Source file jit.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
open Nx_core
open Nx_rune
module Ir = Rune_jit.Ir
module Var = Ir.Var
module Rune_jit_metal = Rune_metal.Jit_backend
let shape_prod = Array.fold_left ( * ) 1
let nx_dtype_to_ir_dtype (type a b) (nx_dt : (a, b) Dtype.t) : a Ir.Dtype.t =
match nx_dt with
| Dtype.Float32 -> Float32
| Dtype.Int32 -> Int32
| Dtype.UInt8 -> Uint8
| _ ->
failwith
(Printf.sprintf "JIT: Unsupported dtype %s for conversion to IR"
(Dtype.to_string nx_dt))
let nx_dtype_to_ir_any_dtype (type a b) (nx_dt : (a, b) Dtype.t) : Ir.Dtype.any
=
Ir.Dtype.Any_Dtype (nx_dtype_to_ir_dtype nx_dt)
type jit_tracer_state = {
mutable recorded_nodes : Ir.any_node list;
vars_metadata : (Var.t, Ir.var_metadata) Hashtbl.t;
mutable input_vars_acc : Var.t list;
symbolic_to_var : (Symbolic_id.t, Var.t) Hashtbl.t;
}
let create_state () =
{
recorded_nodes = [];
vars_metadata = Hashtbl.create 32;
input_vars_acc = [];
symbolic_to_var = Hashtbl.create 32;
}
let add_node state node = state.recorded_nodes <- node :: state.recorded_nodes
let record_metadata state var dtype shape =
Hashtbl.add state.vars_metadata var
{ Ir.dtype = nx_dtype_to_ir_any_dtype dtype; shape; device = Some "CPU" }
let create_symbolic_tensor state out_var dtype shape =
let id = Symbolic_id.fresh () in
Hashtbl.add state.symbolic_to_var id out_var;
Symbolic_tensor { id; dtype; shape }
let allocate_buffer state dtype shape =
let var = Var.fresh () in
let ir_dtype = nx_dtype_to_ir_dtype dtype in
add_node state
(Ir.Any_Node
(Ir.buffer ~dtype:ir_dtype ~size:(shape_prod shape) ~device:"CPU"
~out_var:var));
record_metadata state var dtype shape;
(var, ir_dtype)
let get_node_output_var (Ir.Any_Node node) =
match node with
| Ir.Buffer { out_var; _ }
| Ir.Const_Scalar { out_var; _ }
| Ir.Vconst { out_var; _ }
| Ir.Unary { out_var; _ }
| Ir.Binop { out_var; _ }
| Ir.Ternary { out_var; _ }
| Ir.Reshape { out_var; _ }
| Ir.Permute { out_var; _ }
| Ir.Expand { out_var; _ }
| Ir.Pad { out_var; _ }
| Ir.Shrink { out_var; _ }
| Ir.Reduce_Axis { out_var; _ }
| Ir.Cast { out_var; _ }
| Ir.Bitcast { out_var; _ }
| Ir.View { out_var; _ }
| Ir.Contiguous { out_var; _ }
| Ir.Assign { out_var; _ }
| Ir.Kernel { out_var; _ }
| Ir.Unique { out_var; _ }
| Ir.Device { out_var; _ }
| Ir.Multi { out_var; _ }
| Ir.Fuse { out_var; _ }
| Ir.Unroll { out_var; _ }
| Ir.Contract { out_var; _ }
| Ir.Cat { out_var; _ }
| Ir.Threefry { out_var; _ }
| Ir.Gather { out_var; _ }
| Ir.Scatter { out_var; _ }
| Ir.Custom { out_var; _ }
| Ir.Noop { out_var; _ }
| Ir.Placeholder { out_var; _ }
| Ir.Buffer_View { out_var; _ }
| Ir.Contiguous_Backward { out_var; _ }
| Ir.Copy { out_var; _ }
| Ir.Detach { out_var; _ }
| Ir.Flip { out_var; _ }
| Ir.Gep { out_var; _ }
| Ir.Index { out_var; _ }
| Ir.Valid { out_var; _ }
| Ir.Vectorize { out_var; _ }
| Ir.Wmma { out_var; _ }
| Ir.Bind { out_var; _ }
| Ir.Define_Var { out_var; _ } ->
out_var
| Ir.Sink _ -> failwith "Sink node has no out_var"
let get_var_and_meta state tensor =
match tensor with
| Symbolic_tensor { id; _ } -> (
match Hashtbl.find_opt state.symbolic_to_var id with
| Some var ->
let meta = Hashtbl.find state.vars_metadata var in
(var, meta)
| None -> failwith "JIT: Symbolic tensor not found in recorded nodes")
| _ ->
let var = Var.fresh () in
let dt = dtype tensor in
let shape = View.shape (view tensor) in
add_node state
(Ir.Any_Node
(Ir.Placeholder
{ out_var = var; dtype = nx_dtype_to_ir_dtype dt; shape }));
if not (List.mem var state.input_vars_acc) then
