Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
wall__geom.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
(* Copyright (c) 2015 Frédéric Bour <frederic.bour@lakaban.net> This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. *) [@@@landmark "auto"] module BA = Bigarray.Array1 let ba_empty = BA.create Bigarray.float32 Bigarray.c_layout 0 (* Algorithms from https://github.com/memononen/nanovg/blob/master/src/nanovg.c *) let minf a b : float = if a < b then a else b let maxf a b : float = if a >= b then a else b module T = struct type winding = CW | CCW type path = { path_first : int; mutable path_count : int; mutable path_closed : bool; mutable path_winding: winding; mutable path_convex : bool; mutable path_nbevel : int; } let flag_corner = 0x1 let flag_left = 0x2 let flag_bevel = 0x4 let flag_innerbevel = 0x8 type fbuffer = (float, Bigarray.float32_elt, Bigarray.c_layout) BA.t type u8buffer = (int, Bigarray.int8_unsigned_elt, Bigarray.c_layout) BA.t module T : sig type t = { mutable dist_tol : float; mutable tess_tol : float; mutable observed_tol : bool; mutable paths: path list; mutable point: int; mutable points: fbuffer; mutable points_flags: u8buffer; mutable points_aux: fbuffer; } val make : unit -> t val clear : t -> unit val count : t -> int val set_tol : t -> dist:float -> tess:float -> unit val dist_tol : t -> float val set_tess_tol : t -> float -> unit val tess_tol : t -> float val add_point : t -> float -> float -> int -> unit val set_last_flags : t -> int -> unit val reverse_points : t -> path -> unit val points_area : t -> path -> float val add_path : t -> unit val flush_paths : t -> path list val has_path : t -> bool val current_path : t -> path val observed_tol : t -> bool val last_x : t -> float val last_y : t -> float val get_x : t -> int -> float val get_y : t -> int -> float val get_flags : t -> int -> int val set_flags : t -> int -> int -> unit val prepare_aux : t -> unit val aux_set_d : t -> int -> float -> float -> float -> unit val aux_dx : t -> int -> float val aux_dy : t -> int -> float val aux_dlen : t -> int -> float val aux_dmx : t -> int -> float val aux_dmy : t -> int -> float end = struct type t = { mutable dist_tol : float; mutable tess_tol : float; mutable observed_tol : bool; mutable paths: path list; mutable point: int; mutable points: fbuffer; mutable points_flags: u8buffer; mutable points_aux: fbuffer; } let make () = { dist_tol = 0.01; tess_tol = 0.25; paths = []; point = 0; points = BA.create Bigarray.float32 Bigarray.c_layout 1024; points_flags = BA.create Bigarray.int8_unsigned Bigarray.c_layout 512; points_aux = ba_empty; observed_tol = false; } let clear t = t.observed_tol <- false; t.point <- 0; t.paths <- [] let count t = t.point let set_tol t ~dist ~tess = t.dist_tol <- dist; t.tess_tol <- tess let dist_tol t = t.dist_tol let set_tess_tol t tol = t.tess_tol <- tol let tess_tol t = t.observed_tol <- true; t.tess_tol let observed_tol t = t.observed_tol let grow t = let d0 = BA.dim t.points_flags in let d = d0 * 3 / 2 in (*Printf.printf "grow: allocating %d points\n%!" d;*) let points = BA.create Bigarray.float32 Bigarray.c_layout (d * 2) in let points_flags = BA.create Bigarray.int8_unsigned Bigarray.c_layout d in BA.blit t.points (BA.sub points 0 (d0 * 2)); BA.blit t.points_flags (BA.sub points_flags 0 d0); t.points <- points; t.points_flags <- points_flags let add_point t x y flags = if t.point >= BA.dim t.points_flags then (grow t; assert (t.point < BA.dim t.points_flags)); let {point; points; points_flags} = t in points.