package wall

  1. Overview
  2. Docs

Source file wall__geom.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
(*
   Copyright (c) 2015 Frédéric Bour <frederic.bour@lakaban.net>

   This software is provided 'as-is', without any express or implied
   warranty.  In no event will the authors be held liable for any damages
   arising from the use of this software.
   Permission is granted to anyone to use this software for any purpose,
   including commercial applications, and to alter it and redistribute it
   freely, subject to the following restrictions:
   1. The origin of this software must not be misrepresented; you must not
      claim that you wrote the original software. If you use this software
      in a product, an acknowledgment in the product documentation would be
      appreciated but is not required.
   2. Altered source versions must be plainly marked as such, and must not be
      misrepresented as being the original software.
   3. This notice may not be removed or altered from any source distribution.
*)

[@@@landmark "auto"]
module BA = Bigarray.Array1
let ba_empty = BA.create Bigarray.float32 Bigarray.c_layout 0

(* Algorithms from
   https://github.com/memononen/nanovg/blob/master/src/nanovg.c *)

let minf a b : float = if a < b then a else b
let maxf a b : float = if a >= b then a else b

module T = struct
  type winding = CW | CCW

  type path = {
    path_first : int;
    mutable path_count : int;
    mutable path_closed : bool;
    mutable path_winding: winding;
    mutable path_convex : bool;
    mutable path_nbevel : int;
  }

  let flag_corner      = 0x1
  let flag_left        = 0x2
  let flag_bevel       = 0x4
  let flag_innerbevel  = 0x8

  type fbuffer =
    (float, Bigarray.float32_elt, Bigarray.c_layout) BA.t

  type u8buffer =
    (int, Bigarray.int8_unsigned_elt, Bigarray.c_layout) BA.t

  module T : sig
    type t = {
      mutable dist_tol : float;
      mutable tess_tol : float;
      mutable observed_tol : bool;
      mutable paths: path list;
      mutable point: int;
      mutable points: fbuffer;
      mutable points_flags: u8buffer;
      mutable points_aux: fbuffer;
    }

    val make : unit -> t
    val clear : t -> unit
    val count : t -> int

    val set_tol : t -> dist:float -> tess:float -> unit
    val dist_tol : t -> float
    val set_tess_tol : t -> float -> unit
    val tess_tol : t -> float

    val add_point : t -> float -> float -> int -> unit
    val set_last_flags : t -> int -> unit

    val reverse_points : t -> path -> unit
    val points_area : t -> path -> float

    val add_path : t -> unit
    val flush_paths : t -> path list

    val has_path : t -> bool
    val current_path : t -> path
    val observed_tol : t -> bool

    val last_x : t -> float
    val last_y : t -> float

    val get_x : t -> int -> float
    val get_y : t -> int -> float

    val get_flags : t -> int -> int
    val set_flags : t -> int -> int -> unit

    val prepare_aux : t -> unit

    val aux_set_d : t -> int -> float -> float -> float -> unit

    val aux_dx : t -> int -> float
    val aux_dy : t -> int -> float
    val aux_dlen : t -> int -> float
    val aux_dmx : t -> int -> float
    val aux_dmy : t -> int -> float
  end = struct

    type t = {
      mutable dist_tol : float;
      mutable tess_tol : float;
      mutable observed_tol : bool;
      mutable paths: path list;
      mutable point: int;
      mutable points: fbuffer;
      mutable points_flags: u8buffer;
      mutable points_aux: fbuffer;
    }


    let make () = {
      dist_tol = 0.01;
      tess_tol = 0.25;
      paths = [];
      point = 0;
      points = BA.create Bigarray.float32 Bigarray.c_layout 1024;
      points_flags = BA.create Bigarray.int8_unsigned Bigarray.c_layout 512;
      points_aux = ba_empty;
      observed_tol = false;
    }

    let clear t =
      t.observed_tol <- false;
      t.point <- 0;
      t.paths <- []

    let count t = t.point

    let set_tol t ~dist ~tess =
      t.dist_tol <- dist;
      t.tess_tol <- tess

    let dist_tol t = t.dist_tol

    let set_tess_tol t tol =
      t.tess_tol <- tol

    let tess_tol t =
      t.observed_tol <- true;
      t.tess_tol

    let observed_tol t = t.observed_tol

    let grow t =
      let d0 = BA.dim t.points_flags in
      let d = d0 * 3 / 2 in
      (*Printf.printf "grow: allocating %d points\n%!" d;*)
      let points = BA.create Bigarray.float32 Bigarray.c_layout (d * 2) in
      let points_flags = BA.create Bigarray.int8_unsigned Bigarray.c_layout d in
      BA.blit t.points (BA.sub points 0 (d0 * 2));
      BA.blit t.points_flags (BA.sub points_flags 0 d0);
      t.points <- points;
      t.points_flags <- points_flags

    let add_point t x y flags =
      if t.point >= BA.dim t.points_flags then
        (grow t; assert (t.point < BA.dim t.points_flags));
      let {point; points; points_flags} = t in
      points.{point * 2 + 0} <- x;
      points.{point * 2 + 1} <- y;
      (*Printf.printf "add_point: %d = (%f, %f)\n" point x y;*)
      points_flags.{point}   <- flags;
      t.point <- point + 1