state.input_vars_acc <- var :: state.input_vars_acc;
record_metadata state var dt shape;
let meta = Hashtbl.find state.vars_metadata var in
(var, meta)
let handle_binop state op a b =
let var_a, meta_a = get_var_and_meta state a in
let var_b, meta_b = get_var_and_meta state b in
let res_shape = Shape.broadcast meta_a.shape meta_b.shape in
let res_dtype = dtype a in
let out_var, ir_dtype = allocate_buffer state res_dtype res_shape in
add_node state
(Ir.Any_Node
(Ir.binary ~op ~a_var:var_a ~b_var:var_b ~out_var ~dtype:ir_dtype));
create_symbolic_tensor state out_var res_dtype res_shape
let handle_unary state op t_in =
let var_in, meta_in = get_var_and_meta state t_in in
let shape = meta_in.shape in
let dt = dtype t_in in
let out_var, ir_dtype = allocate_buffer state dt shape in
add_node state
(Ir.Any_Node (Ir.unary ~op ~in_var:var_in ~out_var ~dtype:ir_dtype));
create_symbolic_tensor state out_var dt shape
let reduce_shape in_shape axes keepdims =
if keepdims then
Array.mapi (fun i dim -> if Array.mem i axes then 1 else dim) in_shape
else
in_shape |> Array.to_list
|> List.filteri (fun i _ -> not (Array.mem i axes))
|> Array.of_list
let handle_reduction state op t_in axes keepdims =
let var_in, meta_in = get_var_and_meta state t_in in
let out_shape = reduce_shape meta_in.shape axes keepdims in
let dt = dtype t_in in
let out_var, ir_dtype = allocate_buffer state dt out_shape in
add_node state
(Ir.Any_Node
(Ir.reduce_axis ~reduce_op_kind:op ~in_var:var_in ~axes ~out_var
~dtype:ir_dtype));
create_symbolic_tensor state out_var dt out_shape
let make_jit_handler (state : jit_tracer_state) =
let open Effect.Deep in
let open Ir in
let effc : type a. a Effect.t -> ((a, _) continuation -> _) option = function
| E_buffer { dtype; size_in_elements; _ } ->
Some
(fun k ->
let var = Var.fresh () in
add_node state
(Any_Node
(buffer
~dtype:(nx_dtype_to_ir_dtype dtype)
~size:size_in_elements ~device:"CPU" ~out_var:var));
let shape = [| size_in_elements |] in
record_metadata state var dtype shape;
continue k (create_symbolic_tensor state var dtype shape))
| E_const_scalar { value; dtype; _ } ->
Some
(fun k ->
let var = Var.fresh () in
add_node state
(Any_Node
(Const_Scalar
{ value; out_var = var; dtype = nx_dtype_to_ir_dtype dtype }));
record_metadata state var dtype [||];
continue k (create_symbolic_tensor state var dtype [||]))
| E_const_array { array; _ } ->
Some
(fun k ->
let numel = Bigarray.Array1.dim array in
let nx_dtype =
Nx_core.Dtype.of_bigarray_kind (Bigarray.Array1.kind array)
in
let var = Var.fresh () in
add_node state
(Any_Node
(Placeholder
{
out_var = var;
dtype = nx_dtype_to_ir_dtype nx_dtype;
shape = [| numel |];
}));
if not (List.mem var state.input_vars_acc) then
state.input_vars_acc <- var :: state.input_vars_acc;
record_metadata state var nx_dtype [| numel |];
continue k (create_symbolic_tensor state var nx_dtype [| numel |]))
| E_add { a; b } -> Some (fun k -> continue k (handle_binop state Add a b))
| E_mul { a; b } -> Some (fun k -> continue k (handle_binop state Mul a b))
| E_idiv { a; b } ->
Some (fun k -> continue k (handle_binop state Idiv a b))
| E_fdiv { a; b } ->
Some (fun k -> continue k (handle_binop state Fdiv a b))
| E_mod { a; b } -> Some (fun k -> continue k (handle_binop state Mod a b))
| E_pow { a; b } -> Some (fun k -> continue k (handle_binop state Pow a b))
| E_max { a; b } -> Some (fun k -> continue k (handle_binop state Max a b))
| E_and { a; b } -> Some (fun k -> continue k (handle_binop state And a b))
| E_or { a; b } -> Some (fun k -> continue k (handle_binop state Or a b))