{point * 2 + 0} <- x; points.{point * 2 + 1} <- y; (*Printf.printf "add_point: %d = (%f, %f)\n" point x y;*) points_flags.{point} <- flags; t.point <- point + 1 let set_last_flags t flags = t.points_flags.{t.point - 1} <- flags let reverse_points {points; points_flags} {path_first; path_count} = let last = path_first + path_count - 1 in for k = 0 to path_count / 2 - 1 do let i = path_first + k and j = last - k in let flags = points_flags.{i} in let x = points.{2 * i + 0} and y = points.{2 * i + 1} in points_flags.{i} <- points_flags.{j}; points.{2 * i + 0} <- points.{2 * j + 0}; points.{2 * i + 1} <- points.{2 * j + 1}; points_flags.{j} <- flags; points.{2 * j + 0} <- x; points.{2 * j + 1} <- y; done let points_area {points} {path_first; path_count} = let ax = points.{2 * path_first + 0} and ay = points.{2 * path_first + 1} in let area = ref 0.0 in for k = path_first + 2 to path_first + path_count - 1 do let bx = points.{2 * k - 2} and by = points.{2 * k - 1} in let abx = bx -. ax and aby = by -. ay in let cx = points.{2 * k + 0} and cy = points.{2 * k + 1} in let acx = cx -. ax and acy = cy -. ay in area := !area +. (acx *. aby -. abx *. acy) done; (!area *. 0.5) let paths t = t.paths let freeze_path t = function | [] -> () | p :: _ -> p.path_count <- t.point - p.path_first let add_path t = freeze_path t t.paths; let p = { path_first = t.point; path_count = -1; path_closed = false; path_winding = CCW; path_convex = false; path_nbevel = 0; } in t.paths <- p :: t.paths let has_path t = t.paths <> [] let current_path t = match t.paths with | [] -> invalid_arg "Wall__geom.current_path" | p :: _ -> p let flush_paths t = let paths = t.paths in freeze_path t paths; (*t.paths <- [];*) paths let last_x {points; point} = if point > 0 then points.{2 * (point - 1) + 0} else 0.0 let last_y {points; point} = if point > 0 then points.{2 * (point - 1) + 1} else 0.0 let get_x {points} i = points.{2 * i + 0} let get_y {points} i = points.{2 * i + 1} let get_flags {points_flags} i = points_flags.{i} let set_flags {points_flags} i v = points_flags.{i} <- v let prepare_aux t = if BA.dim t.points_aux < t.point * 5 then let count = BA.dim t.points * 5 / 2 in (*Printf.printf "prepare_aux: allocating %d points\n%!" count;*) t.points_aux <- BA.create Bigarray.float32 Bigarray.c_layout count let aux_set_d {points_aux} pt dx dy dlen = (*Printf.printf "set_d: %f %f %f\n" dx dy dlen;*) points_aux.{5 * pt + 0} <- dx; points_aux.{5 * pt + 1} <- dy; points_aux.{5 * pt + 2} <- dlen let aux_dx {points_aux} pt = points_aux.{5 * pt + 0} let aux_dy {points_aux} pt = points_aux.{5 * pt + 1} let aux_dlen {points_aux} pt = points_aux.{5 * pt + 2} let aux_dmx {points_aux} pt = points_aux.{5 * pt + 3} let aux_dmy {points_aux} pt = points_aux.{5 * pt + 4} end type t = T.t let make = T.make type m_bounds = { mutable m_minx: float; mutable m_miny: float; mutable m_maxx: float; mutable m_maxy: float; } type bounds = { minx: float; miny: float; maxx: float; maxy: float; } let make_bounds () = { m_minx = max_float; m_miny = max_float; m_maxx = -.max_float; m_maxy = -.max_float} let point_equals ~tol p1x p1y p2x p2y = let dx = p1x -. p2x and dy = p1y -. p2y in dx *. dx +. dy *. dy < tol *. tol let update_bounds b x y = b.m_minx <- minf b.m_minx x; b.m_miny <- minf b.m_miny y; b.m_maxx <- maxf b.m_maxx x; b.m_maxy <- maxf b.m_maxy y let freeze_bounds b = { minx = b.m_minx; miny = b.m_miny; maxx = b.m_maxx; maxy = b.m_maxy } let freeze_path t bounds p = let p1 = p.path_first in let p0 = p1 + p.path_count - 1 in let p0 = if point_equals (T.dist_tol t) (T.get_x