package alba
Alba compiler
Install
Dune Dependency
Authors
Maintainers
Sources
0.4.2.tar.gz
sha256=203ee151ce793a977b2d3e66f8b3a0cd7a82cc7f15550c63d88cb30c71eb5f95
md5=64367c393f80ca784f88d07155da4fb0
doc/src/alba.albalib/build_context.ml.html
Source file build_context.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
open Fmlib open Common open Alba_core module Algo = Gamma_algo.Make (Gamma_holes) module Uni = Unifier.Make (Gamma_holes) module Stack = struct let split (stack: 'a list): 'a * 'a list = match stack with | [] -> assert false (* Illegal call! *) | hd :: tl -> hd, tl let swap (sp: 'a) (stack: 'a list): 'a * 'a list = match stack with | hd :: tl -> hd, sp :: tl | _ -> assert false (* Illegal call! *) let rec pop (nargs: int) (sp: 'a) (stack: 'a list): 'a * 'a list = if nargs = 0 then sp, stack else match stack with | [] -> assert false (* Illegal call! *) | sp :: stack -> pop (nargs - 1) sp stack end type entry = { cnt0: int; } type t = { gh: Gamma_holes.t; sp: int; stack: int list; entry: entry; entries: entry list; } type type_in_context = int list * Term.typ * Gamma.t let index_of_level (level: int) (bc: t): int = Gamma_holes.index_of_level level bc.gh let string_of_term (term: Term.t) (bc: t): string = Term_printer.string_of_term term (Gamma_holes.context bc.gh) let _ = string_of_term let count (bc: t): int = Gamma_holes.count bc.gh let count_base (bc: t): int = Gamma_holes.count_base bc.gh let count_locals (bc: t): int = Gamma_holes.count_locals bc.gh let count_bounds (bc: t): int = Gamma_holes.count_bounds bc.gh let context (bc: t): Gamma.t = Gamma_holes.context bc.gh let type_at_level (level: int) (bc: t): Term.typ = assert (level < count bc); Gamma_holes.type_at_level level bc.gh let type_of_term (term: Term.t) (bc: t): Term.typ = Algo.type_of_term term bc.gh let key_normal (term: Term.t) (bc: t): Term.t = Algo.key_normal term bc.gh let is_kind (typ: Term.typ) (bc: t): bool = Algo.is_kind typ bc.gh let required_type (bc: t): Term.typ = type_at_level bc.sp bc let term_at_level (level: int) (bc: t): Term.t = Gamma_holes.expand (Term.Variable (index_of_level level bc)) bc.gh let top_term (bc: t): Term.t = term_at_level bc.sp bc let unfilled_holes (term: Term.t) (bc: t): int list = Int_set.elements (Gamma_holes.unfilled_holes (count_base bc) term bc.gh) let type_in_context (typ: Term.typ) (bc: t): type_in_context = unfilled_holes typ bc, typ, context bc let required_type_in_context (bc: t): type_in_context = type_in_context (required_type bc) bc let add_one_implicit (term: Term.t) (typ: Term.typ) (bc: t) : (Term.t * Term.typ * t) option = let open Term in match typ with | Pi (arg, res, _) when is_kind arg bc && has_variable 0 res -> Some ( Appl ( up1 term, Variable 0, Application_info.Implicit), res, {bc with gh = Gamma_holes.push_hole arg bc.gh} ) | _ -> None let add_implicits (term: Term.t) (typ: Term.typ) (bc: t) : Term.t * Term.typ * t = let rec add term typ bc = match add_one_implicit term typ bc with | None -> term, typ, bc | Some (term, typ, bc) -> add term typ bc in add term typ bc let unify (act: Term.typ) (bc: t): t option = let req = required_type bc in Option.map (fun gh -> {bc with gh}) (Uni.unify act req true bc.gh) let unify_plus (term: Term.t) (bc: t): (Term.t * t) option = let rec uni term tp bc = let tp = key_normal tp bc and req = required_type bc in match Uni.unify tp req true bc.gh with | Some gh -> Some (Gamma_holes.expand term gh, {bc with gh}) | None -> Option.