| E_xor { a; b } -> Some (fun k -> continue k (handle_binop state Xor a b))
| E_cmplt { a; b } ->
Some
(fun k ->
let var_a, meta_a = get_var_and_meta state a in
let var_b, meta_b = get_var_and_meta state b in
let res_shape = Shape.broadcast meta_a.shape meta_b.shape in
let res_dtype = Nx_core.Dtype.uint8 in
let out_var, ir_dtype = allocate_buffer state res_dtype res_shape in
add_node state
(Any_Node
(binary ~op:Cmplt ~a_var:var_a ~b_var:var_b ~out_var
~dtype:ir_dtype));
continue k
(create_symbolic_tensor state out_var res_dtype res_shape))
| E_cmpne { a; b } ->
Some
(fun k ->
let var_a, meta_a = get_var_and_meta state a in
let var_b, meta_b = get_var_and_meta state b in
let res_shape = Shape.broadcast meta_a.shape meta_b.shape in
let res_dtype = Nx_core.Dtype.uint8 in
let out_var, ir_dtype = allocate_buffer state res_dtype res_shape in
add_node state
(Any_Node
(binary ~op:Cmpne ~a_var:var_a ~b_var:var_b ~out_var
~dtype:ir_dtype));
continue k
(create_symbolic_tensor state out_var res_dtype res_shape))
| E_neg { t_in } -> Some (fun k -> continue k (handle_unary state Neg t_in))
| E_log2 { t_in } ->
Some (fun k -> continue k (handle_unary state Log2 t_in))
| E_exp2 { t_in } ->
Some (fun k -> continue k (handle_unary state Exp2 t_in))
| E_sin { t_in } -> Some (fun k -> continue k (handle_unary state Sin t_in))
| E_sqrt { t_in } ->
Some (fun k -> continue k (handle_unary state Sqrt t_in))
| E_recip { t_in } ->
Some (fun k -> continue k (handle_unary state Recip t_in))
| E_reduce_sum { t_in; axes; keepdims } ->
Some
(fun k ->
continue k (handle_reduction state Reduce_Sum t_in axes keepdims))
| E_reduce_max { t_in; axes; keepdims } ->
Some
(fun k ->
continue k (handle_reduction state Reduce_Max t_in axes keepdims))
| E_reduce_prod { t_in; axes; keepdims } ->
Some
(fun k ->
continue k (handle_reduction state Reduce_Prod t_in axes keepdims))
| E_reshape { t_in; new_shape } ->
Some
(fun k ->
let var_in, _ = get_var_and_meta state t_in in
let dt = dtype t_in in
let out_var = Var.fresh () in
add_node state
(Any_Node
(Reshape
{
in_var = var_in;
new_shape;
out_var;
dtype = nx_dtype_to_ir_dtype dt;
}));
record_metadata state out_var dt new_shape;
continue k (create_symbolic_tensor state out_var dt new_shape))
| E_expand { t_in; new_target_shape } ->
Some
(fun k ->
let var_in, _ = get_var_and_meta state t_in in
let dt = dtype t_in in
let out_var = Var.fresh () in
add_node state
(Any_Node
(Expand
{
in_var = var_in;
new_target_shape;
out_var;
dtype = nx_dtype_to_ir_dtype dt;
}));
record_metadata state out_var dt new_target_shape;
continue k
(create_symbolic_tensor state out_var dt new_target_shape))
| E_permute { t_in; axes } ->
Some
(fun k ->
let var_in, meta_in = get_var_and_meta state t_in in
let dt = dtype t_in in
let out_shape =
Array.init (Array.length axes) (fun i -> meta_in.shape.(axes.(i)))
in
let out_var = Var.fresh () in
add_node state
(Any_Node
(Permute
{
in_var = var_in;
axes_permutation = axes;
out_var;
dtype = nx_dtype_to_ir_dtype dt;
}));
record_metadata state out_var dt out_shape;
continue k (create_symbolic_tensor state out_var dt out_shape))
| E_where { condition; if_true; if_false } ->
Some
(fun k ->
let cond_var, meta_cond = get_var_and_meta state condition in
let x_var, meta_x = get_var_and_meta state if_true in
let y_var, meta_y = get_var_and_meta state if_false in
let res_dtype = dtype if_true in
let res_shape =
Shape.broadcast
(Shape.broadcast meta_cond.shape meta_x.shape)
meta_y.shape
in