t p0) (T.get_y t p0) (T.get_x t p1) (T.get_y t p1) then begin p.path_closed <- true; p.path_count <- p.path_count - 1; p0 - 1 end else p0 in if p.path_count > 2 then begin let area = T.points_area t p in let reverse = match p.path_winding with | CCW -> area < 0.0 | CW -> area > 0.0 in if reverse then T.reverse_points t p end; T.prepare_aux t; let p0 = ref p0 and p1 = ref p1 in for i = 0 to p.path_count - 1 do let x0 = T.get_x t !p0 and y0 = T.get_y t !p0 in update_bounds bounds x0 y0; let x1 = T.get_x t !p1 and y1 = T.get_y t !p1 in let dx = x1 -. x0 and dy = y1 -. y0 in let len = sqrt (dx *. dx +. dy *. dy) in if len > 1e-6 then T.aux_set_d t !p0 (dx /. len) (dy /. len) len else T.aux_set_d t !p0 dx dy len; p0 := !p1; incr p1 done let flush t = let bounds = make_bounds () in let paths = T.flush_paths t in List.iter (freeze_path t bounds) paths; freeze_bounds bounds, paths let last_x = T.last_x let last_y = T.last_y let set_tol = T.set_tol let set_tess_tol = T.set_tess_tol let clear = T.clear let has_path = T.has_path let close_path t = (T.current_path t).path_closed <- true let set_winding t w = (T.current_path t).path_winding <- w let move_to t x y = T.add_path t; T.add_point t x y flag_corner let line_to t x y = T.add_point t x y flag_corner let bezier_buf = Bigarray.Array1.create Bigarray.Float32 Bigarray.c_layout 80 let bezier_loop t = let level = ref 0 in while !level >= 0 do let x1 = bezier_buf.{!level * 8 + 0} in let y1 = bezier_buf.{!level * 8 + 1} in let x2 = bezier_buf.{!level * 8 + 2} in let y2 = bezier_buf.{!level * 8 + 3} in let x3 = bezier_buf.{!level * 8 + 4} in let y3 = bezier_buf.{!level * 8 + 5} in let x4 = bezier_buf.{!level * 8 + 6} in let y4 = bezier_buf.{!level * 8 + 7} in let x12 = ( x1 +. x2) *. 0.5 in let y12 = ( y1 +. y2) *. 0.5 in let x23 = ( x2 +. x3) *. 0.5 in let y23 = ( y2 +. y3) *. 0.5 in let x34 = ( x3 +. x4) *. 0.5 in let y34 = ( y3 +. y4) *. 0.5 in let x123 = (x12 +. x23) *. 0.5 in let y123 = (y12 +. y23) *. 0.5 in let dx = x4 -. x1 in let dy = y4 -. y1 in let d2 = abs_float ((x2 -. x4) *. dy -. (y2 -. y4) *. dx) in let d3 = abs_float ((x3 -. x4) *. dy -. (y3 -. y4) *. dx) in if (d2 +. d3) *. (d2 +. d3) <= T.tess_tol t *. (dx *. dx +. dy *. dy) || !level = 8 then (T.add_point t x4 y4 0; decr level) else begin let x234 = ( x23 +. x34) *. 0.5 in let y234 = ( y23 +. y34) *. 0.5 in let x1234 = (x123 +. x234) *. 0.5 in let y1234 = (y123 +. y234) *. 0.5 in bezier_buf.{!level * 8 + 0} <- x1234; bezier_buf.{!level * 8 + 1} <- y1234; bezier_buf.{!level * 8 + 2} <- x234; bezier_buf.{!level * 8 + 3} <- y234; bezier_buf.{!level * 8 + 4} <- x34; bezier_buf.{!level * 8 + 5} <- y34; bezier_buf.{!level * 8 + 6} <- x4; bezier_buf.{!level * 8 + 7} <- y4; incr level; bezier_buf.{!level * 8 + 0} <- x1; bezier_buf.{!level * 8 + 1} <- y1; bezier_buf.{!level * 8 + 2} <- x12; bezier_buf.{!level * 8 + 3} <- y12; bezier_buf.{!level * 8 + 4} <- x123; bezier_buf.{!level * 8 + 5} <- y123; bezier_buf.{!level * 8 + 6} <- x1234; bezier_buf.{!level * 8 + 7} <- y1234; end done let bezier_to t ~x1 ~y1 ~x2 ~y2 ~x3 ~y3 = bezier_buf.{0} <- (last_x t); bezier_buf.{1} <- (last_y t); bezier_buf.{2} <- x1; bezier_buf.{3} <- y1; bezier_buf.{4} <- x2; bezier_buf.{5} <- y2; bezier_buf.{6} <- x3; bezier_buf.{7} <- y3; bezier_loop t; T.set_last_flags t flag_corner (* Calculate which joins needs extra vertices to append, and gather vertex count. *) let calculate_joins t w line_join miter_limit p = let iw = if w > 0.0 then 1.0 /. w else 0.0 in (*Printf.printf "w: %f, iw: %f\n" w iw;*) let nleft = ref 0 in let nbevel = ref 0 in let first = p.path_first in let last = first + p.path_count - 1 in for p1 = first to last do let p0 = if p1 = first then last else p1 - 1 in let dx0 = t.T.points_aux.