(add_one_implicit term tp bc >>= fun (term, tp, bc) -> uni term tp bc) in uni term (type_of_term term bc) bc let set_term (term: Term.t) (bc: t): t = {bc with gh = Gamma_holes.fill_hole (index_of_level bc.sp bc) term bc.gh} let make (gamma: Gamma.t): t = let cnt0 = Gamma.count gamma in { gh = Gamma_holes.( make gamma |> push_hole Term.(any_uni 2) |> push_hole Term.(Variable 0) ); sp = cnt0 + 1; stack = []; entry = { cnt0; }; entries = []; } let final (bc: t) : (Term.t * Term.typ, int list * Term.typ * Gamma.t) result = let cnt0 = count_base bc and nlocs = count_locals bc in assert (bc.stack = []); assert (bc.entries = []); assert (bc.sp = cnt0 + 1); let term = top_term bc in let typ = type_of_term term bc in match Term.down nlocs term, Term.down nlocs typ with | Some term, Some typ -> Ok (term, typ) | _ -> let gamma = Gamma_holes.context bc.gh in Error( unfilled_holes typ bc, typ, gamma ) let candidate (term: Term.t) (nargs: int) (bc: t) : (t, type_in_context * type_in_context) result = if 0 < nargs then let tp = type_of_term term bc in let term, tp, bc = add_implicits term tp bc in match unify tp bc with | None -> Error (required_type_in_context bc, type_in_context tp bc) | Some bc -> let bc = set_term term bc in let sp, stack = Stack.swap bc.sp bc.stack in Ok {bc with sp; stack} else match unify_plus term bc with | None -> Error ( required_type_in_context bc, type_in_context (type_of_term term bc) bc ) | Some (term, bc) -> Ok (set_term term bc) let base_candidate (term: Term.t) (nargs: int) (bc: t) : t option = let term = Term.up (count_locals bc) term in match candidate term nargs bc with | Ok bc -> Some bc | Error _ -> None let bound (ibound: int) (nargs: int) (bc: t) : (t, type_in_context * type_in_context) result = candidate (Gamma_holes.variable_of_bound ibound bc.gh) nargs bc let next_formal_argument (name: string) (typed: bool) (bc: t): t = let cnt0 = count bc and tp = top_term bc in {bc with gh = Gamma_holes.( push_bound name typed tp bc.gh |> push_hole Term.(any_uni 1) ); stack = bc.sp :: bc.stack; sp = cnt0 + 1 } module Product = (* ... A: Any1, x: A, B: Any1, y: B, ... , RT: Any1 *) struct let start (bc: t): t = let cnt0 = count bc in { gh = Gamma_holes.push_hole Term.(any_uni 1) bc.gh; stack = bc.sp :: bc.stack; sp = cnt0; entries = bc.entry :: bc.entries; entry = {cnt0} } let check (nbounds: int) (bc: t) : (t, int) result = assert (0 < nbounds); let arg_tps, _ = let rec args nbounds stack tps = if nbounds = 0 then tps, stack else let sp, stack = Stack.split stack in args (nbounds - 1) stack (term_at_level sp bc :: tps) in args nbounds bc.stack [] in let rec find_incomplete i tps = if i = nbounds then None else let tp, tps = Stack.split tps in if Int_set.is_empty (Gamma_holes.unfilled_holes bc.entry.cnt0 tp bc.gh) then find_incomplete (i + 1) tps else Some i in match find_incomplete 0 arg_tps with | Some i -> Error i | None -> Ok bc let end_ (nargs: int) (nbounds: int) (bc: t) : (t, type_in_context * type_in_context) result = assert (0 < nbounds); let res = top_term bc and sp, stack = Stack.pop (nbounds + 1) bc.sp bc.stack in let tp = Gamma_holes.pi nbounds res bc.gh in let entry, entries = Stack.split bc.entries in candidate tp nargs { gh = Gamma_holes.remove_bounds nbounds bc.gh; sp; stack; entry; entries; } end module Typed = (* [exp : tp] *) struct let start (bc: t): t = (* Expect the type term. *) let cnt0 = count bc in {bc with gh = Gamma_holes.push_hole Term.