let out_var, ir_dtype = allocate_buffer state res_dtype res_shape in
add_node state
(Any_Node
(Ternary
{
op = Where;
a_var = cond_var;
b_var = x_var;
c_var = y_var;
out_var;
dtype = ir_dtype;
}));
continue k
(create_symbolic_tensor state out_var res_dtype res_shape))
| E_cast { t_in; target_dtype } ->
Some
(fun k ->
let var_in, meta_in = get_var_and_meta state t_in in
let shape = meta_in.shape in
let out_var, ir_dtype = allocate_buffer state target_dtype shape in
add_node state
(Any_Node
(Cast
{
in_var = var_in;
target_dtype = nx_dtype_to_ir_any_dtype target_dtype;
out_var;
dtype = ir_dtype;
}));
continue k (create_symbolic_tensor state out_var target_dtype shape))
| E_contiguous { t_in } ->
Some
(fun k ->
let var_in, meta_in = get_var_and_meta state t_in in
let dt = dtype t_in in
let shape = meta_in.shape in
let out_var, ir_dtype = allocate_buffer state dt shape in
add_node state
(Any_Node
(Contiguous { in_var = var_in; out_var; dtype = ir_dtype }));
continue k (create_symbolic_tensor state out_var dt shape))
| E_copy { t_in } ->
Some
(fun k ->
let var_in, meta_in = get_var_and_meta state t_in in
let dt = dtype t_in in
let shape = meta_in.shape in
let out_var, ir_dtype = allocate_buffer state dt shape in
add_node state
(Any_Node
(Copy
{
in_var = var_in;
target_device = "CPU";
clone = true;
out_var;
dtype = ir_dtype;
}));
continue k (create_symbolic_tensor state out_var dt shape))
| E_pad { t_in; padding_config; _ } ->
Some
(fun k ->
let var_in, meta_in = get_var_and_meta state t_in in
let dt = dtype t_in in
let out_shape =
Array.mapi
(fun i dim ->
let low, high = padding_config.(i) in
dim + low + high)
meta_in.shape
in
let out_var = Var.fresh () in
add_node state
(Any_Node
(Pad
{
in_var = var_in;
pad_width = padding_config;
out_var;
dtype = nx_dtype_to_ir_dtype dt;
}));
record_metadata state out_var dt out_shape;
continue k (create_symbolic_tensor state out_var dt out_shape))
| E_shrink { t_in; limits } ->
Some
(fun k ->
let var_in, meta_in = get_var_and_meta state t_in in
let dt = dtype t_in in
let out_shape =
Array.mapi
(fun i _ ->
let low, high = limits.(i) in
high - low)
meta_in.shape
in
let out_var = Var.fresh () in
add_node state
(Any_Node
(Shrink
{
in_var = var_in;
limits;
out_var;
dtype = nx_dtype_to_ir_dtype dt;
}));
record_metadata state out_var dt out_shape;
continue k (create_symbolic_tensor state out_var dt out_shape))
| E_flip { t_in; dims_to_flip } ->
Some
(fun k ->
let var_in, meta_in = get_var_and_meta state t_in in
let dt = dtype t_in in
let axes_to_flip =
dims_to_flip |> Array.to_list
|> List.mapi (fun i flip -> if flip then Some i else None)
|> List.filter_map Fun.id |> Array.of_list
in
let out_var = Var.fresh () in
add_node state
(Any_Node
(Flip
{
in_var = var_in;
axes = axes_to_flip;
out_var;
dtype = nx_dtype_to_ir_dtype dt;
}));
record_metadata state out_var dt meta_in.shape;
continue k (create_symbolic_tensor state out_var dt meta_in.shape))
| E_cat { t_list; axis } ->
Some
(fun k ->
let vars_and_metas = List.map (get_var_and_meta state) t_list in
let in_vars = List.map fst vars_and_metas |> Array.of_list in
let first_meta = List.hd (List.map snd vars_and_metas) in
let dt = dtype (List.hd t_list) in
let out_shape = Array.copy first_meta.shape in
out_shape.(axis) <-
List.fold_left
(fun acc ((_, meta) : Var.t * var_metadata) ->
acc + meta.shape.(axis))
0 vars_and_metas;
let out_var, ir_dtype = allocate_buffer state dt out_shape in
add_node state
(Any_Node (cat ~in_vars ~axis ~out_var ~dtype:ir_dtype));
continue k (create_symbolic_tensor state out_var dt out_shape))