{5 * p0 + 0} and dy0 = t.T.points_aux.{5 * p0 + 1} in let dx1 = t.T.points_aux.{5 * p1 + 0} and dy1 = t.T.points_aux.{5 * p1 + 1} in let dmx = (dy0 +. dy1) *. 0.5 in let dmy = -. (dx0 +. dx1) *. 0.5 in let dmr2 = dmx *. dmx +. dmy *. dmy in let scale = if dmr2 <= 1e-6 then 1.0 else minf (1.0 /. dmr2) 600.0 in t.T.points_aux.{5 * p1 + 3} <- (dmx *. scale); t.T.points_aux.{5 * p1 + 4} <- (dmy *. scale); (*Printf.printf "calculate_joins: %f %f\n" (dmx *. scale) (dmy *. scale);*) (*Printf.printf "dmr2: %f\n" dmr2;*) let flags = T.get_flags t p1 land flag_corner in (*Printf.printf "flags(in): %d\n" flags;*) let flags = let cross = dx1 *. dy0 -. dx0 *. dy1 in if cross > 0.0 then (incr nleft; flags lor flag_left) else flags in let flags = let dlen0 = t.points_aux.{5 * p0 + 2} and dlen1 = t.points_aux.{5 * p1 + 2} in if maxf dlen0 dlen1 > w then let limit = maxf 1.01 (minf dlen0 dlen1 *. iw) in (*Printf.printf "limit: %f, dlen0: %f, dlen1: %f\n" limit dlen0 dlen1;*) if dmr2 *. limit *. limit < 1.0 then flags lor flag_innerbevel else flags else flags in let flags = if (flags land flag_corner <> 0) && (line_join || (dmr2 *. miter_limit *. miter_limit) < 1.0) then flags lor flag_bevel else flags in if flags land (flag_bevel lor flag_innerbevel) <> 0 then incr nbevel; (*Printf.printf "flags(out): %d\n" flags;*) T.set_flags t p1 flags; done; p.path_nbevel <- !nbevel; p.path_convex <- !nleft = p.path_count let calculate_joins t ~width ~line_join ~miter_limit paths = let line_join = match line_join with | `BEVEL | `ROUND -> true | `MITER -> false in List.iter (calculate_joins t width line_join miter_limit) paths let get_x = T.get_x let get_y = T.get_y let get_flags = T.get_flags let get_dx = T.aux_dx let get_dy = T.aux_dy let get_dlen = T.aux_dlen let get_dmx = T.aux_dmx let get_dmy = T.aux_dmy let tess_tol = T.tess_tol let observed_tol = T.observed_tol end module B = struct type bigarray = (float, Bigarray.float32_elt, Bigarray.c_layout) Bigarray.Array1.t type t = { mutable data: bigarray; mutable cursor: int; } let make () = { data = ba_empty; cursor = 0; } let data t = t.data let clear t = t.cursor <- 0 let reserve t size = let total = t.cursor + size in if BA.dim t.data < total then let data' = BA.create Bigarray.float32 Bigarray.c_layout (total * 3 / 2) in BA.blit t.data (BA.sub data' 0 (BA.dim t.data)); t.data <- data' let alloc t n = let x = t.cursor in t.cursor <- x + n; x let release t n = t.cursor <- t.cursor - n let offset t = t.cursor let sub t = BA.sub t.data 0 t.cursor end module V = struct let pi = 3.14159265358979323846264338327 let vbuffer_put ?(v=2) (b : B.t) x y ~dx ~dy ~u = if (abs_float dx > 1024.0 || abs_float dy > 1024.0) then ( prerr_endline ("vbuffer_put: derivative overflow " ^ Printexc.raw_backtrace_to_string (Printexc.get_callstack 8)) ); let data = B.data b and c = B.alloc b 4 in data.{c + 0} <- x; data.{c + 1} <- y; data.{c + 2} <- dx /. 1024.0 -. 1.5 -. float u; data.{c + 3} <- dy /. 1024.0 -. 1.5 -. float v let dvbuffer_put ?(v=2) (b : B.t) x y ~dx ~dy ~w ~dw ~u = if (abs_float dx > 1024.0 || abs_float dy > 1024.0) then ( prerr_endline ("vbuffer_put: derivative overflow " ^ Printexc.raw_backtrace_to_string (Printexc.get_callstack 8)) ); let data = B.data b and c = B.alloc b 4 in data.{c + 0} <- x +. dx *. w; data.{c + 1} <- y +. dy *. w; data.{c + 2} <- dx *. dw /. 1024.0 -. 1.5 -. float u; data.