package rune

  1. Overview
  2. Docs

Source file lowerer.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
(* lowerer.ml *)

open Ir

(* ───── helpers ───── *)

let const_to_string : type a. a Dtype.t -> a -> string =
 fun dt v ->
  match dt with
  | Dtype.Float32 -> Printf.sprintf "%gf" v
  | Dtype.Int32 -> Int32.to_string v
  | Dtype.Uint8 -> string_of_int v
  | Dtype.Bool -> if v then "true" else "false"
  | Dtype.Unit -> "0"

(* ───── lowering context ───── *)

type lowering_ctx = {
  meta : (Var.t, var_metadata) Hashtbl.t; (* one shared table *)
  scalar_map : (Var.t, Var.t) Hashtbl.t; (* HL scalar → LL scalar *)
  buffer_map : (Var.t, Var.t) Hashtbl.t; (* HL buffer → LL buffer *)
  instrs : Lowered.instruction list ref;
}

let new_ctx (graph_meta : (Var.t, var_metadata) Hashtbl.t)
    (kernel_meta : (Var.t, var_metadata) Hashtbl.t) =
  (* meta starts as a shallow copy of both sources *)
  let meta = Hashtbl.copy graph_meta in
  Hashtbl.iter (Hashtbl.replace meta) kernel_meta;
  {
    meta;
    scalar_map = Hashtbl.create 16;
    buffer_map = Hashtbl.create 16;
    instrs = ref [];
  }

let add_instr ctx i = ctx.instrs := i :: !(ctx.instrs)
let ensure_meta ctx v meta = Hashtbl.replace ctx.meta v meta
let meta_of ctx v = Hashtbl.find_opt ctx.meta v

(* ───── mapping helpers ───── *)

let ll_of_hl ctx hl ~buffer =
  let tbl = if buffer then ctx.buffer_map else ctx.scalar_map in
  match Hashtbl.find_opt tbl hl with
  | Some ll -> ll
  | None ->
      let ll = Var.fresh () in
      Hashtbl.add tbl hl ll;
      Option.iter (ensure_meta ctx ll) (meta_of ctx hl);
      ll

(* ───── frequently used snippets ───── *)

let gtid ctx =
  let v = Var.fresh () in
  ensure_meta ctx v
    { dtype = Dtype.Any_Dtype Dtype.Int32; shape = [| 1 |]; device = None };
  add_instr ctx
    (Lowered.L_Special { dst = v; kind = Special_index_kind.Global_task_idx 0 });
  v

let load_scalar ctx ~hl_buffer ~idx ~dtype =
  let buf = ll_of_hl ctx hl_buffer ~buffer:true in
  let dst = Var.fresh () in
  ensure_meta ctx dst
    { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None };
  add_instr ctx
    (Lowered.L_Load
       { dst; buf; idx; dtype = Dtype.Any_Dtype dtype; valid = None });
  dst

(* ───── node lowering ───── *)

