package alba
Alba compiler
Install
Dune Dependency
Authors
Maintainers
Sources
0.4.2.tar.gz
sha256=203ee151ce793a977b2d3e66f8b3a0cd7a82cc7f15550c63d88cb30c71eb5f95
md5=64367c393f80ca784f88d07155da4fb0
doc/src/alba.core/gamma.ml.html
Source file gamma.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
open Fmlib module Pi_info = Term.Pi_info module Lambda_info = Term.Lambda_info type definition = | No | Builtin of Term.Value.t | Definition of Term.t type entry = { name: string; typ: Term.typ; definition: definition } type t = entry Segmented_array.t let bruijn_convert (i:int) (n:int): int = n - i - 1 let count (c:t): int = Segmented_array.length c let is_valid_index (i:int) (c:t): bool = 0 <= i && i < count c let index_of_level (i:int) (c:t): int = bruijn_convert i (count c) let level_of_index (i:int) (c:t): int = bruijn_convert i (count c) let entry (i:int) (c:t): entry = assert (is_valid_index i c); Segmented_array.elem i c let raw_type_at_level (i:int) (c:t): Term.typ = (entry i c).typ let type_at_level (i:int) (c:t): Term.typ = let cnt = count c in Term.up (cnt - i) (entry i c).typ let variable_at_level (i:int) (c:t): Term.t = Term.Variable (index_of_level i c) let name_at_level (level: int) (gamma: t): string = (entry level gamma).name let name_of_index (i: int) (gamma: t): string = (entry (bruijn_convert i (count gamma)) gamma).name let empty: t = Segmented_array.empty let push (name: string) (typ:Term.typ) (definition:definition) (c:t): t = Segmented_array.push {name; typ; definition} c let push_local (nme: string) (typ: Term.typ) (c:t): t = push nme typ No c let add_entry (name: string) (typ:Term.typ*int) (def:definition) (c:t): t = let typ,n = typ and cnt = count c in assert (n <= cnt); let typ = Term.up (cnt - n) typ in push name typ def c let int_level = 0 let char_level = 1 let string_level = 2 let eq_level = 8 let proposition_start_level = 12 let true_offset = 0 let false_offset = 1 let impl_offset = 2 let exfalso_offset = 3 let leibniz_offset = 4 let true_level = proposition_start_level + true_offset let false_level = proposition_start_level + false_offset let impl_level = proposition_start_level + impl_offset let exfalso_level = proposition_start_level + exfalso_offset let leibniz_level = proposition_start_level + leibniz_offset let _ = true_level , false_level , impl_level , exfalso_level , leibniz_level let binary_type (level:int): Term.typ * int = Pi (Variable 0, Pi (Variable 1, Variable 2, Pi_info.arrow), Pi_info.arrow), (level + 1) let int_type (c:t) = Term.Variable (index_of_level int_level c) let char_type (c:t) = Term.Variable (index_of_level char_level c) let string_type (c:t) = Term.Variable (index_of_level string_level c) let standard (): t = (* Standard context. *) let open Term in empty |> (* 0 *) add_entry "Int" (Term.any ,0) No |> (* 1 *) add_entry "Character" (Term.any, 0) No |> (* 2 *) add_entry "String" (Term.any, 0) No |> (* 3 *) add_entry "+" (binary_type int_level) (Builtin Term.Value.int_plus) |> (* 4 *) add_entry "-" (binary_type int_level) (Builtin Term.Value.int_minus) |> (* 5 *) add_entry "*" (binary_type int_level) (Builtin Term.Value.int_times) |> (* 6 *) add_entry "+" (binary_type string_level) (Builtin Term.Value.string_concat) |> (* 7 *) add_entry (* List: Any -> Any *) "List" (Term.(Pi (any, any, Pi_info.arrow)), 0) No |> (* 8 *) add_entry (* 8 *) (* (=) (A: Any): A -> A -> Proposition *) "=" (Term.( Pi (any, Pi (Variable 0, (Pi (Variable 1, proposition, Pi_info.arrow)), Pi_info.arrow), Pi_info.typed "A")), 0) No |> (* 9 *) add_entry (* identity: all (A: Any): A -> A := \ A x := x *) "identity" (Term.( Pi (any, Pi (Variable 0, Variable 1, Pi_info.arrow), Pi_info.typed "A")), 0) (Definition (Term.