{c + 3} <- dy *. dw /. 1024.0 -. 1.5 -. float v let choose_bevel bevel t p0 p1 = if bevel then (+. T.get_dy t p0, -. T.get_dx t p0, +. T.get_dy t p1, -. T.get_dx t p1) else (T.get_dmx t p1, T.get_dmy t p1, T.get_dmx t p1, T.get_dmy t p1) let bevel_join vb t p0 p1 lw rw lu = let x1 = T.get_x t p1 in let y1 = T.get_y t p1 in let dlx0 = +. T.get_dy t p0 in let dly0 = -. T.get_dx t p0 in let dlx1 = +. T.get_dy t p1 in let dly1 = -. T.get_dx t p1 in let flags = T.get_flags t p1 in if flags land T.flag_left <> 0 then begin let lx0, ly0, lx1, ly1 = choose_bevel (flags land T.flag_innerbevel <> 0) t p0 p1 in dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5 x1 y1 ~dx:lx0 ~dy:ly0; dvbuffer_put vb ~u:2 ~w:lw ~dw:0.5 x1 y1 ~dx:(-. dlx0) ~dy:(-. dly0); if flags land T.flag_bevel <> 0 then begin dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5 x1 y1 ~dx:lx0 ~dy:ly0; dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5 x1 y1 ~dx:(-.dlx0) ~dy:(-.dly0); dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5 x1 y1 ~dx:lx1 ~dy:ly1; dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5 x1 y1 ~dx:(-.dlx1) ~dy:(-.dly1); end else begin let rx0 = -. T.get_dmx t p1 in let ry0 = -. T.get_dmy t p1 in vbuffer_put vb ~u:1 x1 y1 ~dx:0.0 ~dy:0.0; dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5 x1 y1 ~dx:(-.dlx0) ~dy:(-.dly0); dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5 x1 y1 ~dx:rx0 ~dy:ry0; dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5 x1 y1 ~dx:rx0 ~dy:ry0; vbuffer_put vb ~u:1 x1 y1 ~dx:0.0 ~dy:0.0; dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5 x1 y1 ~dx:(-.dlx1) ~dy:(-.dly1); end; dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5 x1 y1 ~dx:lx1 ~dy:ly1; dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5 x1 y1 ~dx:(-.dlx1) ~dy:(-.dly1) end else begin let rx0, ry0, rx1, ry1 = choose_bevel (flags land T.flag_innerbevel <> 0) t p0 p1 in dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5 x1 y1 ~dx:dlx0 ~dy:dly0; dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5 x1 y1 ~dx:(-.rx0) ~dy:(-.ry0); dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5 x1 y1 ~dx:dlx0 ~dy:dly0; if flags land T.flag_bevel <> 0 then begin dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5 x1 y1 ~dx:(-.rx0) ~dy:(-.ry0); dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5 x1 y1 ~dx:dlx1 ~dy:dly1; dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5 x1 y1 ~dx:(-.rx1) ~dy:(-.ry1); end else begin let lx0 = T.get_dmx t p1 in let ly0 = T.get_dmy t p1 in vbuffer_put vb ~u:1 x1 y1 ~dx:0.0 ~dy:0.0; dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5 x1 y1 ~dx:lx0 ~dy:ly0; dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5 x1 y1 ~dx:lx0 ~dy:ly0; dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5 x1 y1 ~dx:dlx1 ~dy:dly1; vbuffer_put vb ~u:1 x1 y1 ~dx:0.0 ~dy:0.0; end; dvbuffer_put vb ~u:lu ~w:lw ~dw:0.5 x1 y1 ~dx:dlx1 ~dy:dly1; dvbuffer_put vb ~u:2 ~w:rw ~dw:0.5 x1 y1 ~dx:(-.rx1) ~dy:(-.ry1); end let round_join vb t p0 p1 w ncap = let x1 = T.get_x t p1 in let y1 = T.get_y t p1 in let dlx0 = +. T.get_dy t p0 in let dly0 = -. T.get_dx t p0 in let dlx1 = +. T.get_dy t p1 in let dly1 = -. T.get_dx t p1 in let flags = T.get_flags t p1 in if flags land T.flag_left <> 0 then begin let lx0, ly0, lx1, ly1 = choose_bevel (flags land T.flag_innerbevel <> 0) t p0 p1 in dvbuffer_put vb ~u:0 ~w ~dw:0.5 x1 y1 ~dx:lx0 ~dy:ly0; dvbuffer_put vb ~u:2 ~w ~dw:0.5 x1 y1 ~dx:(-.dlx0) ~dy:(-.dly0); let a0 = atan2 (-.dly0) (-.dlx0) in let a1 = atan2 (-.dly1) (-.dlx1) in let a1 = if a1 > a0 then a1 -. pi *. 