    let set_last_flags t flags =
      t.points_flags.{t.point - 1} <- flags

    let reverse_points {points; points_flags} {path_first; path_count} =
      let last = path_first + path_count - 1 in
      for k = 0 to path_count / 2 - 1 do
        let i = path_first + k and j = last - k in
        let flags = points_flags.{i} in
        let x = points.{2 * i + 0} and y = points.{2 * i + 1} in
        points_flags.{i}   <- points_flags.{j};
        points.{2 * i + 0} <- points.{2 * j + 0};
        points.{2 * i + 1} <- points.{2 * j + 1};
        points_flags.{j}   <- flags;
        points.{2 * j + 0} <- x;
        points.{2 * j + 1} <- y;
      done

    let points_area {points} {path_first; path_count} =
      let ax = points.{2 * path_first + 0} and ay = points.{2 * path_first + 1} in
      let area = ref 0.0 in
      for k = path_first + 2 to path_first + path_count - 1 do
        let bx = points.{2 * k - 2} and by = points.{2 * k - 1} in
        let abx = bx -. ax and aby = by -. ay in
        let cx = points.{2 * k + 0} and cy = points.{2 * k + 1} in
        let acx = cx -. ax and acy = cy -. ay in
        area := !area +. (acx *. aby -. abx *. acy)
      done;
      (!area *. 0.5)

    let paths t = t.paths

    let freeze_path t = function
      | [] -> ()
      | p :: _ -> p.path_count <- t.point - p.path_first

    let add_path t =
      freeze_path t t.paths;
      let p = {
        path_first = t.point;
        path_count = -1;
        path_closed = false;
        path_winding = CCW;
        path_convex = false;
        path_nbevel = 0;
      } in
      t.paths <- p :: t.paths

    let has_path t = t.paths <> []

    let current_path t = match t.paths with
      | [] -> invalid_arg "Wall__geom.current_path"
      | p :: _ -> p

    let flush_paths t =
      let paths = t.paths in
      freeze_path t paths;
      (*t.paths <- [];*)
      paths

    let last_x {points; point} =
      if point > 0 then points.{2 * (point - 1) + 0} else 0.0

    let last_y {points; point} =
      if point > 0 then points.{2 * (point - 1) + 1} else 0.0

    let get_x {points} i = points.{2 * i + 0}
    let get_y {points} i = points.{2 * i + 1}

    let get_flags {points_flags} i = points_flags.{i}
    let set_flags {points_flags} i v = points_flags.{i} <- v

    let prepare_aux t =
      if BA.dim t.points_aux < t.point * 5 then
        let count = BA.dim t.points * 5 / 2 in
        (*Printf.printf "prepare_aux: allocating %d points\n%!" count;*)
        t.points_aux <- BA.create Bigarray.float32 Bigarray.c_layout count

    let aux_set_d {points_aux} pt dx dy dlen =
      (*Printf.printf "set_d: %f %f %f\n" dx dy dlen;*)
      points_aux.{5 * pt + 0} <- dx;
      points_aux.{5 * pt + 1} <- dy;
      points_aux.{5 * pt + 2} <- dlen

    let aux_dx   {points_aux} pt = points_aux.{5 * pt + 0}
    let aux_dy   {points_aux} pt = points_aux.{5 * pt + 1}
    let aux_dlen {points_aux} pt = points_aux.{5 * pt + 2}
    let aux_dmx  {points_aux} pt = points_aux.{5 * pt + 3}
    let aux_dmy  {points_aux} pt = points_aux.{5 * pt + 4}
  end

  type t = T.t
  let make = T.make

  type m_bounds = {
    mutable m_minx: float;
    mutable m_miny: float;
    mutable m_maxx: float;
    mutable m_maxy: float;
  }

  type bounds = {
    minx: float;
    miny: float;
    maxx: float;
    maxy: float;
  }

  let make_bounds () =
    { m_minx = max_float; m_miny = max_float;
      m_maxx = -.max_float; m_maxy = -.max_float}

  let point_equals ~tol p1x p1y p2x p2y =
    let dx = p1x -. p2x and dy = p1y -. p2y in
    dx *. dx +. dy *. dy < tol *. tol

  let update_bounds b x y =
    b.m_minx <- minf b.m_minx x;
    b.m_miny <- minf b.m_miny y;
    b.m_maxx <- maxf b.m_maxx x;
    b.m_maxy <- maxf b.m_maxy y

  let freeze_bounds b =
    { minx = b.m_minx; miny = b.m_miny;
      maxx = b.m_maxx; maxy = b.m_maxy }

  let freeze_path t bounds p =
    let p1 = p.path_first in
    let p0 = p1 + p.path_count - 1 in
    let p0 =
      if point_equals (T.dist_tol t)
          (T.get_x t p0) (T.get_y t p0) (T.get_x t p1) (T.get_y t p1) then
        begin
          p.path_closed <- true;
          p.path_count <- p.path_count - 1;
          p0 - 1
        end
      else p0
    in
    if p.path_count > 2 then begin
      let area = T.points_area t p in
      let reverse =
        match p.path_winding with
        | CCW -> area < 0.0
        | CW  -> area > 0.0
      in
      if reverse then
        T.reverse_points t p
    end;
    T.prepare_aux t;
    let p0 = ref p0 and p1 = ref p1 in
    for i = 0 to p.path_count - 1 do
      let x0 = T.get_x t !p0 and y0 = T.get_y t !p0 in
      update_bounds bounds x0 y0;

      let x1 = T.get_x t !p1 and y1 = T.get_y t !p1 in
      let dx = x1 -. x0 and dy = y1 -. y0 in
      let len = sqrt (dx *. dx +. dy *. dy) in
      if len > 1e-6
      then T.aux_set_d t !p0 (dx /. len) (dy /. len) len
      else T.aux_set_d t !p0 dx dy len;

