package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/itvUtils/floatItvNan.ml.html
Source file floatItvNan.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** FloatItvNan - Floating-point intervals with special IEEE numbers. Adds special IEEE number managenement (NaN, infinities) to FloatItv. *) open Bot module F = Float module FI = FloatItv module B = IntBound module II = IntItv (** {2 Types} *) type t = { itv: FI.t with_bot; (** Interval of non-special values. Bounds cannot be NaN. Bounds can be infinities to represent non-infinity floats outside the range of doubles. *) nan: bool; (** Whether to include NaN. *) pinf: bool; (** Whether to include +∞. *) minf: bool; (** Whether to include -∞. *) } (** A set of IEEE floating-point values. Represented as a set of non-special values, and boolean flags to indicate the presence of each special IEEE value. The value 0 in the interval represents both IEEE +0 and -0. Note: the type can naturally represent the empty set. *) let is_valid (a:t) : bool = match a.itv with | BOT -> true | Nb i -> not (F.is_nan i.FI.lo || i.FI.lo = infinity) && not (F.is_nan i.FI.up || i.FI.up = neg_infinity) && i.FI.lo <= i.FI.up (** All elements of type t whould satisfy this predicate. *) type prec = [ `SINGLE (** 32-bit single precision *) | `DOUBLE (** 64-bit double precision *) | `EXTRA (** anything larger than 64-bit double precision floats *) | `REAL (** real arithmetic *) ] (** Precision. All bounds are represented as double, whatever the precision. *) type round = [ `NEAR (** To nearest *) | `UP (** Upwards *) | `DOWN (** Downwards *) | `ZERO (** Towards 0 *) | `ANY (** Any rounding mode *) ] (** Rounding direction. *) (** {2 Constructors} *) let bot = { itv = BOT; nan = false; pinf = false; minf = false; } (** Empty float set. *) let pinf : t = { bot with pinf = true; } let minf : t = { bot with minf = true; } let nan : t = { bot with nan = true; } let infinities : t = { itv = BOT; nan = false; pinf = true; minf = true; } let specials : t = { itv = BOT; nan = true; pinf = true; minf = true; } (** Special values. *) let of_float (lo:float) (up:float) : t = if lo > up then bot else if F.is_nan lo || lo = infinity || F.is_nan up || up = neg_infinity then invalid_arg (Printf.sprintf "FloatItvNan.of_float: invalid bound [%g,%g]" lo up) else { bot with itv = Nb { FI.lo; FI.up; }; } (** Float set reduced to an interval of non-special values. lo should not be +oo nor NaN. up should not be -oo nor NaN. We can have lo = -oo and up = +oo to represent sets of non-infinity floats larger than the range of double. *) let of_interval (a:FI.t) : t = of_float a.FI.lo a.FI.up let of_interval_bot (a:FI.t_with_bot) : t = match a with BOT -> bot | Nb aa -> of_interval aa let hull (a:float) (b:float) : t = of_float (min a b) (max a b) (** Constructs the smallest interval containing a and b. *) let cst (x:float) : t = match classify_float x with | FP_nan -> nan | FP_infinite -> if x > 0. then pinf else minf | _ -> { bot with itv = Nb { FI.lo = x; FI.up = x; }; } (** Singleton (possibly infinity or NaN). *) let zero : t = cst 0. let one : t = cst 1. let two : t = cst 2. let mone : t = cst (-1.) let zero_one : t = of_float 0. 1. let mone_zero : t = of_float (-1.) 0. let mone_one : t = of_float (-1.) 