2.0 else a1 in let n = int_of_float (ceil (((a0 -. a1) /. pi) *. float ncap)) in let n = if n <= 2 then 2 else if n >= ncap then ncap else n in for i = 0 to n - 1 do let u = float i /. float (n - 1) in let a = a0 +. u *. (a1 -. a0) in let rx = cos a and ry = sin a in vbuffer_put vb ~u:1 x1 y1 ~dx:0.0 ~dy:0.0; dvbuffer_put vb ~u:2 ~w ~dw:0.5 x1 y1 ~dx:rx ~dy:ry; done; dvbuffer_put vb ~u:0 ~w ~dw:0.5 x1 y1 ~dx:lx1 ~dy:ly1; dvbuffer_put vb ~u:2 ~w ~dw:0.5 x1 y1 ~dx:(-.dlx1) ~dy:(-.dly1); end else begin let rx0, ry0, rx1, ry1 = choose_bevel (flags land T.flag_innerbevel <> 0) t p0 p1 in dvbuffer_put vb ~u:0 ~w ~dw:0.5 x1 y1 ~dx:dlx0 ~dy:dly0; dvbuffer_put vb ~u:2 ~w ~dw:0.5 x1 y1 ~dx:(-.rx0) ~dy:(-.ry0); let a0 = atan2 dly0 dlx0 in let a1 = atan2 dly1 dlx1 in let a1 = if a1 < a0 then a1 +. pi *. 2.0 else a1 in let n = int_of_float (ceil (((a1 -. a0) /. pi) *. float ncap)) in let n = if n <= 2 then 2 else if n >= ncap then ncap else n in for i = 0 to n - 1 do let u = float i /. float (n - 1) in let a = a0 +. u *. (a1 -. a0) in let lx = cos a in let ly = sin a in dvbuffer_put vb ~u:0 ~w ~dw:0.5 x1 y1 ~dx:lx ~dy:ly; vbuffer_put vb ~u:1 x1 y1 ~dx:0.0 ~dy:0.0; done; dvbuffer_put vb ~u:0 ~w ~dw:0.5 x1 y1 ~dx:dlx1 ~dy:dly1; dvbuffer_put vb ~u:2 ~w ~dw:0.5 x1 y1 ~dx:(-.rx1) ~dy:(-.ry1); end (* Expand fill *) type path = { convex: bool; fill_first: int; fill_count: int; stroke_first: int; stroke_count: int; } let rec sum f acc = function | [] -> acc | x :: xs -> sum f (acc + f x) xs let sum f xs = sum f 0 xs let do_close_path vb first = let data = B.data vb and c = B.alloc vb 8 in (* Loop it *) data.{c + 0} <- data.{first * 4 + 0}; data.{c + 1} <- data.{first * 4 + 1}; data.{c + 2} <- data.{first * 4 + 2}; data.{c + 3} <- data.{first * 4 + 3}; data.{c + 4} <- data.{first * 4 + 4}; data.{c + 5} <- data.{first * 4 + 5}; data.{c + 6} <- data.{first * 4 + 6}; data.{c + 7} <- data.{first * 4 + 7} module Fill = struct let count_no_fringe {T. path_count; path_nbevel} = (path_count + path_nbevel + 1) let count_fringe {T. path_count; path_nbevel} = (path_count + path_nbevel + 1) + (path_count + path_nbevel * 5 + 1) * 2 let no_fringe t vb path = let fill_first = B.offset vb / 4 in for i = path.T.path_first to path.T.path_first + path.T.path_count - 1 do vbuffer_put vb (T.get_x t i) (T.get_y t i) ~dx:0.0 ~dy:0.0 ~u:1 done; let fill_count = (B.offset vb / 4 - fill_first) in { convex = path.T.path_convex; fill_first; fill_count; stroke_first = 0; stroke_count = 0; } let fringe t vb ~convex path = let fill_first = B.offset vb / 4 in let first = path.T.path_first in let last = first + path.T.path_count - 1 in for p1 = first to last do let p0 = if p1 = first then last else p1 - 1 in let flags = T.get_flags t p1 in let x1 = T.get_x t p1 in let y1 = T.get_y t p1 in if flags land T.flag_bevel <> 0 then begin if flags land T.flag_left <> 0 then dvbuffer_put vb ~w:0.0 ~dw:0.5 ~u:1 x1 y1 ~dx:(T.get_dmx t p1) ~dy:(T.get_dmy t p1) else begin dvbuffer_put vb ~u:1 ~w:0.0 ~dw:0.5 x1 y1 ~dx:(+. T.get_dy t p0) ~dy:(-. T.get_dx t p0); dvbuffer_put vb ~u:1 ~w:0.0 ~dw:0.5 x1 y1 ~dx:(+. T.get_dy t p1) ~dy:(-. T.get_dx t p1) end end else ( dvbuffer_put vb ~w:0.0 ~dw:0.5 ~u:1 x1 y1 ~dx:(T.get_dmx t p1) ~dy:(T.get_dmy t p1) ) done; let stroke_first = B.offset vb / 4 in (* Calculate fringe *) let lw, lu = if convex then 0.5, 1 else 1.5, 0 in for p1 = first to last do let p0 = if p1 = first then last else p1 - 1 in if T.get_flags t p1 land (T.flag_bevel lor T.flag_innerbevel) <> 0 then bevel_join vb t p0 p1 0.0 0.0 