      p0 := !p1;
      incr p1
    done

  let flush t =
    let bounds = make_bounds () in
    let paths = T.flush_paths t in
    List.iter (freeze_path t bounds) paths;
    freeze_bounds bounds, paths

  let last_x = T.last_x
  let last_y = T.last_y

  let set_tol = T.set_tol
  let set_tess_tol = T.set_tess_tol
  let clear = T.clear

  let has_path = T.has_path

  let close_path t =
    (T.current_path t).path_closed <- true

  let set_winding t w =
    (T.current_path t).path_winding <- w

  let move_to t x y =
    T.add_path t;
    T.add_point t x y flag_corner

  let line_to t x y =
    T.add_point t x y flag_corner

  let bezier_buf = Bigarray.Array1.create Bigarray.Float32 Bigarray.c_layout 80

  let bezier_loop t =
    let level = ref 0 in
    while !level >= 0 do
      let   x1 = bezier_buf.{!level * 8 + 0} in
      let   y1 = bezier_buf.{!level * 8 + 1} in
      let   x2 = bezier_buf.{!level * 8 + 2} in
      let   y2 = bezier_buf.{!level * 8 + 3} in
      let   x3 = bezier_buf.{!level * 8 + 4} in
      let   y3 = bezier_buf.{!level * 8 + 5} in
      let   x4 = bezier_buf.{!level * 8 + 6} in
      let   y4 = bezier_buf.{!level * 8 + 7} in
      let  x12 = ( x1 +.  x2) *. 0.5 in
      let  y12 = ( y1 +.  y2) *. 0.5 in
      let  x23 = ( x2 +.  x3) *. 0.5 in
      let  y23 = ( y2 +.  y3) *. 0.5 in
      let  x34 = ( x3 +.  x4) *. 0.5 in
      let  y34 = ( y3 +.  y4) *. 0.5 in
      let x123 = (x12 +. x23) *. 0.5 in
      let y123 = (y12 +. y23) *. 0.5 in
      let dx = x4 -. x1 in
      let dy = y4 -. y1 in
      let d2 = abs_float ((x2 -. x4) *. dy -. (y2 -. y4) *. dx) in
      let d3 = abs_float ((x3 -. x4) *. dy -. (y3 -. y4) *. dx) in
      if (d2 +. d3) *. (d2 +. d3) <= T.tess_tol t *. (dx *. dx +. dy *. dy) || !level = 8 then
        (T.add_point t x4 y4 0; decr level)
      else begin
        let  x234 = ( x23 +.  x34) *. 0.5 in
        let  y234 = ( y23 +.  y34) *. 0.5 in
        let x1234 = (x123 +. x234) *. 0.5 in
        let y1234 = (y123 +. y234) *. 0.5 in
        bezier_buf.{!level * 8 + 0} <- x1234;
        bezier_buf.{!level * 8 + 1} <- y1234;
        bezier_buf.{!level * 8 + 2} <- x234;
        bezier_buf.{!level * 8 + 3} <- y234;
        bezier_buf.{!level * 8 + 4} <- x34;
        bezier_buf.{!level * 8 + 5} <- y34;
        bezier_buf.{!level * 8 + 6} <- x4;
        bezier_buf.{!level * 8 + 7} <- y4;
        incr level;
        bezier_buf.{!level * 8 + 0} <- x1;
        bezier_buf.{!level * 8 + 1} <- y1;
        bezier_buf.{!level * 8 + 2} <- x12;
        bezier_buf.{!level * 8 + 3} <- y12;
        bezier_buf.{!level * 8 + 4} <- x123;
        bezier_buf.{!level * 8 + 5} <- y123;
        bezier_buf.{!level * 8 + 6} <- x1234;
        bezier_buf.{!level * 8 + 7} <- y1234;
      end
    done

  let bezier_to t ~x1 ~y1 ~x2 ~y2 ~x3 ~y3 =
    bezier_buf.{0} <- (last_x t);
    bezier_buf.{1} <- (last_y t);
    bezier_buf.{2} <- x1;
    bezier_buf.{3} <- y1;
    bezier_buf.{4} <- x2;
    bezier_buf.{5} <- y2;
    bezier_buf.{6} <- x3;
    bezier_buf.{7} <- y3;
    bezier_loop t;
    T.set_last_flags t flag_corner

  (* Calculate which joins needs extra vertices to append, and gather vertex count. *)
  let calculate_joins t w line_join miter_limit p =
    let iw = if w > 0.0 then 1.0 /. w else 0.0 in
    (*Printf.printf "w: %f, iw: %f\n" w iw;*)
    let nleft = ref 0 in
    let nbevel = ref 0 in
    let first = p.path_first in
    let last = first + p.path_count - 1 in
    for p1 = first to last do
      let p0 = if p1 = first then last else p1 - 1 in
      let dx0 = t.T.points_aux.{5 * p0 + 0} and dy0 = t.T.points_aux.{5 * p0 + 1} in
      let dx1 = t.T.points_aux.{5 * p1 + 0} and dy1 = t.T.points_aux.{5 * p1 + 1} in

      let dmx = (dy0 +. dy1) *. 0.5 in
      let dmy = -. (dx0 +. dx1) *. 0.5 in

      let dmr2 = dmx *. dmx +. dmy *. dmy in
      let scale =
        if dmr2 <= 1e-6 then 1.0 else
          minf (1.0 /. dmr2) 600.0
      in
      t.T.points_aux.{5 * p1 + 3} <- (dmx *. scale);
      t.T.points_aux.{5 * p1 + 4} <- (dmy *. scale);