let lower_node ctx (Any_Node n) kernel_outs =
  let open Lowered in
  match n with
  | Placeholder { out_var; _ } ->
      ignore (ll_of_hl ctx out_var ~buffer:true);
      Ok ()
  | Buffer { dtype; size_in_elements; device = _; out_var } ->
      let ll = ll_of_hl ctx out_var ~buffer:true in
      add_instr ctx
        (L_Buffer
           { dtype = Dtype.Any_Dtype dtype; size = size_in_elements; out = ll });
      Ok ()
  | Const_Scalar { value; dtype; out_var } ->
      let ll = ll_of_hl ctx out_var ~buffer:false in
      add_instr ctx
        (L_Const
           {
             dtype = Dtype.Any_Dtype dtype;
             value = const_to_string dtype value;
             out = ll;
           });
      Ok ()
  | Binop { op; a_var; b_var; out_var; dtype } ->
      let idx = gtid ctx in
      let a_ll = load_scalar ctx ~hl_buffer:a_var ~idx ~dtype in
      let b_ll = load_scalar ctx ~hl_buffer:b_var ~idx ~dtype in
      let dst = Var.fresh () in
      ensure_meta ctx dst
        { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None };
      add_instr ctx
        (L_ALU
           {
             dst;
             op = Lowered.Binary op;
             args = [ a_ll; b_ll ];
             dtype = Dtype.Any_Dtype dtype;
           });
      Hashtbl.replace ctx.scalar_map out_var dst;
      (if List.mem out_var kernel_outs then
         let out_buf = ll_of_hl ctx out_var ~buffer:true in
         add_instr ctx (L_Store { buf = out_buf; idx; src = dst; valid = None }));
      Ok ()
  | Reduce_Axis { in_var; reduce_op_kind; out_var; dtype; _ } ->
      (* look up shape once *)
      let shape =
        match meta_of ctx in_var with
        | Some m -> m.shape
        | None ->
            failwith
              ("No metadata for var " ^ Var.to_string in_var ^ " during Reduce")
      in
      let total = Array.fold_left ( * ) 1 shape in
      let idx = Var.fresh () in
      ensure_meta ctx idx
        { dtype = Dtype.Any_Dtype Dtype.Int32; shape = [| 1 |]; device = None };

      let ub = Var.fresh () in
      ensure_meta ctx ub
        { dtype = Dtype.Any_Dtype Dtype.Int32; shape = [| 1 |]; device = None };
      add_instr ctx
        (L_Const
           {
             dtype = Dtype.Any_Dtype Dtype.Int32;
             value = string_of_int total;
             out = ub;
           });
      add_instr ctx (L_Range { idx; bound = ub });

      let acc = Var.fresh () in
      ensure_meta ctx acc
        { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None };
      let identity =
        match (dtype, reduce_op_kind) with
        | Dtype.Float32, Reduce_Sum -> "0.0"
        | Dtype.Float32, Reduce_Max -> "-INFINITY"
        | Dtype.Float32, Reduce_Prod -> "1.0"
        | Dtype.Int32, Reduce_Sum -> "0"
        | Dtype.Int32, Reduce_Max -> string_of_int min_int
        | Dtype.Int32, Reduce_Prod -> "1"
        | Dtype.Uint8, Reduce_Sum -> "0"
        | Dtype.Uint8, Reduce_Max -> "0"
        | Dtype.Uint8, Reduce_Prod -> "1"
        | Dtype.Bool, Reduce_Sum -> "false"
        | Dtype.Bool, Reduce_Max -> "true"
        | Dtype.Bool, Reduce_Prod -> "true"
        | Dtype.Unit, _ -> "0"
      in
      add_instr ctx
        (L_Const { dtype = Dtype.Any_Dtype dtype; value = identity; out = acc });

      let cur = load_scalar ctx ~hl_buffer:in_var ~idx ~dtype in
      let op =
        match reduce_op_kind with
        | Reduce_Sum -> Lowered.Binary Add
        | Reduce_Max -> Lowered.Binary Max
        | Reduce_Prod -> Lowered.Binary Mul
      in
      add_instr ctx
        (L_ALU
           { dst = acc; op; args = [ acc; cur ]; dtype = Dtype.Any_Dtype dtype });
      add_instr ctx L_EndRange;