1. let mhalf_half : t = of_float (-0.5) 0.5 (** Useful intervals. *) let add_special (x:t) : t = { x with nan = true; pinf = true; minf = true; } (** Adds NaN and infinities to a set. *) let remove_special (x:t) : t = { x with nan = false; pinf = false; minf = false; } (** Removes NaN and infinities from a set. *) let single : t = of_float (-. F.Single.max_normal) F.Single.max_normal (** Non-special single precision floats. *) let double : t = of_float (-. F.Double.max_normal) F.Double.max_normal (** Non-special double precision floats. *) let extra : t = of_float neg_infinity infinity (** Non-special extra (> double) precision. *) let real : t = of_float neg_infinity infinity (** Reals. *) let single_special : t = add_special single (** Single precision floats with specials. *) let double_special : t = add_special double (** Double precision floats with specials. *) let extra_special : t = add_special extra (** Extra (> double) precision floats with specials. *) (** {2 Set-theoretic} *) let equal (a:t) (b:t) : bool = a = b (** Set equality. = also works. *) let included (a:t) (b:t) : bool = (match a.itv, b.itv with | BOT, _ -> true | _, BOT -> false | Nb aa, Nb bb -> aa.FI.lo >= bb.FI.lo && aa.FI.up <= bb.FI.up ) && (b.nan || not a.nan) && (b.minf || not a.minf) && (b.pinf || not a.pinf) (** Set inclusion. *) let intersect_finite (a:t) (b:t) : bool = (match a.itv, b.itv with | BOT, _ | _, BOT -> false | Nb aa, Nb bb -> aa.FI.lo <= bb.FI.up && aa.FI.up >= bb.FI.lo ) (** Whether the finite parts of the sets have a non-empty intersection. *) let intersect (a:t) (b:t) : bool = (intersect_finite a b) || (a.nan && b.nan) || (a.minf && b.minf) || (a.pinf && b.pinf) (** Whether the sets have an non-empty intersection. *) let contains (x:float) (a:t) = match classify_float x with | FP_nan -> a.nan | FP_infinite -> (x > 0. && a.pinf) || (x < 0. && a.minf) | _ -> match a.itv with | BOT -> false | Nb aa -> aa.lo <= x && aa.up >= x (** Whether the set contains a certain (finite, infinite or NaN) value. *) let compare (a:t) (b:t) : int = Compare.compose [(fun () -> FI.compare_bot a.itv b.itv); (fun () -> Stdlib.compare a.nan b.nan); (fun () -> Stdlib.compare a.minf b.minf); (fun () -> Stdlib.compare a.pinf b.pinf); ] (** A total ordering returning -1, 0, or 1. *) let is_bot (a:t) : bool = (a.itv = BOT) && (not a.nan) && (not a.pinf) && (not a.minf) (** Whether the argument is the empty set. *) let is_finite (a:t) : bool = (not a.nan) && (not a.pinf) && (not a.minf) (** Whether the argument contains only finite values (or is empty). *) let is_infinity (a:t) : bool = (not a.nan) && (a.itv = BOT) (** Whether the argument contains only infinities (or is empty). *) let is_special (a:t) : bool = a.itv = BOT (** Whether the argument contains only special values (or is empty). *) let is_zero (a:t) : bool = a = zero (** Whether the argument is the singleton 0. *) let is_null (a:t) : bool = a = zero || a = bot (** Whether the argument contains only 0 (or is empty). *) let is_positive (a:t) : bool = (not a.nan) && (not a.minf) && (match a.itv with BOT -> true | Nb x -> x.FI.lo >= 0.) (** Whether the argument contains only (possibly infinite) positive non-NaN values (or is empty). *) let is_negative (a:t) : bool = (not a.nan) && (not a.pinf) && (match a.itv with BOT -> true | Nb x -> x.FI.up <= 0.) (** Whether the argument contains only (possibly infinite) negative non-NaN values (or is empty). *) let is_positive_strict (a:t) : bool = (not a.nan) && (not a.minf) && (match a.itv with BOT -> true | Nb x -> x.FI.lo > 0.) (** Whether the argument contains only (possibly infinite) strictly positive non-NaN values (or is empty). *) let is_negative_strict (a:t) : bool = (not a.nan) && (not