      (*Printf.printf "calculate_joins: %f %f\n" (dmx *. scale) (dmy *. scale);*)
      (*Printf.printf "dmr2: %f\n" dmr2;*)

      let flags = T.get_flags t p1 land flag_corner in
      (*Printf.printf "flags(in): %d\n" flags;*)

      let flags =
        let cross = dx1 *. dy0 -. dx0 *. dy1 in
        if cross > 0.0 then
          (incr nleft; flags lor flag_left)
        else flags
      in

      let flags =
        let dlen0 = t.points_aux.{5 * p0 + 2}
        and dlen1 = t.points_aux.{5 * p1 + 2} in
        if maxf dlen0 dlen1 > w then
          let limit = maxf 1.01 (minf dlen0 dlen1 *. iw) in
          (*Printf.printf "limit: %f, dlen0: %f, dlen1: %f\n" limit dlen0 dlen1;*)
          if dmr2 *. limit *. limit < 1.0 then
            flags lor flag_innerbevel
          else flags
        else flags
      in

      let flags =
        if (flags land flag_corner <> 0) &&
           (line_join || (dmr2 *. miter_limit *. miter_limit) < 1.0) then
          flags lor flag_bevel
        else flags
      in

      if flags land (flag_bevel lor flag_innerbevel) <> 0 then
        incr nbevel;

      (*Printf.printf "flags(out): %d\n" flags;*)

      T.set_flags t p1 flags;
    done;

    p.path_nbevel <- !nbevel;
    p.path_convex <- !nleft = p.path_count

  let calculate_joins t ~width ~line_join ~miter_limit paths =
    let line_join = match line_join with
      | `BEVEL | `ROUND -> true
      | `MITER -> false
    in
    List.iter (calculate_joins t width line_join miter_limit) paths

  let get_x     = T.get_x
  let get_y     = T.get_y
  let get_flags = T.get_flags
  let get_dx    = T.aux_dx
  let get_dy    = T.aux_dy
  let get_dlen  = T.aux_dlen
  let get_dmx   = T.aux_dmx
  let get_dmy   = T.aux_dmy
  let tess_tol  = T.tess_tol
  let observed_tol = T.observed_tol

end

module B = struct
  type bigarray =
    (float, Bigarray.float32_elt, Bigarray.c_layout) Bigarray.Array1.t

  type t = {
    mutable data: bigarray;
    mutable cursor: int;
  }

  let make () = {
    data = ba_empty;
    cursor = 0;
  }

  let data t = t.data
  let clear t = t.cursor <- 0

  let reserve t size =
    let total = t.cursor + size in
    if BA.dim t.data < total then
      let data' = BA.create Bigarray.float32 Bigarray.c_layout
          (total * 3 / 2)
      in
      BA.blit t.data (BA.sub data' 0 (BA.dim t.data));
      t.data <- data'

  let alloc t n =
    let x = t.cursor in
    t.cursor <- x + n;
    x

  let release t n =
    t.cursor <- t.cursor - n

  let offset t = t.cursor

  let sub t =
    BA.sub t.data 0 t.cursor
end

module V = struct

  let pi = 3.14159265358979323846264338327

  let vbuffer_put ?(v=2) (b : B.t) x y ~dx ~dy ~u =
    if (abs_float dx > 1024.0 || abs_float dy > 1024.0) then (
      prerr_endline ("vbuffer_put: derivative overflow " ^
                     Printexc.raw_backtrace_to_string (Printexc.get_callstack 8))
    );
    let data = B.data b and c = B.alloc b 4 in
    data.{c + 0} <- x;
    data.{c + 1} <- y;
    data.{c + 2} <- dx /. 1024.0 -. 1.5 -. float u;
    data.{c + 3} <- dy /. 1024.0 -. 1.5 -. float v

  let dvbuffer_put ?(v=2) (b : B.t) x y ~dx ~dy ~w ~dw ~u =
    if (abs_float dx > 1024.0 || abs_float dy > 1024.0) then (
      prerr_endline ("vbuffer_put: derivative overflow " ^
                     Printexc.raw_backtrace_to_string (Printexc.get_callstack 8))
    );
    let data = B.data b and c = B.alloc b 4 in
    data.{c + 0} <- x +. dx *. w;
    data.{c + 1} <- y +. dy *. w;
    data.{c + 2} <- dx *. dw /. 1024.0 -. 1.5 -. float u;
    data.{c + 3} <- dy *. dw /. 1024.0 -. 1.5 -. float v

  let choose_bevel bevel t p0 p1 =
    if bevel then
      (+. T.get_dy t p0,
       -. T.get_dx t p0,
       +. T.get_dy t p1,
       -. T.get_dx t p1)
    else
      (T.get_dmx t p1,
       T.get_dmy t p1,
       T.get_dmx t p1,
       T.get_dmy t p1)

  let bevel_join vb t p0 p1 lw rw lu =
    let x1 = T.get_x t p1 in
    let y1 = T.get_y t p1 in
    let dlx0 = +. T.get_dy t p0 in
    let dly0 = -. T.get_dx t p0 in
    let dlx1 = +. T.get_dy t p1 in
    let dly1 = -. T.get_dx t p1 in
    let flags = T.get_flags t p1 in
    if flags land T.flag_left <> 0 then begin
      let lx0, ly0, lx1, ly1 =
        choose_bevel (flags land T.flag_innerbevel <> 0) t p0 p1 in

      dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5
        x1 y1 ~dx:lx0 ~dy:ly0;
      dvbuffer_put vb ~u:2 ~w:lw ~dw:0.5
        x1 y1 ~dx:(-. dlx0) ~dy:(-. dly0);

      if flags land T.flag_bevel <> 0 then begin
        dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5
          x1 y1 ~dx:lx0 ~dy:ly0;
        dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5
          x1 y1 ~dx:(-.dlx0) ~dy:(-.dly0);
        dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5
          x1 y1 ~dx:lx1 ~dy:ly1;
        dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5
          x1 y1 ~dx:(-.dlx1) ~dy:(-.dly1);
      end else begin
        let rx0 = -. T.get_dmx t p1 in
        let ry0 = -. T.get_dmy t p1 in
        vbuffer_put vb ~u:1
          x1 y1 ~dx:0.0 ~dy:0.0;
        dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5
          x1 y1 ~dx:(-.dlx0) ~dy:(-.dly0);
        dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5
          x1 y1 ~dx:rx0 ~dy:ry0;
        dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5
          x1 y1 ~dx:rx0 ~dy:ry0;
        vbuffer_put vb ~u:1
          x1 y1 ~dx:0.0 ~dy:0.0;
        dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5
          x1 y1 ~dx:(-.dlx1) ~dy:(-.dly1);
      end;

      dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5
        x1 y1 ~dx:lx1 ~dy:ly1;
      dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5
        x1 y1 ~dx:(-.dlx1) ~dy:(-.dly1)
    end else begin
      let rx0, ry0, rx1, ry1 =
        choose_bevel (flags land T.flag_innerbevel <> 0) t p0 p1 in

      dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5
        x1 y1 ~dx:dlx0 ~dy:dly0;
      dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5
        x1 y1 ~dx:(-.rx0) ~dy:(-.ry0);
      dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5
        x1 y1 ~dx:dlx0 ~dy:dly0;

      if flags land T.flag_bevel <> 0 then begin
        dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5
          x1 y1 ~dx:(-.rx0) ~dy:(-.ry0);

        dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5
          x1 y1 ~dx:dlx1 ~dy:dly1;
        dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5
          x1 y1 ~dx:(-.rx1) ~dy:(-.ry1);
      end else begin
        let lx0 = T.get_dmx t p1 in
        let ly0 = T.get_dmy t p1 in
        vbuffer_put vb ~u:1
          x1 y1 ~dx:0.0 ~dy:0.0;
        dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5
          x1 y1 ~dx:lx0 ~dy:ly0;
        dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5
          x1 y1 ~dx:lx0 ~dy:ly0;

        dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5
          x1 y1 ~dx:dlx1 ~dy:dly1;
        vbuffer_put vb ~u:1
          x1 y1 ~dx:0.0 ~dy:0.0;
      end;

      dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5
        x1 y1 ~dx:dlx1 ~dy:dly1;
      dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5
        x1 y1 ~dx:(-.rx1) ~dy:(-.ry1);
    end

  let round_join vb t p0 p1 w ncap =
    let x1 = T.get_x t p1 in
    let y1 = T.get_y t p1 in
    let dlx0 = +. T.get_dy t p0 in
    let dly0 = -. T.get_dx t p0 in
    let dlx1 = +. T.get_dy t p1 in
    let dly1 = -. T.get_dx t p1 in
    let flags = T.get_flags t p1 in
    if flags land T.flag_left <> 0 then begin
      let lx0, ly0, lx1, ly1 =
        choose_bevel (flags land T.flag_innerbevel <> 0) t p0 p1 in

      dvbuffer_put vb ~u:0 ~w ~dw:0.5
        x1 y1 ~dx:lx0 ~dy:ly0;
      dvbuffer_put vb ~u:2 ~w ~dw:0.5
        x1 y1 ~dx:(-.dlx0) ~dy:(-.dly0);

      let a0 = atan2 (-.dly0) (-.dlx0) in
      let a1 = atan2 (-.dly1) (-.dlx1) in
      let a1 = if a1 > a0 then a1 -. pi *. 2.0 else a1 in
      let n = int_of_float (ceil (((a0 -. a1) /. pi) *. float ncap)) in
      let n = if n <= 2 then 2 else if n >= ncap then ncap else n in
      for i = 0 to n - 1 do
        let u = float i /. float (n - 1) in
        let a = a0 +. u *. (a1 -. a0) in
        let rx = cos a and ry = sin a in
        vbuffer_put vb ~u:1
          x1 y1 ~dx:0.0 ~dy:0.0;
        dvbuffer_put vb ~u:2 ~w ~dw:0.5
          x1 y1 ~dx:rx ~dy:ry;
      done;

      dvbuffer_put vb ~u:0 ~w ~dw:0.5
        x1 y1 ~dx:lx1 ~dy:ly1;
      dvbuffer_put vb ~u:2 ~w ~dw:0.5
        x1 y1 ~dx:(-.dlx1) ~dy:(-.dly1);

    end else begin
      let rx0, ry0, rx1, ry1 =
        choose_bevel (flags land T.flag_innerbevel <> 0) t p0 p1 in

      dvbuffer_put vb ~u:0 ~w ~dw:0.5
        x1 y1 ~dx:dlx0 ~dy:dly0;
      dvbuffer_put vb ~u:2 ~w ~dw:0.5
        x1 y1 ~dx:(-.rx0) ~dy:(-.ry0);