      if List.mem out_var kernel_outs then (
        let ob = ll_of_hl ctx out_var ~buffer:true in
        let z = Var.fresh () in
        ensure_meta ctx z
          {
            dtype = Dtype.Any_Dtype Dtype.Int32;
            shape = [| 1 |];
            device = None;
          };
        add_instr ctx
          (L_Const { dtype = Dtype.Any_Dtype Dtype.Int32; value = "0"; out = z });
        add_instr ctx (L_Store { buf = ob; idx = z; src = acc; valid = None }))
      else Hashtbl.replace ctx.scalar_map out_var acc;
      Ok ()
  | Unary { op; in_var; out_var; dtype } ->
      let idx = gtid ctx in
      let in_ll = load_scalar ctx ~hl_buffer:in_var ~idx ~dtype in
      let dst = Var.fresh () in
      ensure_meta ctx dst
        { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None };
      add_instr ctx
        (L_ALU
           {
             dst;
             op = Lowered.Unary op;
             args = [ in_ll ];
             dtype = Dtype.Any_Dtype dtype;
           });
      Hashtbl.replace ctx.scalar_map out_var dst;
      (if List.mem out_var kernel_outs then
         let out_buf = ll_of_hl ctx out_var ~buffer:true in
         add_instr ctx (L_Store { buf = out_buf; idx; src = dst; valid = None }));
      Ok ()
  | Ternary
      {
        op = Where;
        a_var = cond_var;
        b_var = x_var;
        c_var = y_var;
        out_var;
        dtype;
      } ->
      let idx = gtid ctx in
      let cond_ll =
        load_scalar ctx ~hl_buffer:cond_var ~idx ~dtype:Dtype.Bool
      in
      let x_ll = load_scalar ctx ~hl_buffer:x_var ~idx ~dtype in
      let y_ll = load_scalar ctx ~hl_buffer:y_var ~idx ~dtype in
      (* For now, simple implementation using compare and multiply *)
      let dst = Var.fresh () in
      ensure_meta ctx dst
        { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None };
      (* This is a simplification - a real implementation would need a ternary
         op *)
      add_instr ctx
        (L_ALU
           {
             dst;
             op = Lowered.Ternary Where;
             args = [ cond_ll; x_ll; y_ll ];
             dtype = Dtype.Any_Dtype dtype;
           });
      Hashtbl.replace ctx.scalar_map out_var dst;
      (if List.mem out_var kernel_outs then
         let out_buf = ll_of_hl ctx out_var ~buffer:true in
         add_instr ctx (L_Store { buf = out_buf; idx; src = dst; valid = None }));
      Ok ()
  | Expand { in_var; out_var; _ }
  | Reshape { in_var; out_var; _ }
  | Permute { in_var; out_var; _ }
  | Pad { in_var; out_var; _ }
  | Shrink { in_var; out_var; _ }
  | Flip { in_var; out_var; _ }
  | Contiguous { in_var; out_var; _ }
  | Copy { in_var; target_device = _; out_var; _ } ->
      (match Hashtbl.find_opt ctx.scalar_map in_var with
      | Some s -> Hashtbl.replace ctx.scalar_map out_var s
      | None ->
          let b = ll_of_hl ctx in_var ~buffer:true in
          Hashtbl.replace ctx.buffer_map out_var b);
      Ok ()
  | Cast { in_var; target_dtype = _; out_var; dtype = _ } ->
      (* For now, treat cast as a view operation *)
      (match Hashtbl.find_opt ctx.scalar_map in_var with
      | Some s -> Hashtbl.replace ctx.scalar_map out_var s
      | None ->
          let b = ll_of_hl ctx in_var ~buffer:true in
          Hashtbl.replace ctx.buffer_map out_var b);
      Ok ()
  | Cat { in_vars; axis = _; out_var; dtype = _ } ->
      (* Simplified cat - just map to first input for now *)
      (if Array.length in_vars > 0 then
         match Hashtbl.find_opt ctx.scalar_map in_vars.(0) with
         | Some s -> Hashtbl.replace ctx.scalar_map out_var s
         | None ->
             let b = ll_of_hl ctx in_vars.(0) ~buffer:true in