( Lambda (any, Lambda (Variable 0, Variable 0, Lambda_info.typed "x"), Lambda_info.typed "A")))) |> (* 10 *) (* (|>) (A: Any) (a: A) (B: Any) (f: A -> B): B := f a *) (let biga = Variable 0 and a = Variable 1 and bigb = Variable 2 and f = Variable 3 in let args = ["A", any; "a", biga; "B", any; "f", arrow biga bigb] in let typ = product_in args bigb and def = lambda_in args (application f a) in add_entry "|>" (to_index 0 typ, 0) (Definition (to_index 0 def)) ) |> (* 11 *) (* (<|) (A: Any) (B: Any) (f: A -> B) (a: A): B := f a *) (let biga = Variable 0 and bigb = Variable 1 and f = Variable 2 and a = Variable 3 in let args = ["A", any; "B", any; "f", arrow biga bigb; "a", biga] in let typ = product_in args bigb and def = lambda_in args (application f a) in add_entry "<|" (to_index 0 typ, 0) (Definition (to_index 0 def)) ) |> (* 12 *) add_entry (* true: Proposition *) "true" (Term.proposition, 0) No |> (* 13 *) add_entry (* false: Proposition *) "false" (Term.proposition, 0) No |> (* 14 *) (* (=>): all (a b: Proposition): Proposition := a -> b *) (let typ = product "_" proposition (product "_" proposition proposition) and def = let a = Variable 0 and b = Variable 1 in to_index 0 (lambda "a" proposition (lambda "b" proposition (arrow a b))) in add_entry "=>" (typ,0) (Definition def) ) |> (* 15 *) (* ex_falso: all (a: Proposition): false => a *) ( let n = proposition_start_level + exfalso_offset in let typ = product "a" proposition (binary (Variable false_level) (Variable impl_level) (Variable n)) in add_entry "ex_falso" (to_index n typ, n) No ) (* 16 *) (* leibniz (A: Any) (f: A -> Proposition) (a b: A) : a = b => f a => f b *) |> (let n = eq_level + 1 in let biga = Variable (n + 0) and f = Variable (n + 1) and a = Variable (n + 2) and b = Variable (n + 3) and eq = Variable eq_level in let args = ["A", any; "f", arrow biga proposition; "a", biga; "b", biga; "eq", binary a (implicit_application eq biga) b; "fa", application f a] in let typ = product_in args (application f b) in add_entry "leibniz" (to_index n typ, n) No ) let type_of_literal (v: Term.Value.t) (c: t): Term.typ = let open Term in match v with | Value.Int _ -> int_type c | Value.Char _ -> char_type c | Value.String _ -> string_type c | Value.Unary _ | Value.Binary _ -> assert false (* Illegal call! *) let type_of_variable (i: int) (c: t): Term.typ = type_at_level (level_of_index i c) c let definition_term (idx: int) (c: t): Term.t option = match (entry (level_of_index idx c) c).definition with | Definition def -> Some def | _ -> None let compute (t:Term.t) (c:t): Term.t = let open Term in let rec compute term steps c = match term with | Sort _ | Value _ -> term, steps | Variable i -> (match (entry (level_of_index i c) c).definition with | No -> term, steps | Builtin v -> Term.Value v, steps + 1 | Definition def -> def, steps + 1 ) | Typed (e, _ ) -> compute e (steps + 1) c | Appl (Value f, Value arg, _) -> Value (Value.apply f arg), steps + 1 | Appl (Value f, arg, mode) -> let arg, new_steps = compute arg steps c in if steps < new_steps then compute (Appl (Value f, arg, mode)) new_steps c else Appl (Value f, arg, mode), steps | Appl (Lambda (_, exp, _), arg, _) -> compute (apply exp arg) (steps + 1) c | Appl (Variable i, arg, mode) -> let f, new_steps = compute (Variable i) steps c in if steps < new_steps then compute (Appl (f, arg, mode)) new_steps c else term, new_steps | Appl (f, arg, mode) -> let f, new_steps = compute f steps c in if steps < new_steps then compute (Appl (f, arg, mode)) new_steps c else term, new_steps | Lambda _ -> term, steps | Pi (arg_tp, res_tp, info) -> let c_inner = push_local (Pi_info.name info) arg_tp c in let res_tp, new_steps = compute res_tp steps c_inner in if steps < new_steps then compute (Pi (arg_tp, res_tp, info)) new_steps c else term, steps | Where (_, _, exp, def) -> compute (apply exp def) (steps + 1) c in fst (compute t 0 c)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>