      let a0 = atan2 dly0 dlx0 in
      let a1 = atan2 dly1 dlx1 in
      let a1 = if a1 < a0 then a1 +. pi *. 2.0 else a1 in
      let n = int_of_float (ceil (((a1 -. a0) /. pi) *. float ncap)) in
      let n = if n <= 2 then 2 else if n >= ncap then ncap else n in
      for i = 0 to n - 1 do
        let u = float i /. float (n - 1) in
        let a = a0 +. u *. (a1 -. a0) in
        let lx = cos a in
        let ly = sin a in
        dvbuffer_put vb ~u:0 ~w ~dw:0.5
          x1 y1 ~dx:lx ~dy:ly;
        vbuffer_put vb ~u:1
          x1 y1 ~dx:0.0 ~dy:0.0;
      done;
      dvbuffer_put vb ~u:0 ~w ~dw:0.5
        x1 y1 ~dx:dlx1 ~dy:dly1;
      dvbuffer_put vb ~u:2 ~w ~dw:0.5
        x1 y1 ~dx:(-.rx1) ~dy:(-.ry1);
    end

  (* Expand fill *)

  type path = {
    convex: bool;
    fill_first: int;
    fill_count: int;
    stroke_first: int;
    stroke_count: int;
  }

  let rec sum f acc = function
    | [] -> acc
    | x :: xs -> sum f (acc + f x) xs

  let sum f xs = sum f 0 xs

  let do_close_path vb first =
    let data = B.data vb and c = B.alloc vb 8 in
    (* Loop it *)
    data.{c + 0} <- data.{first * 4 + 0};
    data.{c + 1} <- data.{first * 4 + 1};
    data.{c + 2} <- data.{first * 4 + 2};
    data.{c + 3} <- data.{first * 4 + 3};
    data.{c + 4} <- data.{first * 4 + 4};
    data.{c + 5} <- data.{first * 4 + 5};
    data.{c + 6} <- data.{first * 4 + 6};
    data.{c + 7} <- data.{first * 4 + 7}

  module Fill = struct

    let count_no_fringe {T. path_count; path_nbevel} =
      (path_count + path_nbevel + 1)

    let count_fringe {T. path_count; path_nbevel} =
      (path_count + path_nbevel + 1) + (path_count + path_nbevel * 5 + 1) * 2

    let no_fringe t vb path =
      let fill_first = B.offset vb / 4 in
      for i = path.T.path_first to path.T.path_first + path.T.path_count - 1 do
        vbuffer_put vb (T.get_x t i) (T.get_y t i) ~dx:0.0 ~dy:0.0 ~u:1
      done;
      let fill_count = (B.offset vb / 4 - fill_first) in
      { convex = path.T.path_convex;
        fill_first; fill_count;
        stroke_first = 0; stroke_count = 0;
      }

    let fringe t vb ~convex path =
      let fill_first = B.offset vb / 4 in
      let first = path.T.path_first in
      let last = first + path.T.path_count - 1 in
      for p1 = first to last do
        let p0 = if p1 = first then last else p1 - 1 in
        let flags = T.get_flags t p1 in
        let x1 = T.get_x t p1 in
        let y1 = T.get_y t p1 in
        if flags land T.flag_bevel <> 0 then begin
          if flags land T.flag_left <> 0 then
            dvbuffer_put vb ~w:0.0 ~dw:0.5 ~u:1
              x1 y1 ~dx:(T.get_dmx t p1) ~dy:(T.get_dmy t p1)
          else begin
            dvbuffer_put vb ~u:1 ~w:0.0 ~dw:0.5
              x1 y1 ~dx:(+. T.get_dy t p0) ~dy:(-. T.get_dx t p0);
            dvbuffer_put vb ~u:1 ~w:0.0 ~dw:0.5
              x1 y1 ~dx:(+. T.get_dy t p1) ~dy:(-. T.get_dx t p1)
          end
        end else (
          dvbuffer_put vb ~w:0.0 ~dw:0.5 ~u:1
            x1 y1 ~dx:(T.get_dmx t p1) ~dy:(T.get_dmy t p1)
        )
      done;
      let stroke_first = B.offset vb / 4 in
      (* Calculate fringe *)
      let lw, lu = if convex then 0.5, 1 else 1.5, 0 in
      for p1 = first to last do
        let p0 = if p1 = first then last else p1 - 1 in
        if T.get_flags t p1 land (T.flag_bevel lor T.flag_innerbevel) <> 0
        then
          bevel_join vb t p0 p1 0.0 0.0 lu
        else begin
          let x1 = T.get_x t p1 and dx1 = T.get_dmx t p1 in
          let y1 = T.get_y t p1 and dy1 = T.get_dmy t p1 in
          dvbuffer_put vb ~u:lu
            x1 y1 ~dx:dx1 ~dy:dy1 ~w:0.0 ~dw:lw;
          dvbuffer_put vb ~u:2
            x1 y1 ~dx:dx1 ~dy:dy1 ~w:0.0 ~dw:(-0.5);
        end
      done;
      do_close_path vb stroke_first;
      let stroke_last = B.offset vb / 4 in
      { convex = path.T.path_convex;
        fill_first; stroke_first;
        fill_count   = stroke_first - fill_first;
        stroke_count = stroke_last  - stroke_first;
      }

    let expand_no_aa t vb paths =
      B.reserve vb (sum count_no_fringe paths * 4);
      List.map (no_fringe t vb) paths