lu else begin let x1 = T.get_x t p1 and dx1 = T.get_dmx t p1 in let y1 = T.get_y t p1 and dy1 = T.get_dmy t p1 in dvbuffer_put vb ~u:lu x1 y1 ~dx:dx1 ~dy:dy1 ~w:0.0 ~dw:lw; dvbuffer_put vb ~u:2 x1 y1 ~dx:dx1 ~dy:dy1 ~w:0.0 ~dw:(-0.5); end done; do_close_path vb stroke_first; let stroke_last = B.offset vb / 4 in { convex = path.T.path_convex; fill_first; stroke_first; fill_count = stroke_first - fill_first; stroke_count = stroke_last - stroke_first; } let expand_no_aa t vb paths = B.reserve vb (sum count_no_fringe paths * 4); List.map (no_fringe t vb) paths let expand_aa t vb paths = B.reserve vb (sum count_fringe paths * 4); let convex = match paths with | [p] -> p.T.path_convex | _ -> false in List.map (fringe t vb ~convex) paths end let fill t vb ~edge_antialias ~scale paths = T.calculate_joins t ~width:scale ~line_join:`MITER ~miter_limit:2.4 paths; if edge_antialias then Fill.expand_aa t vb paths else Fill.expand_no_aa t vb paths module Stroke = struct let curve_divs r arc tol = let da = acos (r /. (r +. tol)) *. 2.0 in int_of_float (maxf 2.0 (ceil (arc /. da))) let count join_ncap cap_ncap {T. path_count; path_nbevel; path_closed} = (*Printf.printf "path_count: %d, path_nbevel: %d\n" path_count path_nbevel;*) ((path_count + path_nbevel * (join_ncap + 2) + 1) * 2) + (if path_closed then 0 else (cap_ncap * 2 + 2) * 2) let count ~line_join ~line_cap ncap = count (match line_join with | `ROUND -> ncap | `MITER | `BEVEL -> 3) (match line_cap with | `ROUND -> ncap | `BUTT | `SQUARE -> 2) let roundcap_end vb t p ~dx ~dy ~w ~ncap = (*Printf.printf "roundcap_end %f %f %f %d\n" dx dy w ncap;*) let px = T.get_x t p and py = T.get_y t p in let dlx = dy and dly = -.dx in dvbuffer_put vb ~u:0 ~w ~dw:0.5 px py ~dx:dlx ~dy:dly; dvbuffer_put vb ~u:2 ~w ~dw:0.5 px py ~dx:(-.dlx) ~dy:(-.dly); for i = 0 to ncap - 1 do let a = float i /. float (ncap - 1) *. pi in let ax = cos a and ay = sin a in let fx = dx *. ay -. dlx *. ax in let fy = dy *. ay -. dly *. ax in vbuffer_put vb px py ~dx:0.0 ~dy:0.0 ~u:1; dvbuffer_put vb ~u:2 ~w ~dw:0.5 px py ~dx:fx ~dy:fy; done let roundcap_start vb t p ~dx ~dy ~w ~ncap = (*Printf.printf "roundcap_start %f %f %f %d\n" dx dy w ncap;*) let px = T.get_x t p and py = T.get_y t p in let dlx = dy and dly = -.dx in for i = 0 to ncap - 1 do let a = float i /. float (ncap - 1) *. pi in let ax = cos a and ay = sin a in let fx = dlx *. ax +. dx *. ay in let fy = dly *. ax +. dy *. ay in dvbuffer_put vb ~u:0 ~w ~dw:0.5 px py ~dx:(-.fx) ~dy:(-.fy); vbuffer_put vb px py ~dx:0.0 ~dy:0.0 ~u:1; done; dvbuffer_put vb ~u:0 ~w ~dw:0.5 px py ~dx:dlx ~dy:dly; dvbuffer_put vb ~u:2 ~w ~dw:0.5 px py ~dx:(-.dlx) ~dy:(-.dly) let buttcap_start vb t p ~dx ~dy ~w = let px = T.get_x t p +. dx *. 0.5 in let py = T.get_y t p +. dy *. 0.5 in let dlx = dy *. w and dly = dx *. w in let dlx' = dy *. 0.5 and dly' = dx *. 0.5 in ( vbuffer_put vb ~u:0 ~v:0 (px +. dlx) ~dx:(+. dlx') (py -. dly) ~dy:(-. dly'); vbuffer_put vb ~u:2 ~v:0 (px -. dlx) ~dx:(-. dlx') (py +. dly) ~dy:(+. dly'); vbuffer_put vb ~u:0 ~v:2 (px +. dlx) ~dx:(dx +. dlx') (py -. dly) ~dy:(dy -. dly'); vbuffer_put vb ~u:2 ~v:2 (px -. dlx) ~dx:(dx -. dlx') (py +. dly) ~dy:(dy +. dly'); ) let buttcap_end vb t p ~dx ~dy ~w = let px = T.get_x t p -. dx *. 0.5 in let py = T.get_y t p -. dy *. 0.5 in let dlx = dy *. w and dly = dx *. w in let dlx' = dy *. 0.5 and dly' = dx *. 