_ast ts, s), pos
| TEnum (ts, e) -> TEnum (List.map typ_to_ast ts, e), pos
| TArrow (t1, t2) -> TArrow (typ_to_ast t1, typ_to_ast t2), pos
| TAny _ -> TAny, pos
| TArray t1 -> TArray (typ_to_ast t1), pos
let rec ast_to_typ (ty : marked_typ) : unionfind_typ =
let ty' =
match Marked.unmark ty with
| TLit l -> TLit l
| TArrow (t1, t2) -> TArrow (ast_to_typ t1, ast_to_typ t2)
| TTuple (ts, s) -> TTuple (List.map (fun t -> ast_to_typ t) ts, s)
| TEnum (ts, e) -> TEnum (List.map (fun t -> ast_to_typ t) ts, e)
| TArray t -> TArray (ast_to_typ t)
| TAny -> TAny (Any.fresh ())
in
UnionFind.make (Marked.same_mark_as ty' ty)
end
type untyped = { pos : Pos.t } [@@ocaml.unboxed]
type typed = { pos : Pos.t; ty : marked_typ }
type inferring = { pos : Pos.t; uf : Infer.unionfind_typ }
(** The generic type of AST markings. Using a GADT allows functions to be
polymorphic in the marking, but still do transformations on types when
appropriate *)
type _ mark =
| Untyped : untyped -> untyped mark
| Typed : typed -> typed mark
| Inferring : inferring -> inferring mark
type ('a, 'm) marked = ('a, 'm mark) Marked.t
type 'm marked_expr = ('m expr, 'm) marked
and 'm expr =
| EVar of 'm expr Bindlib.var
| ETuple of 'm marked_expr list * StructName.t option
| ETupleAccess of
'm marked_expr * int * StructName.t option * typ Marked.pos list
| EInj of 'm marked_expr * int * EnumName.t * typ Marked.pos list
| EMatch of 'm marked_expr * 'm marked_expr list * EnumName.t
| EArray of 'm marked_expr list
| ELit of lit
| EAbs of
(('m expr, 'm marked_expr) Bindlib.mbinder[@opaque]) * typ Marked.pos list
| EApp of 'm marked_expr * 'm marked_expr list
| EAssert of 'm marked_expr
| EOp of operator
| EDefault of 'm marked_expr list * 'm marked_expr * 'm marked_expr
| EIfThenElse of 'm marked_expr * 'm marked_expr * 'm marked_expr
| ErrorOnEmpty of 'm marked_expr
type typed_expr = typed marked_expr
type struct_ctx = (StructFieldName.t * typ Marked.pos) list StructMap.t
type enum_ctx = (EnumConstructor.t * typ Marked.pos) list EnumMap.t
type decl_ctx = { ctx_enums : enum_ctx; ctx_structs : struct_ctx }
type 'm binder = ('m expr, 'm marked_expr) Bindlib.binder
type scope_let_kind =
| DestructuringInputStruct
| ScopeVarDefinition
| SubScopeVarDefinition
| CallingSubScope
| DestructuringSubScopeResults
| Assertion
type ('expr, 'm) scope_let = {
scope_let_kind : scope_let_kind;
scope_let_typ : typ Marked.pos;
scope_let_expr : ('expr, 'm) marked;
scope_let_next : ('expr, ('expr, 'm) scope_body_expr) Bindlib.binder;
scope_let_pos : Pos.t;
}
and ('expr, 'm) scope_body_expr =
| Result of ('expr, 'm) marked
| ScopeLet of ('expr, 'm) scope_let
type ('expr, 'm) scope_body = {
scope_body_input_struct : StructName.t;
scope_body_output_struct : StructName.t;
scope_body_expr : ('expr, ('expr, 'm) scope_body_expr) Bindlib.binder;
}
type ('expr, 'm) scope_def = {
scope_name : ScopeName.t;
scope_body : ('expr, 'm) scope_body;
scope_next : ('expr, ('expr, 'm) scopes) Bindlib.binder;
}
and ('expr, 'm) scopes = Nil | ScopeDef of ('expr, 'm) scope_def
type ('expr, 'm) program_generic = {
decl_ctx : decl_ctx;
scopes : ('expr, 'm) scopes;
}