             Hashtbl.replace ctx.buffer_map out_var b);
      Ok ()
  | Assign { target_var; updates = _; out_var; dtype = _ } ->
      (* Simplified assign - just map to target for now *)
      (match Hashtbl.find_opt ctx.scalar_map target_var with
      | Some s -> Hashtbl.replace ctx.scalar_map out_var s
      | None ->
          let b = ll_of_hl ctx target_var ~buffer:true in
          Hashtbl.replace ctx.buffer_map out_var b);
      Ok ()
  | Threefry { ctr_var = _; key_var = _; out_var; dtype } ->
      (* Simplified threefry - needs proper implementation *)
      let idx = gtid ctx in
      let dst = Var.fresh () in
      ensure_meta ctx dst
        { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None };
      add_instr ctx
        (L_Const { dtype = Dtype.Any_Dtype dtype; value = "0"; out = dst });
      Hashtbl.replace ctx.scalar_map out_var dst;
      (if List.mem out_var kernel_outs then
         let out_buf = ll_of_hl ctx out_var ~buffer:true in
         add_instr ctx (L_Store { buf = out_buf; idx; src = dst; valid = None }));
      Ok ()
  | Gather { src_var; indices_var = _; axis = _; out_var; dtype = _ } ->
      (* Simplified gather - just map to source for now *)
      (match Hashtbl.find_opt ctx.scalar_map src_var with
      | Some s -> Hashtbl.replace ctx.scalar_map out_var s
      | None ->
          let b = ll_of_hl ctx src_var ~buffer:true in
          Hashtbl.replace ctx.buffer_map out_var b);
      Ok ()
  | Scatter
      { indices_var = _; updates_var = _; axis = _; shape = _; out_var; dtype }
    ->
      (* Simplified scatter - needs proper implementation *)
      let idx = gtid ctx in
      let dst = Var.fresh () in
      ensure_meta ctx dst
        { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None };
      add_instr ctx
        (L_Const { dtype = Dtype.Any_Dtype dtype; value = "0"; out = dst });
      Hashtbl.replace ctx.scalar_map out_var dst;
      (if List.mem out_var kernel_outs then
         let out_buf = ll_of_hl ctx out_var ~buffer:true in
         add_instr ctx (L_Store { buf = out_buf; idx; src = dst; valid = None }));
      Ok ()
  | Ternary { op = Mulacc; a_var; b_var; c_var; out_var; dtype } ->
      let idx = gtid ctx in
      let a_ll = load_scalar ctx ~hl_buffer:a_var ~idx ~dtype in
      let b_ll = load_scalar ctx ~hl_buffer:b_var ~idx ~dtype in
      let c_ll = load_scalar ctx ~hl_buffer:c_var ~idx ~dtype in
      let dst = Var.fresh () in
      ensure_meta ctx dst
        { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None };
      add_instr ctx
        (L_ALU
           {
             dst;
             op = Lowered.Ternary Mulacc;
             args = [ a_ll; b_ll; c_ll ];
             dtype = Dtype.Any_Dtype dtype;
           });
      Hashtbl.replace ctx.scalar_map out_var dst;
      (if List.mem out_var kernel_outs then
         let out_buf = ll_of_hl ctx out_var ~buffer:true in
         add_instr ctx (L_Store { buf = out_buf; idx; src = dst; valid = None }));
      Ok ()
  | View { in_var; shape_tracker = _; out_var; _ }
  | Valid { in_var; shape_tracker = _; out_var; _ }
  | Detach { in_var; out_var; _ }
  | Contiguous_Backward { in_var; out_var; _ }
  | Bitcast { in_var; target_dtype = _; out_var; _ } ->
      (match Hashtbl.find_opt ctx.scalar_map in_var with
      | Some s -> Hashtbl.replace ctx.scalar_map out_var s
      | None ->
          let b = ll_of_hl ctx in_var ~buffer:true in
          Hashtbl.replace ctx.buffer_map out_var b);
      Ok ()
  | Vconst { values; dtype; out_var } ->
      (* Vector constant - for now treat as buffer with preset values *)
      let ll = ll_of_hl ctx out_var ~buffer:true in