0.5 in ( vbuffer_put vb ~u:0 ~v:2 (px +. dlx) ~dx:(-. dx +. dlx') (py -. dly) ~dy:(-. dy -. dly'); vbuffer_put vb ~u:2 ~v:2 (px -. dlx) ~dx:(-. dx -. dlx') (py +. dly) ~dy:(-. dy +. dly'); vbuffer_put vb ~u:0 ~v:0 (px +. dlx) ~dx:(+. dlx') (py -. dly) ~dy:(-. dly'); vbuffer_put vb ~u:2 ~v:0 (px -. dlx) ~dx:(+. dlx') (py +. dly) ~dy:(-. dly'); ) let squarecap_start vb t p ~dx ~dy ~w = let px = T.get_x t p -. dx *. w in let py = T.get_y t p -. dy *. w in let dlx = dy *. w and dly = dx *. w in let dlx' = dy *. 0.5 and dly' = dx *. 0.5 in ( vbuffer_put vb ~u:0 ~v:0 (px +. dlx) ~dx:(+. dlx') (py -. dly) ~dy:(-. dly'); vbuffer_put vb ~u:2 ~v:0 (px -. dlx) ~dx:(-. dlx') (py +. dly) ~dy:(+. dly'); vbuffer_put vb ~u:0 ~v:2 (px +. dlx) ~dx:(dx +. dlx') (py -. dly) ~dy:(dy -. dly'); vbuffer_put vb ~u:2 ~v:2 (px -. dlx) ~dx:(dx -. dlx') (py +. dly) ~dy:(dy +. dly'); ) let squarecap_end vb t p ~dx ~dy ~w = let px = T.get_x t p +. dx *. w in let py = T.get_y t p +. dy *. w in let dlx = dy *. w and dly = dx *. w in let dlx' = dy *. 0.5 and dly' = dx *. 0.5 in vbuffer_put vb ~u:0 ~v:2 (px +. dlx) ~dx:(-. dx +. dlx') (py -. dly) ~dy:(-. dy -. dly'); vbuffer_put vb ~u:2 ~v:2 (px -. dlx) ~dx:(-. dx -. dlx') (py +. dly) ~dy:(-. dy +. dly'); vbuffer_put vb ~u:0 ~v:0 (px +. dlx) ~dx:(+. dlx') (py -. dly) ~dy:(-. dly'); vbuffer_put vb ~u:2 ~v:0 (px -. dlx) ~dx:(-. dlx') (py +. dly) ~dy:(+. dly') let expand_path t vb ~line_join ~line_cap ~w ncap path = let stroke_first = B.offset vb / 4 in let first = path.T.path_first in let last = first + path.T.path_count - 1 in if not path.T.path_closed then begin let p0 = first and p1 = first + 1 in let dx = T.get_x t p1 -. T.get_x t p0 in let dy = T.get_y t p1 -. T.get_y t p0 in let dlen = sqrt (dx *. dx +. dy *. dy) in let dlen = if dlen < 1e-6 then 1. else 1. /. dlen in let dx = dx *. dlen and dy = dy *. dlen in match line_cap with | `BUTT -> buttcap_start vb t p0 ~dx ~dy ~w | `SQUARE -> squarecap_start vb t p0 ~dx ~dy ~w | `ROUND -> roundcap_start vb t p0 ~dx ~dy ~w ~ncap end; let s, e = if path.T.path_closed then first, last else first + 1, last - 1 in for p1 = s to e do if T.get_flags t p1 land (T.flag_bevel lor T.flag_innerbevel) <> 0 then begin let p0 = if p1 = first then last else p1 - 1 in match line_join with | `ROUND -> round_join vb t p0 p1 w ncap | `BEVEL | `MITER -> bevel_join vb t p0 p1 w w 0 end else begin let x1 = T.get_x t p1 and dmx = T.get_dmx t p1 in let y1 = T.get_y t p1 and dmy = T.get_dmy t p1 in dvbuffer_put vb ~u:0 ~w ~dw:0.5 x1 y1 ~dx:dmx ~dy:dmy; dvbuffer_put vb ~u:2 ~w ~dw:0.5 x1 y1 ~dx:(-.dmx) ~dy:(-.dmy); end done; if path.T.path_closed then do_close_path vb stroke_first else begin let p0 = last - 1 and p1 = last in let dx = T.get_x t p1 -. T.get_x t p0 in let dy = T.get_y t p1 -. T.get_y t p0 in let dlen = sqrt (dx *. dx +. dy *. dy) in let dlen = if dlen < 1e-6 then 1. else 1. /. dlen in let dx = dx *. dlen and dy = dy *. dlen in match line_cap with | `BUTT -> buttcap_end vb t p1 ~dx ~dy ~w | `SQUARE -> squarecap_end vb t p1 ~dx ~dy ~w | `ROUND -> roundcap_end vb t p1 ~dx ~dy ~w ~ncap end; { convex = false; fill_first = 0; fill_count = 0; stroke_first; stroke_count = B.offset vb / 4 - stroke_first; } let expand t vb ~line_join ~line_cap ~width ~miter_limit paths = let ncap = curve_divs width pi (T.tess_tol t) in T.calculate_joins t ~width ~line_join ~miter_limit paths; let count = sum (count ~line_join ~line_cap ncap) paths * 4 in (*Printf.printf "count:%d w:%f\n" count w;*) B.reserve vb count; List.map (expand_path t vb ~line_join ~line_cap ~w:width ncap) paths end let stroke t vb ~width ~line_join ~line_cap ~miter_limit paths = let width = width *. 0.5 in Stroke.expand t vb ~line_join ~line_cap ~miter_limit ~width paths end