| E_assign { dst; src } ->
Some
(fun k ->
let dst_var, _ = get_var_and_meta state dst in
let src_var, _ = get_var_and_meta state src in
let dt = dtype dst in
let out_var = Var.fresh () in
add_node state
(Any_Node
(Assign
{
target_var = dst_var;
updates = [| (src_var, dst_var, None) |];
out_var;
dtype = nx_dtype_to_ir_dtype dt;
}));
continue k ())
| E_threefry { key; ctr } ->
Some
(fun k ->
let key_var, _ = get_var_and_meta state key in
let ctr_var, meta_ctr = get_var_and_meta state ctr in
let dt = Nx_core.Dtype.int32 in
let shape = meta_ctr.shape in
let out_var, ir_dtype = allocate_buffer state dt shape in
add_node state
(Any_Node
(Threefry { ctr_var; key_var; out_var; dtype = ir_dtype }));
continue k (create_symbolic_tensor state out_var dt shape))
| E_gather { data; indices; axis } ->
Some
(fun k ->
let data_var, meta_data = get_var_and_meta state data in
let indices_var, meta_indices = get_var_and_meta state indices in
let dt = dtype data in
let out_shape = Array.copy meta_data.shape in
out_shape.(axis) <- meta_indices.shape.(0);
let out_var, ir_dtype = allocate_buffer state dt out_shape in
add_node state
(Any_Node
(Gather
{
src_var = data_var;
indices_var;
axis;
out_var;
dtype = ir_dtype;
}));
continue k (create_symbolic_tensor state out_var dt out_shape))
| E_scatter { data_template; indices; updates; axis } ->
Some
(fun k ->
let _template_var, meta_template =
get_var_and_meta state data_template
in
let indices_var, _ = get_var_and_meta state indices in
let updates_var, _ = get_var_and_meta state updates in
let dt = dtype data_template in
let shape = meta_template.shape in
let out_var, ir_dtype = allocate_buffer state dt shape in
add_node state
(Any_Node
(Scatter
{
indices_var;
updates_var;
axis;
shape;
out_var;
dtype = ir_dtype;
}));
continue k (create_symbolic_tensor state out_var dt shape))
| _ -> None
in
{ effc; retc = Fun.id; exnc = raise }
let trace _ctx f input =
let state = create_state () in
let handler = make_jit_handler state in
let result = Effect.Deep.match_with f input handler in
let output_var, _ = get_var_and_meta state result in
let graph : Ir.graph_t =
{
nodes = List.rev state.recorded_nodes;
vars_metadata = state.vars_metadata;
input_vars = List.rev state.input_vars_acc;
output_vars = [ output_var ];
symbolic_vars = [];
}
in
(graph, result)
let metal_backend_module () =
(module Rune_jit_metal : Rune_jit.Backend_intf.S
with type callable_kernel_native = Rune_jit_metal.callable_kernel_native
and type device_buffer_native = Rune_jit_metal.device_buffer_native)
let compile_graph (type kernel_native)
~(backend :
(module Rune_jit.Backend_intf.S
with type callable_kernel_native = kernel_native))
(graph : Ir.graph_t) =
match Rune_jit.compile ~backend graph with
| Ok executable -> executable
| Error e -> failwith (Printf.sprintf "JIT compilation failed: %s" e)
let ir_dtype_to_bigarray_kind_any (Ir.Dtype.Any_Dtype dt) =
match dt with
| Ir.Dtype.Float32 -> Obj.magic Bigarray.Float32
| Ir.Dtype.Int32 -> Obj.magic Bigarray.Int32
| Ir.Dtype.Bool -> Obj.magic Bigarray.Int8_unsigned
| Ir.Dtype.Uint8 -> Obj.magic Bigarray.Int8_unsigned
| Ir.Dtype.Unit -> failwith "Unit dtype has no bigarray kind"
type 'kernel_native compiled_state = {
executable :
'kernel_native Rune_jit.Backend_intf.callable_kernel Rune_jit.executable;
input_vars : Var.t list;
output_vars : Var.t list;
output_shape : int array;
output_dtype : Ir.Dtype.any;
}
let execute_compiled_fn (type kernel_native)
~(backend :
(module Rune_jit.Backend_intf.S
with type callable_kernel_native = kernel_native)) state input =
