package alba
Alba compiler
Install
Dune Dependency
Authors
Maintainers
Sources
0.4.2.tar.gz
sha256=203ee151ce793a977b2d3e66f8b3a0cd7a82cc7f15550c63d88cb30c71eb5f95
md5=64367c393f80ca784f88d07155da4fb0
doc/src/alba.core/gamma_holes.ml.html
Source file gamma_holes.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
open Fmlib open Common type term_n = Term.t * int module Local = struct type t = | Hole of term_n option * Int_set.t (* Users *) | Bound of int (* number of bound variable (counting upwards) *) let hole: t = Hole (None, Int_set.empty) let make_bound (n: int): t = Bound n let is_hole (loc: t): bool = match loc with | Hole _ -> true | Bound _ -> false let is_unfilled (loc: t): bool = match loc with | Hole (None, _ ) -> true | _ -> false let is_bound (loc: t): bool = not (is_hole loc) let value (loc: t): term_n option = match loc with | Hole (value, _) -> value | _ -> None let users (loc: t): Int_set.t = match loc with | Hole (_, users) -> users | _ -> assert false (* Illegal call! *) let add_users (user: int) (users: Int_set.t) (loc: t): t = match loc with | Hole (value, users0) -> let set = Int_set.add user (Int_set.union users0 users) in Hole (value, set) | _ -> assert false (* Illegal call! *) let set_value (term_n: term_n) (loc: t): t = match loc with | Hole (_, users) -> Hole (Some term_n, users) | _ -> assert false (* Illegal call! *) let bound_number (loc: t): int = match loc with | Bound n -> n | _ -> assert false (* Illegal call! *) end type t = { base0: Gamma.t; base: Gamma.t; locals: Local.t array; bounds: (int * bool) array; (* level of bound, is typed? *) nholes: int; } let make (base: Gamma.t): t = { base0 = base; base; locals = [||]; bounds = [||]; nholes = 0 } let string_of_term (term: Term.t) (gh: t): string = Term_printer.string_of_term term gh.base let _ = string_of_term let count (gh: t): int = Gamma.count gh.base let count_base (gh: t): int = Gamma.count gh.base0 let count_bounds (gh: t): int = Array.length gh.bounds let count_locals (gh: t): int = Array.length gh.locals let context (gh: t): Gamma.t = gh.base let base_context (gh: t): Gamma.t = gh.base0 let index_of_level (level: int) (gh: t): int = Gamma.index_of_level level gh.base let level_of_index (idx: int) (gh: t): int = Gamma.level_of_index idx gh.base let local_of_index (idx: int) (gh: t): Local.t = let nlocs = count_locals gh in assert (idx < nlocs); gh.locals.(Term.bruijn_convert idx nlocs) let is_hole (idx: int) (gh: t): bool = idx < count_locals gh && Local.is_hole (local_of_index idx gh) let is_unfilled (idx: int) (gh: t): bool = let level = level_of_index idx gh and cnt0 = count_base gh in cnt0 <= level && let iloc = level - cnt0 in Local.is_unfilled gh.locals.(iloc) let is_bound (idx: int) (gh: t): bool = idx < count_locals gh && Local.is_bound (local_of_index idx gh) let bound_number (idx: int) (gh: t): int = assert (is_bound idx gh); Local.bound_number (local_of_index idx gh) let variable_of_bound (i: int) (gh: t): Term.t = assert (i < count_bounds gh); Term.Variable (index_of_level (fst gh.bounds.(i)) gh) let value (idx: int) (gh: t): Term.t option = let nlocs = count_locals gh in if nlocs <= idx then None else Option.map (fun (term, n) -> assert (n <= count gh); Term.up (count gh - n) term) (Local.value (local_of_index idx gh)) let has_value (idx: int) (gh: t): bool = Option.has (value idx gh) let collect_holes (cnt0: int) (filled: bool) (term: Term.t) (gh: t): Int_set.t = let cnt = count gh and nlocs = count_locals gh in assert (cnt0 <= cnt); let nmin = min nlocs (cnt - cnt0) in Term.fold_free (fun idx set -> if nmin <= idx then set else let loc = local_of_index idx gh in if Local.is_hole loc && ((Local.value loc <> None) = filled) then Int_set.add (Gamma.level_of_index idx gh.base) set else set) term Int_set.empty let unfilled_holes (cnt0: int) (term: Term.t) (gh: t): Int_set.t = collect_holes cnt0 false term gh let expand (term: Term.t) (gh: t): Term.t = Term.substitute (fun i -> match value i gh with | None -> Variable i | Some term -> term) term let is_expanded (term: Term.t) (gh: t): bool = Int_set.is_empty (collect_holes 0 true term gh) let term_of_term_n ((term,n): Term.t_n) (gh: t): Term.t = expand (Term.up (count gh - n) term) gh let type_at_level (level: int) (gh: t): Term.typ = let typ = Gamma.type_at_level level gh.base in if count_base gh <= level then expand typ gh else typ let type_of_variable (idx: int) (gh: t): Term.typ = type_at_level (Gamma.level_of_index idx gh.base) gh let name_at_level (level: int) (gh: t): string = Gamma.name_at_level level gh.base let type_of_literal (value: Term.Value.t) (gh: t): Term.typ = Gamma.type_of_literal value gh.base let definition_term (idx: int) (gh: t): Term.t option = Gamma.definition_term idx gh.base let push_bound (name: string) (typed: bool) (typ: Term.typ) (gh: t): t = {gh with base = Gamma.push_local name typ gh.base; locals = Array.push (Local.make_bound (Array.length gh.bounds)) gh.locals; bounds = Array.push (count gh, typed) gh.bounds; } let remove_bounds (n: int) (gh: t): t = assert (n <= count_bounds gh); {gh with bounds = Array.remove_last n gh.bounds} let push_local (name: string) (typ: Term.typ) (gh: t): t = push_bound name true typ gh let push_hole (typ: Term.typ) (gh: t): t = let name = "<" ^ string_of_int gh.nholes ^ ">" in {gh with base = Gamma.push_local name typ gh.base; locals = Array.push Local.hole gh.locals; nholes = gh.nholes + 1; } let fill_hole0 (idx: int) (value: Term.t) (beta_reduce: bool) (gh: t): t = assert (is_unfilled idx gh); let value = expand value gh and cnt = count gh and nlocs = count_locals gh and locals = Array.copy gh.locals in let cnt0 = cnt - nlocs and loc_level = Term.bruijn_convert idx nlocs in let gh_new = {gh with locals} in (* fill the hole *) locals.(loc_level) <- Local.set_value (value, cnt) locals.(loc_level); (* [idx] and users of [idx] also become users of all unfilled holes in [value] *) let users = Local.users locals.(loc_level) in Int_set.iter (fun unfilled -> let iloc = unfilled - cnt0 in locals.(iloc) <- Local.add_users (cnt0 + loc_level) users locals.(iloc)) (unfilled_holes cnt0 value gh); (* Substitute in all users of [idx] the variable [idx] by value. *) Int_set.iter (fun user -> let i = user - cnt0 in match Local.value locals.(i) with | Some (term,n) -> let term = Term.up (count gh - n) term in let term = Term.substitute0 (fun k -> if k = idx then value else Term.Variable k) beta_reduce term in locals.(i) <- Local.set_value (term, cnt) locals.(i) | _ -> assert false (* Illegal, all users must have a substitution, otherwise they would not be users. *)) users; gh_new let fill_hole (idx: int) (value: Term.t) (gh: t): t = fill_hole0 idx value false gh let into_binder (bnd0: int) (nb: int) (term: Term.t) (gh: t) : Term.typ = (* Put [term] into a context with additional [nb] bound variables. The bound variables [bnd0, bnd0+1, ..., bnd0+nb-1] become the new bound variables [0,1,...,nb-1]. *) assert (bnd0 <= count_bounds gh); let nlocs = count_locals gh in Term.substitute (fun idx -> if nlocs <= idx then Variable (idx + nb) else let loc = local_of_index idx gh in if Local.is_bound loc then let i = Local.bound_number loc in if bnd0 <= i then ( assert (i < bnd0 + nb); Variable (Term.bruijn_convert (i - bnd0) nb) ) else Variable (idx + nb) else Variable (idx + nb)) term let pi_lambda (mk: string -> bool -> Term.typ -> Term.t -> Term.t) (nbounds: int) (inner: Term.t) (gh: t) : Term.t = assert (nbounds <= count_bounds gh); let bnd0 = count_bounds gh - nbounds in let into = into_binder bnd0 in let rec make i exp = if i = 0 then exp else let i = i - 1 in let name, typed, arg_tp = let level, typed = gh.bounds.(bnd0 + i) in name_at_level level gh, typed, into i (type_at_level level gh) gh in make i (mk name typed arg_tp exp) in make nbounds (into nbounds inner gh) let pi (nargs: int) (res_tp: Term.typ) (gh: t): Term.typ = assert (0 < nargs); assert (nargs <= count_bounds gh); pi_lambda Term.product0 nargs res_tp gh let lambda (nargs: int) (exp: Term.t) (gh: t): Term.t = assert (0 < nargs); assert (nargs <= count_bounds gh); pi_lambda Term.lambda0 nargs exp gh
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>