      add_instr ctx
        (L_Buffer
           {
             dtype = Dtype.Any_Dtype dtype;
             size = Array.length values;
             out = ll;
           });
      (* TODO: Initialize buffer with values *)
      Ok ()
  | Buffer_View { buffer_var; size = _; offset = _; dtype = _; out_var } ->
      (* For now, just alias the buffers *)
      let b = ll_of_hl ctx buffer_var ~buffer:true in
      Hashtbl.replace ctx.buffer_map out_var b;
      Ok ()
  | Index { in_var; idx_var; valid_var = _; out_var; dtype } ->
      (* Simplified index - needs proper implementation *)
      let base_idx = gtid ctx in
      let idx =
        load_scalar ctx ~hl_buffer:idx_var ~idx:base_idx ~dtype:Dtype.Int32
      in
      let in_ll = load_scalar ctx ~hl_buffer:in_var ~idx ~dtype in
      Hashtbl.replace ctx.scalar_map out_var in_ll;
      (if List.mem out_var kernel_outs then
         let out_buf = ll_of_hl ctx out_var ~buffer:true in
         add_instr ctx
           (L_Store { buf = out_buf; idx = base_idx; src = in_ll; valid = None }));
      Ok ()
  | Gep { in_var; indices; out_var; dtype } ->
      (* Get element pointer - for vectors *)
      let ll = ll_of_hl ctx in_var ~buffer:false in
      let dst = Var.fresh () in
      ensure_meta ctx dst
        { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None };
      add_instr ctx
        (L_Gep { dst; src = ll; indices; dtype = Dtype.Any_Dtype dtype });
      Hashtbl.replace ctx.scalar_map out_var dst;
      Ok ()
  | Vectorize { in_vars; out_var; dtype } ->
      (* Build vector from scalars *)
      let srcs = Array.map (fun v -> ll_of_hl ctx v ~buffer:false) in_vars in
      let dst = Var.fresh () in
      ensure_meta ctx dst
        {
          dtype = Dtype.Any_Dtype dtype;
          shape = [| Array.length in_vars |];
          device = None;
        };
      add_instr ctx (L_Vectorize { dst; srcs; dtype = Dtype.Any_Dtype dtype });
      Hashtbl.replace ctx.scalar_map out_var dst;
      Ok ()
  | Wmma { a_var; b_var; c_var; m; n; k; out_var; dtype } ->
      (* Tensor core operations *)
      let a_ll = ll_of_hl ctx a_var ~buffer:true in
      let b_ll = ll_of_hl ctx b_var ~buffer:true in
      let c_ll = ll_of_hl ctx c_var ~buffer:true in
      let dst = ll_of_hl ctx out_var ~buffer:true in
      add_instr ctx
        (L_Wmma
           {
             dst;
             a = a_ll;
             b = b_ll;
             c = c_ll;
             m;
             n;
             k;
             dtype = Dtype.Any_Dtype dtype;
           });
      Ok ()
  | Define_Var { sym_var; out_var; dtype = _ } ->
      let ll = ll_of_hl ctx out_var ~buffer:false in
      add_instr ctx (L_Define_Var { sym_var; out = ll });
      Ok ()
  | Bind { sym_var; value; out_var; dtype = _ } ->
      (* Bind symbolic var to value *)
      let sym_ll = ll_of_hl ctx sym_var ~buffer:false in
      let dst = ll_of_hl ctx out_var ~buffer:false in
      add_instr ctx
        (L_Const
           {
             dtype = Dtype.Any_Dtype Dtype.Int32;
             value = string_of_int value;
             out = dst;
           });
      add_instr ctx (L_Assign { dst = sym_ll; src = dst });
      Ok ()
  | Multi { device_vars; axis = _; real_mask = _; out_var; dtype = _ } ->
      (* Multi-device tensor - for now just use first device *)
      (if Array.length device_vars > 0 then
         match Hashtbl.find_opt ctx.scalar_map device_vars.(0) with
         | Some s -> Hashtbl.replace ctx.scalar_map out_var s
         | None ->
             let b = ll_of_hl ctx device_vars.(0) ~buffer:true in
             Hashtbl.replace ctx.buffer_map out_var b);
      Ok ()