type 'm program = ('m expr, 'm) program_generic
let no_mark (type m) : m mark -> m mark = function
| Untyped _ -> Untyped { pos = Pos.no_pos }
| Typed _ -> Typed { pos = Pos.no_pos; ty = Marked.mark Pos.no_pos TAny }
| Inferring _ ->
Inferring
{
pos = Pos.no_pos;
uf = UnionFind.make Infer.(TAny (Any.fresh ()), Pos.no_pos);
}
let mark_pos (type m) (m : m mark) : Pos.t =
match m with
| Untyped { pos } | Typed { pos; _ } | Inferring { pos; _ } -> pos
let pos (type m) (x : ('a, m) marked) : Pos.t = mark_pos (Marked.get_mark x)
let ty (_, m) : marked_typ = match m with Typed { ty; _ } -> ty
let with_ty (type m) (ty : marked_typ) (x : ('a, m) marked) : ('a, typed) marked
=
Marked.mark
(match Marked.get_mark x with
| Untyped { pos } | Inferring { pos; _ } -> Typed { pos; ty }
| Typed m -> Typed { m with ty })
(Marked.unmark x)
let evar v mark = Bindlib.box_apply (Marked.mark mark) (Bindlib.box_var v)
let etuple args s mark =
Bindlib.box_apply (fun args -> ETuple (args, s), mark) (Bindlib.box_list args)
let etupleaccess e1 i s typs mark =
Bindlib.box_apply (fun e1 -> ETupleAccess (e1, i, s, typs), mark) e1
let einj e1 i e_name typs mark =
Bindlib.box_apply (fun e1 -> EInj (e1, i, e_name, typs), mark) e1
let ematch arg arms e_name mark =
Bindlib.box_apply2
(fun arg arms -> EMatch (arg, arms, e_name), mark)
arg (Bindlib.box_list arms)
let earray args mark =
Bindlib.box_apply (fun args -> EArray args, mark) (Bindlib.box_list args)
let elit l mark = Bindlib.box (ELit l, mark)
let eabs binder typs mark =
Bindlib.box_apply (fun binder -> EAbs (binder, typs), mark) binder
let eapp e1 args mark =
Bindlib.box_apply2
(fun e1 args -> EApp (e1, args), mark)
e1 (Bindlib.box_list args)
let eassert e1 mark = Bindlib.box_apply (fun e1 -> EAssert e1, mark) e1
let eop op mark = Bindlib.box (EOp op, mark)
let edefault excepts just cons mark =
Bindlib.box_apply3
(fun excepts just cons -> EDefault (excepts, just, cons), mark)
(Bindlib.box_list excepts) just cons
let eifthenelse e1 e2 e3 mark =
Bindlib.box_apply3 (fun e1 e2 e3 -> EIfThenElse (e1, e2, e3), mark) e1 e2 e3
let eerroronempty e1 mark =
Bindlib.box_apply (fun e1 -> ErrorOnEmpty e1, mark) e1
let translate_var v = Bindlib.copy_var v (fun x -> EVar x) (Bindlib.name_of v)
let map_expr ctx ~f e =
let m = Marked.get_mark e in
match Marked.unmark e with
| EVar v -> evar (translate_var v) m
| EApp (e1, args) -> eapp (f ctx e1) (List.map (f ctx) args) m
| EAbs (binder, typs) ->
let vars, body = Bindlib.unmbind binder in
eabs (Bindlib.bind_mvar (Array.map translate_var vars) (f ctx body)) typs m
| ETuple (args, s) -> etuple (List.map (f ctx) args) s m
| ETupleAccess (e1, n, s_name, typs) ->
etupleaccess ((f ctx) e1) n s_name typs m
| EInj (e1, i, e_name, typs) -> einj ((f ctx) e1) i e_name typs m
| EMatch (arg, arms, e_name) ->
ematch ((f ctx) arg) (List.map (f ctx) arms) e_name m
| EArray args -> earray (List.map (f ctx) args) m
| ELit l -> elit l m
| EAssert e1 -> eassert ((f ctx) e1) m
| EOp op -> Bindlib.box (EOp op, m)
| EDefault (excepts, just, cons) ->
edefault (List.map (f ctx) excepts) ((f ctx) just) ((f ctx) cons) m
| EIfThenElse (e1, e2, e3) ->
eifthenelse ((f ctx) e1) ((f ctx) e2) ((f ctx) e3) m