(any_uni 1) bc.gh; stack = bc.sp :: bc.stack; sp = cnt0 } let expression (bc: t): t = (* Expect the expression. *) let cnt0 = count bc in {bc with gh = Gamma_holes.push_hole (top_term bc) bc.gh; stack = bc.sp :: bc.stack; sp = cnt0; } let end_ (nargs: int) (bc: t) : (t, type_in_context * type_in_context) result = let tp, stack = Stack.split bc.stack in let sp, stack = Stack.split stack in let tp = term_at_level tp bc and exp = top_term bc in let term = Term.Typed (exp, tp) and bc = {bc with sp; stack} in candidate term nargs bc end module Application = (* [f a b c ...] f a b c . g . . h . For each argument we introduce 4 holes: A: Any(1) F: A -> Any(1) a: A f: all (x: A): F x ... stack = f a g b h c ... *) struct let start (nargs: int) (bc: t): t = let cnt0 = count bc in let rec shift cnt0 n gh sp stack = if n = 0 then gh, sp, stack else let open Gamma_holes in shift (cnt0 + 4) (n - 1) (push_hole Term.(any_uni 1) gh (* A: Any(1) *) |> push_hole (* F: A -> Any(1) *) Term.(Pi (Variable 0, any_uni 1, Pi_info.arrow)) |> push_hole Term.(Variable 1) (* a: A *) |> push_hole Term.( (* f: all (x:A): F x *) Pi (Variable 2, Appl ( Variable 2, Variable 0, Application_info.Normal), Pi_info.typed "x"))) (cnt0 + 3) (cnt0 + 2 :: sp :: stack) in let gh, sp, stack = shift cnt0 nargs bc.gh bc.sp bc.stack in {bc with gh; stack; sp} let apply (n_remaining: int) (mode: Term.Application_info.t) (bc: t) : (t, type_in_context * type_in_context) result = match bc.stack with | f :: e :: stack -> let open Term in let term = Appl ( term_at_level f bc, term_at_level bc.sp bc, mode) in candidate term n_remaining {bc with stack; sp = e} | _ -> assert false (* Illegal call! *) end (* Application *) module Lambda = (* \ (x: A) (y: B) ... : T := t One placeholder for each optional argument type, one placeholder for the optional result type and one placeholder for the inner expression. stack = t T ... B A ... *) struct let start (bc: t): t = (* Push a placeholder for the first argument type. I.e. expect the first argument type. *) let cnt0 = count bc in {bc with gh = Gamma_holes.push_hole Term.(any_uni 1) bc.gh; stack = bc.sp :: bc.stack; sp = cnt0 } let inner (bc: t): t = (* Push a placeholder based on the result type (the previously analyzed ast), i.e. expect the inner term of the function abstraction. *) let cnt0 = count bc and tp = top_term bc in let open Gamma_holes in {bc with gh = push_hole tp bc.gh; stack = bc.sp :: bc.stack; sp = cnt0 } let end_ (nargs: int) (nbounds: int) (typed: bool) (bc: t) : (t, type_in_context * type_in_context) result = let exp = top_term bc in let sp, stack = Stack.split bc.stack in let exp = if typed then Term.Typed (exp, term_at_level sp bc) else exp in let lam = Gamma_holes.lambda nbounds exp bc.gh in let sp, stack = Stack.pop (nbounds + 1) sp stack in candidate lam nargs {bc with gh = Gamma_holes.remove_bounds nbounds bc.gh; sp; stack } end module Where = struct let start (name: string) (bc: t): t = Application.start 1 bc |> Lambda.start |> next_formal_argument name false |> Lambda.inner let end_inner (bc: t): (t, type_in_context * type_in_context) result = Lambda.end_ 1 1 false bc let end_ (nargs: int) (bc: t) : (t, type_in_context * type_in_context) result = match bc.stack with | f :: e :: stack -> let open Term in ( match term_at_level f bc with | Lambda (tp, exp, info) -> let term = Where ( Lambda_info.name info, tp, exp, term_at_level bc.sp bc ) in candidate term nargs {bc with stack; sp = e} | _ -> assert false (* Illegal call! *) ) | _ -> assert false (* Illegal call! *) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>