  | Fuse { in_var; out_var; dtype = _ } ->
      (* Fusion marker - pass through *)
      (match Hashtbl.find_opt ctx.scalar_map in_var with
      | Some s -> Hashtbl.replace ctx.scalar_map out_var s
      | None ->
          let b = ll_of_hl ctx in_var ~buffer:true in
          Hashtbl.replace ctx.buffer_map out_var b);
      Ok ()
  | Unroll { loop_var; unroll_factor; out_var; dtype = _ } ->
      (* Loop unroll directive *)
      let ll = ll_of_hl ctx loop_var ~buffer:false in
      let dst = ll_of_hl ctx out_var ~buffer:false in
      add_instr ctx (L_Unroll { idx = ll; iterations = unroll_factor });
      add_instr ctx (L_Assign { dst; src = ll });
      Ok ()
  | Contract { in_vars = _; contraction_axes = _; out_var; dtype } ->
      (* Tensor contraction - simplified for now *)
      let idx = gtid ctx in
      let dst = Var.fresh () in
      ensure_meta ctx dst
        { dtype = Dtype.Any_Dtype dtype; shape = [| 1 |]; device = None };
      add_instr ctx
        (L_Const { dtype = Dtype.Any_Dtype dtype; value = "0"; out = dst });
      Hashtbl.replace ctx.scalar_map out_var dst;
      (if List.mem out_var kernel_outs then
         let out_buf = ll_of_hl ctx out_var ~buffer:true in
         add_instr ctx (L_Store { buf = out_buf; idx; src = dst; valid = None }));
      Ok ()
  | Sink { deps = _; dtype = _ } ->
      (* Sink has no output, just ensures dependencies are computed *)
      Ok ()
  | Kernel
      { ast = _; input_vars = _; output_vars = _; metadata = _; out_var; dtype }
    ->
      (* Kernel wrapper - simplified *)
      let ll = ll_of_hl ctx out_var ~buffer:true in
      add_instr ctx
        (L_Buffer { dtype = Dtype.Any_Dtype dtype; size = 1; out = ll });
      Ok ()
  | Unique { id; out_var; dtype } ->
      (* Unique identifier generation *)
      let ll = ll_of_hl ctx out_var ~buffer:false in
      add_instr ctx
        (L_Const
           { dtype = Dtype.Any_Dtype dtype; value = string_of_int id; out = ll });
      Ok ()
  | Device { device_name = _; out_var; dtype } ->
      (* Device marker - for now just create a dummy value *)
      let ll = ll_of_hl ctx out_var ~buffer:false in
      add_instr ctx
        (L_Const { dtype = Dtype.Any_Dtype dtype; value = "0"; out = ll });
      Ok ()
  | Custom { op_name; in_vars; attributes; out_var; dtype = _ } ->
      (* Custom operation *)
      let args = Array.map (fun v -> ll_of_hl ctx v ~buffer:false) in_vars in
      let dst = ll_of_hl ctx out_var ~buffer:false in
      add_instr ctx
        (L_Custom { dst = Some dst; op_name; args; attributes; inline = false });
      Ok ()
  | Noop { in_var = _; out_var; dtype } ->
      (* No operation - just create dummy output *)
      let ll = ll_of_hl ctx out_var ~buffer:false in
      add_instr ctx
        (L_Const { dtype = Dtype.Any_Dtype dtype; value = "0"; out = ll });
      Ok ()

(* ───── top-level entry ───── *)

let lower_kernel ~(kernel_spec : Scheduler.kernel_spec_t)
    ~original_graph_vars_metadata =
  let ( let* ) = Result.bind in
  let ( let+ ) = fun r f -> Result.map f r in
  let ctx = new_ctx original_graph_vars_metadata kernel_spec.vars_metadata in
  let open Result in
  let+ () =
    List.fold_left
      (fun acc n ->
        let* _ = acc in
        lower_node ctx n kernel_spec.outputs)
      (Ok ()) kernel_spec.nodes
  in
  {
    Lowered.instructions = List.rev !(ctx.instrs);
    vars_metadata = ctx.meta;
    kernel_input_vars =
      List.map (fun v -> ll_of_hl ctx v ~buffer:true) kernel_spec.inputs;
    kernel_output_vars =
      List.map (fun v -> ll_of_hl ctx v ~buffer:true) kernel_spec.outputs;
    symbolic_vars = [];
  }
OCaml

Innovation. Community. Security.