| ErrorOnEmpty e1 -> eerroronempty ((f ctx) e1) m
let rec map_expr_top_down ~f e =
map_expr () ~f:(fun () -> map_expr_top_down ~f) (f e)
let map_expr_marks ~f e =
map_expr_top_down ~f:(fun e -> Marked.(mark (f (get_mark e)) (unmark e))) e
let untype_expr e = map_expr_marks ~f:(fun m -> Untyped { pos = mark_pos m }) e
type ('expr, 'm) box_expr_sig =
('expr, 'm) marked -> ('expr, 'm) marked Bindlib.box
(** See [Bindlib.box_term] documentation for why we are doing that. *)
let box_expr : ('m expr, 'm) box_expr_sig =
fun e ->
let rec id_t () e = map_expr () ~f:id_t e in
id_t () e
let rec fold_left_scope_lets ~f ~init scope_body_expr =
match scope_body_expr with
| Result _ -> init
| ScopeLet scope_let ->
let var, next = Bindlib.unbind scope_let.scope_let_next in
fold_left_scope_lets ~f ~init:(f init scope_let var) next
let rec fold_right_scope_lets ~f ~init scope_body_expr =
match scope_body_expr with
| Result result -> init result
| ScopeLet scope_let ->
let var, next = Bindlib.unbind scope_let.scope_let_next in
let next_result = fold_right_scope_lets ~f ~init next in
f scope_let var next_result
let map_exprs_in_scope_lets ~f ~varf scope_body_expr =
fold_right_scope_lets
~f:(fun scope_let var_next acc ->
Bindlib.box_apply2
(fun scope_let_next scope_let_expr ->
ScopeLet { scope_let with scope_let_next; scope_let_expr })
(Bindlib.bind_var (varf var_next) acc)
(f scope_let.scope_let_expr))
~init:(fun res -> Bindlib.box_apply (fun res -> Result res) (f res))
scope_body_expr
let rec fold_left_scope_defs ~f ~init scopes =
match scopes with
| Nil -> init
| ScopeDef scope_def ->
let var, next = Bindlib.unbind scope_def.scope_next in
fold_left_scope_defs ~f ~init:(f init scope_def var) next
let rec fold_right_scope_defs ~f ~init scopes =
match scopes with
| Nil -> init
| ScopeDef scope_def ->
let var_next, next = Bindlib.unbind scope_def.scope_next in
let result_next = fold_right_scope_defs ~f ~init next in
f scope_def var_next result_next
let map_scope_defs ~f scopes =
fold_right_scope_defs
~f:(fun scope_def var_next acc ->
let new_scope_def = f scope_def in
let new_next = Bindlib.bind_var var_next acc in
Bindlib.box_apply2
(fun new_scope_def new_next ->
ScopeDef { new_scope_def with scope_next = new_next })
new_scope_def new_next)
~init:(Bindlib.box Nil) scopes
let map_exprs_in_scopes ~f ~varf scopes =
fold_right_scope_defs
~f:(fun scope_def var_next acc ->
let scope_input_var, scope_lets =
Bindlib.unbind scope_def.scope_body.scope_body_expr
in
let new_scope_body_expr = map_exprs_in_scope_lets ~f ~varf scope_lets in
let new_scope_body_expr =
Bindlib.bind_var (varf scope_input_var) new_scope_body_expr
in
let new_next = Bindlib.bind_var (varf var_next) acc in
Bindlib.box_apply2
(fun scope_body_expr scope_next ->
ScopeDef
{
scope_def with
scope_body = { scope_def.scope_body with scope_body_expr };
scope_next;
})
new_scope_body_expr new_next)
~init:(Bindlib.box Nil) scopes
let untype_program prg =
{
prg with
scopes =
Bindlib.unbox
(map_exprs_in_scopes
~f:(fun e -> untype_expr e)
~varf:translate_var prg.scopes);
}
type 'm var = 'm expr Bindlib.var
type 'm vars = 'm expr Bindlib.mvar