    let expand_aa t vb paths =
      B.reserve vb (sum count_fringe paths * 4);
      let convex = match paths with
        | [p] -> p.T.path_convex
        |  _  -> false
      in
      List.map (fringe t vb ~convex) paths
  end

  let fill t vb ~edge_antialias ~scale paths =
    T.calculate_joins t ~width:scale ~line_join:`MITER ~miter_limit:2.4 paths;
    if edge_antialias then
      Fill.expand_aa t vb paths
    else
      Fill.expand_no_aa t vb paths

  module Stroke = struct

    let curve_divs r arc tol =
      let da = acos (r /. (r +. tol)) *. 2.0 in
      int_of_float (maxf 2.0 (ceil (arc /. da)))

    let count join_ncap cap_ncap {T. path_count; path_nbevel; path_closed} =
      (*Printf.printf "path_count: %d, path_nbevel: %d\n" path_count path_nbevel;*)
      ((path_count + path_nbevel * (join_ncap + 2) + 1) * 2) +
      (if path_closed then 0 else (cap_ncap * 2 + 2) * 2)

    let count ~line_join ~line_cap ncap =
      count
        (match line_join with
         | `ROUND -> ncap
         | `MITER | `BEVEL -> 3)
        (match line_cap with
         | `ROUND -> ncap
         | `BUTT | `SQUARE -> 2)

    let roundcap_end vb t p ~dx ~dy ~w ~ncap =
      (*Printf.printf "roundcap_end %f %f %f %d\n" dx dy w ncap;*)
      let px = T.get_x t p and py = T.get_y t p in
      let dlx = dy and dly = -.dx in
      dvbuffer_put vb ~u:0 ~w ~dw:0.5
        px py ~dx:dlx ~dy:dly;
      dvbuffer_put vb ~u:2 ~w ~dw:0.5
        px py ~dx:(-.dlx) ~dy:(-.dly);
      for i = 0 to ncap - 1 do
        let a = float i /. float (ncap - 1) *. pi in
        let ax = cos a and ay = sin a in
        let fx = dx *. ay -. dlx *. ax in
        let fy = dy *. ay -. dly *. ax in
        vbuffer_put vb px py ~dx:0.0 ~dy:0.0 ~u:1;
        dvbuffer_put vb ~u:2 ~w ~dw:0.5
          px py ~dx:fx ~dy:fy;
      done

    let roundcap_start vb t p ~dx ~dy ~w ~ncap =
      (*Printf.printf "roundcap_start %f %f %f %d\n" dx dy w ncap;*)
      let px = T.get_x t p and py = T.get_y t p in
      let dlx = dy and dly = -.dx in
      for i = 0 to ncap - 1 do
        let a = float i /. float (ncap - 1) *. pi in
        let ax = cos a and ay = sin a in
        let fx = dlx *. ax +. dx *. ay in
        let fy = dly *. ax +. dy *. ay in
        dvbuffer_put vb ~u:0 ~w ~dw:0.5
          px py ~dx:(-.fx) ~dy:(-.fy);
        vbuffer_put vb px py
          ~dx:0.0 ~dy:0.0 ~u:1;
      done;
      dvbuffer_put vb ~u:0 ~w ~dw:0.5
        px py ~dx:dlx ~dy:dly;
      dvbuffer_put vb ~u:2 ~w ~dw:0.5
        px py ~dx:(-.dlx) ~dy:(-.dly)

    let buttcap_start vb t p ~dx ~dy ~w =
      let px = T.get_x t p +. dx *. 0.5 in
      let py = T.get_y t p +. dy *. 0.5 in
      let dlx = dy *. w and dly = dx *. w in
      let dlx' = dy *. 0.5 and dly' = dx *. 0.5 in
      (
        vbuffer_put vb ~u:0 ~v:0
          (px +. dlx) ~dx:(+. dlx')
          (py -. dly) ~dy:(-. dly');
        vbuffer_put vb ~u:2 ~v:0
          (px -. dlx) ~dx:(-. dlx')
          (py +. dly) ~dy:(+. dly');
        vbuffer_put vb ~u:0 ~v:2
          (px +. dlx) ~dx:(dx +. dlx')
          (py -. dly) ~dy:(dy -. dly');
        vbuffer_put vb ~u:2 ~v:2
          (px -. dlx) ~dx:(dx -. dlx')
          (py +. dly) ~dy:(dy +. dly');
      )

    let buttcap_end vb t p ~dx ~dy ~w =
      let px = T.get_x t p -. dx *. 0.5 in
      let py = T.get_y t p -. dy *. 0.5 in
      let dlx = dy *. w and dly = dx *. w in
      let dlx' = dy *. 0.5 and dly' = dx *. 0.5 in
      (
        vbuffer_put vb ~u:0 ~v:2
          (px +. dlx) ~dx:(-. dx +. dlx')
          (py -. dly) ~dy:(-. dy -. dly');
        vbuffer_put vb ~u:2 ~v:2
          (px -. dlx) ~dx:(-. dx -. dlx')
          (py +. dly) ~dy:(-. dy +. dly');
        vbuffer_put vb ~u:0 ~v:0
          (px +. dlx) ~dx:(+. dlx')
          (py -. dly) ~dy:(-. dly');
        vbuffer_put vb ~u:2 ~v:0
          (px -. dlx) ~dx:(+. dlx')
          (py +. dly) ~dy:(-. dly');
      )