let module B =
(val backend
: Rune_jit.Backend_intf.S
with type callable_kernel_native = kernel_native)
in
let input_ba =
match input with
| Ocaml_tensor cpu_t -> Nx_native.data cpu_t
| C_tensor c_t -> Nx_c.data c_t
| Metal_tensor _ -> failwith "JIT: Metal tensor input not supported yet"
| Symbolic_tensor _ -> failwith "JIT: Cannot execute with symbolic tensor"
in
let input_buf =
match
Rune_jit.allocate_buffer
~backend:(module B)
~size_in_bytes:(Bigarray.Array1.size_in_bytes input_ba)
~dtype:(nx_dtype_to_ir_dtype (dtype input))
with
| Ok buf -> buf
| Error e -> failwith (Printf.sprintf "Buffer allocation failed: %s" e)
in
(match
Rune_jit.copy_to_device
~backend:(module B)
~dest_buffer:input_buf ~host:input_ba
with
| Ok () -> ()
| Error e -> failwith (Printf.sprintf "Copy to device failed: %s" e));
let inputs = Hashtbl.create (List.length state.input_vars) in
List.iter
(fun var ->
Hashtbl.add inputs var (Rune_jit.Backend_intf.Any_Device_Buffer input_buf))
state.input_vars;
let outputs =
match
Rune_jit.execute
~backend:(module B)
state.executable ~inputs ~outputs:state.output_vars
with
| Ok outputs -> outputs
| Error e -> failwith (Printf.sprintf "Execution failed: %s" e)
in
let (Rune_jit.Backend_intf.Any_Device_Buffer dev_buf) =
Hashtbl.find outputs (List.hd state.output_vars)
in
let out_ba =
let len = shape_prod state.output_shape in
let kind = ir_dtype_to_bigarray_kind_any state.output_dtype in
Bigarray.Array1.create kind Bigarray.c_layout len
in
(match
B.Runtime.copy_from_device ~src_buffer:dev_buf
~host_dest_ptr:
Ctypes.(raw_address_of_ptr (to_voidp (bigarray_start array1 out_ba)))
~device_data_offset_bytes:0
~copy_size_bytes:(Bigarray.Array1.size_in_bytes out_ba)
with
| Ok () -> ()
| Error e -> failwith (Printf.sprintf "Copy from device failed: %s" e));
match input with
| Ocaml_tensor _ ->
Ocaml_tensor
(Nx_native.op_const_array (Nx_native.create_context ()) out_ba)
| C_tensor _ -> C_tensor (Nx_c.op_const_array (Nx_c.create_context ()) out_ba)
| Metal_tensor _ ->
Metal_tensor
(Rune_metal.op_const_array (Rune_metal.create_context ()) out_ba)
| Symbolic_tensor _ -> assert false
let jit (f : ('a, 'b) Nx_rune.t -> ('c, 'd) Nx_rune.t) =
let metal_cache = Hashtbl.create 8 in
fun (input : ('a, 'b) Nx_rune.t) ->
match input with
| Metal_tensor _ -> (
let module B = (val metal_backend_module ()) in
let backend =
(module B : Rune_jit.Backend_intf.S
with type callable_kernel_native = _)
in
let input_shape = View.shape (view input) in
match Hashtbl.find_opt metal_cache input_shape with
| Some state -> execute_compiled_fn ~backend state input
| None -> (
try
let _ = B.Device_info.get_default () in
let ctx = Nx_rune.create_context ~device:Metal () in
let graph, symbolic_result = trace ctx f input in
Printf.eprintf "JIT: Compiling graph for shape %s with %d nodes\n"
(Array.fold_left
(fun acc x -> acc ^ " " ^ string_of_int x)
"[" input_shape
^ " ]")
(List.length graph.nodes);
let executable = compile_graph ~backend graph in
let state =
{
executable;
input_vars = graph.input_vars;
output_vars = graph.output_vars;
output_shape = View.shape (view symbolic_result);
output_dtype =
nx_dtype_to_ir_any_dtype (dtype symbolic_result);
}
in
Hashtbl.add metal_cache input_shape state;
execute_compiled_fn ~backend state input
with e ->
Printf.eprintf
"JIT: Compilation failed (%s), falling back to eager\n"
(Printexc.to_string e);
f input))
| Ocaml_tensor _ | C_tensor _ ->
f input
| Symbolic_tensor _ ->
failwith "Cannot execute JIT function with symbolic tensor"