package alba
Alba compiler
Install
Dune Dependency
Authors
Maintainers
Sources
0.4.2.tar.gz
sha256=203ee151ce793a977b2d3e66f8b3a0cd7a82cc7f15550c63d88cb30c71eb5f95
md5=64367c393f80ca784f88d07155da4fb0
doc/src/alba.core/unifier.ml.html
Source file unifier.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
open Fmlib module type HOLES = sig include Gamma_algo.GAMMA val context: t -> Gamma.t val expand: Term.t -> t -> Term.t val is_hole: int -> t -> bool val value: int -> t -> Term.t option val fill_hole0: int -> Term.t -> bool -> t -> t end module Make (GH: HOLES) = struct module Algo = Gamma_algo.Make (Gamma) type t = { gh: GH.t; gamma: Gamma.t } let make (gh: GH.t): t = {gh; gamma = GH.context gh} let context (uc: t): GH.t = uc.gh let push (name: string) (tp: Term.typ) (uc: t): t = {uc with gamma = Gamma.push_local name tp uc.gamma} let string_of_term (term: Term.t) (uc: t): string = Term_printer.string_of_term term uc.gamma let _ = string_of_term let delta (uc: t): int = Gamma.count uc.gamma - GH.count uc.gh let is_hole (idx: int) (uc: t): bool = let nb = delta uc in if idx < nb then false else GH.is_hole (idx - delta uc) uc.gh let expand (term: Term.t) (uc: t): Term.t = let del = delta uc in Term.substitute (fun i -> if i < del then Variable i else match GH.value (i - del) uc.gh with | None -> Variable i | Some term -> Term.up del term) term type unifier = Term.typ -> Term.typ -> bool -> t -> t option let set (i: int) (typ: Term.typ) (beta_reduce: bool) (uni: unifier) (uc: t) : t option = (* Fill the hole [i] with [typ] if their types can be unified. *) let open Option in let nb = delta uc in Term.down nb typ >>= fun typ0 -> (* typ does not contain any new bound variables!!i typ0 is valid in gh, (i - nb) is the hole in gh *) map (fun uc -> {uc with gh = GH.fill_hole0 (i - nb) typ0 beta_reduce uc.gh}) (uni (Algo.type_of_term typ uc.gamma) (Gamma.type_of_variable i uc.gamma) true uc) let setf (f: int) (arg: Term.t) (typ: Term.typ) (uni: unifier) (uc: t) : t option = (* Unify [f arg] with [typ] where [f] is a hole, i.e. assign [\lam x := typ] to [f]. *) let fterm = let arg_tp = Algo.type_of_term arg uc.gamma and exp = match arg with | Variable i -> Term.map (fun j -> if i = j then 0 else j + 1) typ | _ -> Term.up1 typ in Term.lambda "_" arg_tp exp in set f fterm true uni uc let rec unify0 (act: Term.typ) (req: Term.typ) (is_super: bool) (uc: t) : t option = let req = Algo.key_normal (expand req uc) uc.gamma and act = Algo.key_normal (expand act uc) uc.gamma and nb = delta uc and set i typ = set i typ false unify0 uc in let open Term in match act, req with | Sort act, Sort req when (is_super && Sort.is_super req act) || (not is_super && req = act) -> Some uc | Value act, Value req -> if Value.is_equal act req then Some uc else None | Appl (f_act, arg_act, _ ), Appl (f_req, arg_req, _) -> let open Option in unify0 f_act f_req false uc >>= unify0 arg_act arg_req false | Pi (act_arg, act_rt, info), Pi (req_arg, req_rt, _) -> Option.( unify0 act_arg req_arg false uc >>= fun uc -> let gamma = uc.gamma in map (fun uc -> {uc with gamma}) (unify0 act_rt req_rt is_super (push (Pi_info.name info) act_arg uc)) ) | Variable i, Variable j -> if i = j then Some uc else if i < nb || j < nb then None else let i_hole = is_hole i uc and j_hole = is_hole j uc in if not (i_hole || j_hole) then None else if i_hole && j_hole then match set j act with | None -> set i req | res -> res else if i_hole then set i req else if j_hole then set j act else assert false (* cannot happen, illegal path *) | Appl (Variable f, arg, _), _ when is_hole f uc -> setf f arg req unify0 uc | _, Appl (Variable f, arg, _ ) when is_hole f uc -> setf f arg act unify0 uc | Variable i, _ when is_hole i uc -> set i req | _, Variable j when is_hole j uc -> set j act | _, _ -> None let unify (act: Term.typ) (req: Term.typ) (is_super: bool) (gh: GH.t) : GH.t option = Option.map (fun uc -> uc.gh) (unify0 act req is_super (make gh)) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>