    let squarecap_start vb t p ~dx ~dy ~w =
      let px = T.get_x t p -. dx *. w in
      let py = T.get_y t p -. dy *. w in
      let dlx = dy *. w and dly = dx *. w in
      let dlx' = dy *. 0.5 and dly' = dx *. 0.5 in
      (
        vbuffer_put vb ~u:0 ~v:0
          (px +. dlx) ~dx:(+. dlx')
          (py -. dly) ~dy:(-. dly');
        vbuffer_put vb ~u:2 ~v:0
          (px -. dlx) ~dx:(-. dlx')
          (py +. dly) ~dy:(+. dly');
        vbuffer_put vb ~u:0 ~v:2
          (px +. dlx) ~dx:(dx +. dlx')
          (py -. dly) ~dy:(dy -. dly');
        vbuffer_put vb ~u:2 ~v:2
          (px -. dlx) ~dx:(dx -. dlx')
          (py +. dly) ~dy:(dy +. dly');
      )

    let squarecap_end vb t p ~dx ~dy ~w =
      let px = T.get_x t p +. dx *. w in
      let py = T.get_y t p +. dy *. w in
      let dlx = dy *. w and dly = dx *. w in
      let dlx' = dy *. 0.5 and dly' = dx *. 0.5 in
      vbuffer_put vb ~u:0 ~v:2
        (px +. dlx) ~dx:(-. dx +. dlx')
        (py -. dly) ~dy:(-. dy -. dly');
      vbuffer_put vb ~u:2 ~v:2
        (px -. dlx) ~dx:(-. dx -. dlx')
        (py +. dly) ~dy:(-. dy +. dly');
      vbuffer_put vb ~u:0 ~v:0
        (px +. dlx) ~dx:(+. dlx')
        (py -. dly) ~dy:(-. dly');
      vbuffer_put vb ~u:2 ~v:0
        (px -. dlx) ~dx:(-. dlx')
        (py +. dly) ~dy:(+. dly')

    let expand_path t vb ~line_join ~line_cap ~w ncap path =
      let stroke_first = B.offset vb / 4 in
      let first = path.T.path_first in
      let last = first + path.T.path_count - 1 in
      if not path.T.path_closed then begin
        let p0 = first and p1 = first + 1 in
        let dx = T.get_x t p1 -. T.get_x t p0 in
        let dy = T.get_y t p1 -. T.get_y t p0 in
        let dlen = sqrt (dx *. dx +. dy *. dy) in
        let dlen = if dlen < 1e-6 then 1. else 1. /. dlen in
        let dx = dx *. dlen and dy = dy *. dlen in
        match line_cap with
        | `BUTT   -> buttcap_start  vb t p0 ~dx ~dy ~w
        | `SQUARE -> squarecap_start vb t p0 ~dx ~dy ~w
        | `ROUND  -> roundcap_start vb t p0 ~dx ~dy ~w ~ncap
      end;
      let s, e =
        if path.T.path_closed then
          first, last
        else
          first + 1, last - 1
      in
      for p1 = s to e do
        if T.get_flags t p1 land (T.flag_bevel lor T.flag_innerbevel) <> 0 then begin
          let p0 = if p1 = first then last else p1 - 1 in
          match line_join with
          | `ROUND -> round_join vb t p0 p1 w ncap
          | `BEVEL | `MITER -> bevel_join vb t p0 p1 w w 0
        end else begin
          let x1 = T.get_x t p1 and dmx = T.get_dmx t p1 in
          let y1 = T.get_y t p1 and dmy = T.get_dmy t p1 in
          dvbuffer_put vb ~u:0 ~w ~dw:0.5
            x1 y1 ~dx:dmx ~dy:dmy;
          dvbuffer_put vb ~u:2 ~w ~dw:0.5
            x1 y1 ~dx:(-.dmx) ~dy:(-.dmy);
        end
      done;

      if path.T.path_closed then
        do_close_path vb stroke_first
      else begin
        let p0 = last - 1 and p1 = last in
        let dx = T.get_x t p1 -. T.get_x t p0 in
        let dy = T.get_y t p1 -. T.get_y t p0 in
        let dlen = sqrt (dx *. dx +. dy *. dy) in
        let dlen = if dlen < 1e-6 then 1. else 1. /. dlen in
        let dx = dx *. dlen and dy = dy *. dlen in
        match line_cap with
        | `BUTT   -> buttcap_end vb t p1 ~dx ~dy ~w
        | `SQUARE -> squarecap_end vb t p1 ~dx ~dy ~w
        | `ROUND  -> roundcap_end vb t p1 ~dx ~dy ~w ~ncap
      end;
      { convex = false;
        fill_first = 0; fill_count = 0;
        stroke_first; stroke_count = B.offset vb / 4 - stroke_first;
      }

    let expand t vb ~line_join ~line_cap ~width ~miter_limit paths =
      let ncap = curve_divs width pi (T.tess_tol t) in
      T.calculate_joins t ~width ~line_join ~miter_limit paths;
      let count = sum (count ~line_join ~line_cap ncap) paths * 4 in
      (*Printf.printf "count:%d w:%f\n" count w;*)
      B.reserve vb count;
      List.map (expand_path t vb ~line_join ~line_cap ~w:width ncap) paths
  end

  let stroke t vb ~width ~line_join ~line_cap ~miter_limit paths =
    let width = width *. 0.5 in
    Stroke.expand t vb ~line_join ~line_cap ~miter_limit ~width paths
end
OCaml

Innovation. Community. Security.