let new_var s = Bindlib.new_var (fun x -> EVar x) s
module Var = struct
type t = V : 'a expr Bindlib.var -> t
let t v = V v
let get (V v) = Bindlib.copy_var v (fun x -> EVar x) (Bindlib.name_of v)
let compare (V x) (V y) = Bindlib.compare_vars x y
let eq (V x) (V y) = Bindlib.eq_vars x y
end
module VarSet = Set.Make (Var)
module VarMap = Map.Make (Var)
let rec free_vars_expr (e : 'm marked_expr) : VarSet.t =
match Marked.unmark e with
| EVar v -> VarSet.singleton (Var.t v)
| ETuple (es, _) | EArray es ->
es |> List.map free_vars_expr |> List.fold_left VarSet.union VarSet.empty
| ETupleAccess (e1, _, _, _)
| EAssert e1
| ErrorOnEmpty e1
| EInj (e1, _, _, _) ->
free_vars_expr e1
| EApp (e1, es) | EMatch (e1, es, _) ->
e1 :: es
|> List.map free_vars_expr
|> List.fold_left VarSet.union VarSet.empty
| EDefault (es, ejust, econs) ->
ejust :: econs :: es
|> List.map free_vars_expr
|> List.fold_left VarSet.union VarSet.empty
| EOp _ | ELit _ -> VarSet.empty
| EIfThenElse (e1, e2, e3) ->
[e1; e2; e3]
|> List.map free_vars_expr
|> List.fold_left VarSet.union VarSet.empty
| EAbs (binder, _) ->
let vs, body = Bindlib.unmbind binder in
Array.fold_right VarSet.remove (Array.map Var.t vs) (free_vars_expr body)
let rec free_vars_scope_body_expr (scope_lets : ('m expr, 'm) scope_body_expr) :
VarSet.t =
match scope_lets with
| Result e -> free_vars_expr e
| ScopeLet { scope_let_expr = e; scope_let_next = next; _ } ->
let v, body = Bindlib.unbind next in
VarSet.union (free_vars_expr e)
(VarSet.remove (Var.t v) (free_vars_scope_body_expr body))
let free_vars_scope_body (scope_body : ('m expr, 'm) scope_body) : VarSet.t =
let { scope_body_expr = binder; _ } = scope_body in
let v, body = Bindlib.unbind binder in
VarSet.remove (Var.t v) (free_vars_scope_body_expr body)
let rec free_vars_scopes (scopes : ('m expr, 'm) scopes) : VarSet.t =
match scopes with
| Nil -> VarSet.empty
| ScopeDef { scope_body = body; scope_next = next; _ } ->
let v, next = Bindlib.unbind next in
VarSet.union
(VarSet.remove (Var.t v) (free_vars_scopes next))
(free_vars_scope_body body)
let make_var ((x, mark) : ('m expr Bindlib.var, 'm) marked) :
'm marked_expr Bindlib.box =
Bindlib.box_apply (fun x -> x, mark) (Bindlib.box_var x)
type ('e, 'm) make_abs_sig =
'e Bindlib.mvar ->
('e, 'm) marked Bindlib.box ->
typ Marked.pos list ->
'm mark ->
('e, 'm) marked Bindlib.box
let (make_abs : ('m expr, 'm) make_abs_sig) =
fun xs e taus mark ->
Bindlib.box_apply (fun b -> EAbs (b, taus), mark) (Bindlib.bind_mvar xs e)
let make_app :
'm marked_expr Bindlib.box ->
'm marked_expr Bindlib.box list ->
'm mark ->
'm marked_expr Bindlib.box =
fun e u mark ->
Bindlib.box_apply2 (fun e u -> EApp (e, u), mark) e (Bindlib.box_list u)
type ('expr, 'm) make_let_in_sig =
'expr Bindlib.var ->
typ Marked.pos ->
('expr, 'm) marked Bindlib.box ->
('expr, 'm) marked Bindlib.box ->
Pos.t ->
('expr, 'm) marked Bindlib.box
let map_mark
(type m)
(pos_f : Pos.t -> Pos.t)
(ty_f : marked_typ -> marked_typ)
(m : m mark) : m mark =
match m with
| Untyped { pos } -> Untyped { pos = pos_f pos }
| Typed { pos; ty } -> Typed { pos = pos_f pos; ty = ty_f ty }
| Inferring { pos; uf } ->
Inferring
{ pos = pos_f pos; uf = Infer.ast_to_typ (ty_f (Infer.typ_to_ast uf)) }
let resolve_inferring { uf; pos } = { ty = Infer.typ_to_ast uf; pos }
let map_mark2
(type m)
(pos_f : Pos.t -> Pos.t -> Pos.t)
(ty_f : typed -> typed -> marked_typ)
(m1 : m mark)
(m2 : m mark) : m mark =
match m1, m2 with
| Untyped m1, Untyped m2 -> Untyped { pos = pos_f m1.pos m2.pos }
| Typed m1, Typed m2 -> Typed { pos = pos_f m1.pos m2.pos; ty = ty_f m1 m2 }
| Inferring m1, Inferring m2 ->
Inferring
{
pos = pos_f m1.pos m2.pos;
uf =
Infer.ast_to_typ (ty_f (resolve_inferring m1) (resolve_inferring m2));
}
let fold_marks
(type m)
(pos_f : Pos.t list -> Pos.t)
(ty_f : typed list -> marked_typ)
(ms : m mark list) : m mark =
match ms with
| [] -> invalid_arg "Dcalc.Ast.fold_mark"
| Untyped _ :: _ as ms ->
Untyped { pos = pos_f (List.map (function Untyped { pos } -> pos) ms) }
| Typed _ :: _ ->
Typed
{
pos = pos_f (List.map (function Typed { pos; _ } -> pos) ms);
ty = ty_f (List.map (function Typed m -> m) ms);
}
| Inferring _ :: _ ->
Inferring
{
pos = pos_f (List.map (function Inferring { pos; _ } -> pos) ms);
uf =
Infer.ast_to_typ
(ty_f (List.map (function Inferring m -> resolve_inferring m) ms));
}
let empty_thunked_term mark : 'm marked_expr =
let silent = new_var "_" in
let pos = mark_pos mark in
Bindlib.unbox
(make_abs [| silent |]
(Bindlib.box (ELit LEmptyError, mark))
[TLit TUnit, pos]
(map_mark
(fun pos -> pos)
(fun ty ->
Marked.mark pos (TArrow (Marked.mark pos (TLit TUnit), ty)))
mark))
let (make_let_in : ('m expr, 'm) make_let_in_sig) =
fun x tau e1 e2 pos ->
let m_e1 = Marked.get_mark (Bindlib.unbox e1) in
let m_e2 = Marked.get_mark (Bindlib.unbox e2) in
let m_abs =
map_mark2
(fun _ _ -> pos)
(fun m1 m2 -> Marked.mark pos (TArrow (m1.ty, m2.ty)))
m_e1 m_e2
in
make_app (make_abs [| x |] e2 [tau] m_abs) [e1] m_e2
let is_value (e : 'e marked_expr) : bool =
match Marked.unmark e with ELit _ | EAbs _ | EOp _ -> true | _ -> false
let rec equal_typs (ty1 : typ Marked.pos) (ty2 : typ Marked.pos) : bool =
match Marked.unmark ty1, Marked.unmark ty2 with
| TLit l1, TLit l2 -> l1 = l2
| TTuple (tys1, n1), TTuple (tys2, n2) -> n1 = n2 && equal_typs_list tys1 tys2
| TEnum (tys1, n1), TEnum (tys2, n2) -> n1 = n2 && equal_typs_list tys1 tys2
| TArrow (t1, t1'), TArrow (t2, t2') -> equal_typs t1 t2 && equal_typs t1' t2'
| TArray t1, TArray t2 -> equal_typs t1 t2
| TAny, TAny -> true
| _, _ -> false
and equal_typs_list (tys1 : typ Marked.pos list) (tys2 : typ Marked.pos list) :
bool =
List.length tys1 = List.length tys2
&&
List.for_all (fun (x, y) -> equal_typs x y) (List.combine tys1 tys2)
let equal_log_entries (l1 : log_entry) (l2 : log_entry) : bool =
match l1, l2 with
| VarDef t1, VarDef t2 -> equal_typs (t1, Pos.no_pos) (t2, Pos.no_pos)
| x, y -> x = y
let equal_unops (op1 : unop) (op2 : unop) : bool =
match op1, op2 with
| Log (l1, info1), Log (l2, info2) -> equal_log_entries l1 l2 && info1 = info2
| _ -> op1 = op2
let equal_ops (op1 : operator) (op2 : operator) : bool =
match op1, op2 with
| Ternop op1, Ternop op2 -> op1 = op2
| Binop op1, Binop op2 -> op1 = op2
| Unop op1, Unop op2 -> equal_unops op1 op2
| _, _ -> false
let rec equal_exprs (e1 : 'm marked_expr) (e2 : 'm marked_expr) : bool =
match Marked.unmark e1, Marked.unmark e2 with
| EVar v1, EVar v2 -> Bindlib.eq_vars v1 v2
| ETuple (es1, n1), ETuple (es2, n2) -> n1 = n2 && equal_exprs_list es1 es2
| ETupleAccess (e1, id1, n1, tys1), ETupleAccess (e2, id2, n2, tys2) ->
equal_exprs e1 e2 && id1 = id2 && n1 = n2 && equal_typs_list tys1 tys2
| EInj (e1, id1, n1, tys1), EInj (e2, id2, n2, tys2) ->
equal_exprs e1 e2 && id1 = id2 && n1 = n2 && equal_typs_list tys1 tys2
| EMatch (e1, cases1, n1), EMatch (e2, cases2, n2) ->
n1 = n2 && equal_exprs e1 e2 && equal_exprs_list cases1 cases2
| EArray es1, EArray es2 -> equal_exprs_list es1 es2
| ELit l1, ELit l2 -> l1 = l2
| EAbs (b1, tys1), EAbs (b2, tys2) ->
equal_typs_list tys1 tys2
&&
let vars1, body1 = Bindlib.unmbind b1 in
let body2 = Bindlib.msubst b2 (Array.map (fun x -> EVar x) vars1) in
equal_exprs body1 body2
| EAssert e1, EAssert e2 -> equal_exprs e1 e2
| EOp op1, EOp op2 -> equal_ops op1 op2
| EDefault (exc1, def1, cons1), EDefault (exc2, def2, cons2) ->
equal_exprs def1 def2
&& equal_exprs cons1 cons2
&& equal_exprs_list exc1 exc2
| EIfThenElse (if1, then1, else1), EIfThenElse (if2, then2, else2) ->
equal_exprs if1 if2 && equal_exprs then1 then2 && equal_exprs else1 else2
| ErrorOnEmpty e1, ErrorOnEmpty e2 -> equal_exprs e1 e2
| _, _ -> false
and equal_exprs_list (es1 : 'e marked_expr list) (es2 : 'm marked_expr list) :
bool =
List.length es1 = List.length es2
&&
List.for_all (fun (x, y) -> equal_exprs x y) (List.combine es1 es2)
let rec unfold_scope_body_expr
~(box_expr : ('expr, 'm) box_expr_sig)
~(make_let_in : ('expr, 'm) make_let_in_sig)
(ctx : decl_ctx)
(scope_let : ('expr, 'm) scope_body_expr) : ('expr, 'm) marked Bindlib.box =
match scope_let with
| Result e -> box_expr e
| ScopeLet
{
scope_let_kind = _;
scope_let_typ;
scope_let_expr;
scope_let_next;
scope_let_pos;
} ->
let var, next = Bindlib.unbind scope_let_next in
make_let_in var scope_let_typ (box_expr scope_let_expr)
(unfold_scope_body_expr ~box_expr ~make_let_in ctx next)
scope_let_pos
let build_whole_scope_expr
~(box_expr : ('expr, 'm) box_expr_sig)
~(make_abs : ('expr, 'm) make_abs_sig)
~(make_let_in : ('expr, 'm) make_let_in_sig)
(ctx : decl_ctx)
(body : ('expr, 'm) scope_body)
(mark_scope : 'm mark) : ('expr, 'm) marked Bindlib.box =
let var, body_expr = Bindlib.unbind body.scope_body_expr in
let body_expr = unfold_scope_body_expr ~box_expr ~make_let_in ctx body_expr in
make_abs (Array.of_list [var]) body_expr
[
( TTuple
( List.map snd
(StructMap.find body.scope_body_input_struct ctx.ctx_structs),
Some body.scope_body_input_struct ),
mark_pos mark_scope );
]
mark_scope
let build_scope_typ_from_sig
(ctx : decl_ctx)
(scope_input_struct_name : StructName.t)
(scope_return_struct_name : StructName.t)
(pos : Pos.t) : typ Marked.pos =
let scope_sig = StructMap.find scope_input_struct_name ctx.ctx_structs in
let scope_return_typ =
StructMap.find scope_return_struct_name ctx.ctx_structs
in
let result_typ =
TTuple (List.map snd scope_return_typ, Some scope_return_struct_name), pos
in
let input_typ =
TTuple (List.map snd scope_sig, Some scope_input_struct_name), pos
in
TArrow (input_typ, result_typ), pos
type 'expr scope_name_or_var =
| ScopeName of ScopeName.t
| ScopeVar of 'expr Bindlib.var
let get_scope_body_mark scope_body =
match snd (Bindlib.unbind scope_body.scope_body_expr) with
| Result e | ScopeLet { scope_let_expr = e; _ } -> Marked.get_mark e
let rec unfold_scopes
~(box_expr : ('expr, 'm) box_expr_sig)
~(make_abs : ('expr, 'm) make_abs_sig)
~(make_let_in : ('expr, 'm) make_let_in_sig)
(ctx : decl_ctx)
(s : ('expr, 'm) scopes)
(mark : 'm mark)
(main_scope : 'expr scope_name_or_var) : ('expr, 'm) marked Bindlib.box =
match s with
| Nil -> (
match main_scope with
| ScopeVar v -> Bindlib.box_apply (fun v -> v, mark) (Bindlib.box_var v)
| ScopeName _ -> failwith "should not happen")
| ScopeDef { scope_name; scope_body; scope_next } ->
let scope_var, scope_next = Bindlib.unbind scope_next in
let scope_pos = Marked.get_mark (ScopeName.get_info scope_name) in
let scope_body_mark = get_scope_body_mark scope_body in
let main_scope =
match main_scope with
| ScopeVar v -> ScopeVar v
| ScopeName n ->
if ScopeName.compare n scope_name = 0 then ScopeVar scope_var
else ScopeName n
in
make_let_in scope_var
(build_scope_typ_from_sig ctx scope_body.scope_body_input_struct
scope_body.scope_body_output_struct scope_pos)
(build_whole_scope_expr ~box_expr ~make_abs ~make_let_in ctx scope_body
scope_body_mark)
(unfold_scopes ~box_expr ~make_abs ~make_let_in ctx scope_next mark
main_scope)
scope_pos
let rec find_scope name vars = function
| Nil -> raise Not_found
| ScopeDef { scope_name; scope_body; _ } when scope_name = name ->
List.rev vars, scope_body
| ScopeDef { scope_next; _ } ->
let var, next = Bindlib.unbind scope_next in
find_scope name (var :: vars) next
let build_whole_program_expr
~(box_expr : ('expr, 'm) box_expr_sig)
~(make_abs : ('expr, 'm) make_abs_sig)
~(make_let_in : ('expr, 'm) make_let_in_sig)
(p : ('expr, 'm) program_generic)
(main_scope : ScopeName.t) : ('expr, 'm) marked Bindlib.box =
let _, main_scope_body = find_scope main_scope [] p.scopes in
unfold_scopes ~box_expr ~make_abs ~make_let_in p.decl_ctx p.scopes
(get_scope_body_mark main_scope_body)
(ScopeName main_scope)
let rec expr_size (e : 'm marked_expr) : int =
match Marked.unmark e with
| EVar _ | ELit _ | EOp _ -> 1
| ETuple (args, _) | EArray args ->
List.fold_left (fun acc arg -> acc + expr_size arg) 1 args
| ETupleAccess (e1, _, _, _)
| EInj (e1, _, _, _)
| EAssert e1
| ErrorOnEmpty e1 ->
expr_size e1 + 1
| EMatch (arg, args, _) | EApp (arg, args) ->
List.fold_left (fun acc arg -> acc + expr_size arg) (1 + expr_size arg) args
| EAbs (binder, _) ->
let _, body = Bindlib.unmbind binder in
1 + expr_size body
| EIfThenElse (e1, e2, e3) -> 1 + expr_size e1 + expr_size e2 + expr_size e3
| EDefault (exceptions, just, cons) ->
List.fold_left
(fun acc except -> acc + expr_size except)
(1 + expr_size just + expr_size cons)
exceptions
let remove_logging_calls (e : 'm marked_expr) : 'm marked_expr Bindlib.box =
let rec f () e =
match Marked.unmark e with
| EApp ((EOp (Unop (Log _)), _), [arg]) -> map_expr () ~f arg
| _ -> map_expr () ~f e
in
f () e