a.pinf) && (match a.itv with BOT -> true | Nb x -> x.FI.up < 0.) (** Whether the argument contains only (possibly infinite) strictly negative non-NaN values (or is empty). *) let is_nonzero (a:t) : bool = (match a.itv with BOT -> true | Nb x -> x.FI.lo > 0. || x.FI.up < 0.) (** Whether the argument contains only (possibly infinite or NaN) non-zero values (or is empty). *) let approx_size (a:t) : int = (if a.nan then 1 else 0) + (if a.pinf then 1 else 0) + (if a.minf then 1 else 0) + (match a.itv with | BOT -> 0 | Nb x -> if x.FI.lo = x.FI.up then 1 else 2 ) (* approximate size: 0 is empty, 1 is singleton, > 1 is non-singleton. *) let is_singleton (a:t) : bool = approx_size a == 1 (** Whether the argument contains only a single element. *) let contains_finite (a:t) : bool = a.itv <> BOT (** Whether the argument contains at least one finite value. *) let contains_infinity (a:t) : bool = a.pinf || a.minf (** Whether the argument contains an infinity. *) let contains_special (a:t) : bool = a.nan || a.pinf || a.minf (** Whether the argument contains an infinity or NaN. *) let contains_zero (a:t) : bool = match a.itv with Nb x -> x.FI.lo <= 0. && x.FI.up >= 0. | BOT -> false (** Whether the argument contains 0. *) let contains_nonzero (a:t) : bool = a.nan || a.pinf || a.minf || (match a.itv with BOT -> false | Nb x -> x.FI.lo <> 0. || x.FI.up <> 0.) (** Whether the argument contains a (possibly NaN or infinite) non-0 value. *) let contains_positive (a:t) : bool = a.pinf || (match a.itv with BOT -> false | Nb x -> x.FI.up >= 0.) (** Whether the argument contains a (possibly infinite) positive value. *) let contains_negative (a:t) : bool = a.minf || (match a.itv with BOT -> false | Nb x -> x.FI.lo <= 0.) (** Whether the argument contains a (possibly infinite) negative value. *) let contains_positive_strict (a:t) : bool = a.pinf || (match a.itv with BOT -> false | Nb x -> x.FI.up > 0.) (** Whether the argument contains a (possibly infinite) strictly positive value. *) let contains_negative_strict (a:t) : bool = a.minf || (match a.itv with BOT -> false | Nb x -> x.FI.lo < 0.) (** Whether the argument contains a (possibly infinite) strictly negative value. *) let contains_non_nan (a:t) : bool = a.minf || a.pinf || a.itv <> BOT (** Whether the argument contains a non-NaN value. *) let is_in_range (a:t) (lo:float) (up:float) = (not a.nan) && (not a.pinf) && (not a.minf) && (match a.itv with BOT -> true | Nb x -> x.FI.lo >= lo || x.FI.up <= up) (** Whether the argument contains only finite values, and they are included in the range [lo,up]. *) let join (a:t) (b:t) = { itv = bot_neutral2 FI.join a.itv b.itv; nan = a.nan || b.nan; minf = a.minf || b.minf; pinf = a.pinf || b.pinf; } let join_list : t list -> t = List.fold_left join bot let meet (a:t) (b:t) = { itv = bot_absorb2 FI.meet a.itv b.itv; nan = a.nan && b.nan; minf = a.minf && b.minf; pinf = a.pinf && b.pinf; } let widen (a:t) (b:t) = { itv = bot_neutral2 FI.widen a.itv b.itv; nan = a.nan || b.nan; minf = a.minf || b.minf; pinf = a.pinf || b.pinf; } let positive (x:t) : t = { itv = bot_absorb1 FI.positive x.itv; nan = false; pinf = x.pinf; minf = false; } (** Positive part of the argument, excluding NaN. *) let negative (x:t) : t = { itv = bot_absorb1 FI.negative x.itv; nan = false; minf = x.minf; pinf = false; } (** Negative part of the argument, excluding NaN. *) let meet_zero (a:t) : t = meet a zero (** Intersects with {0} (excluding infinities and NaN). *) (** {2 Printing} *) type print_format = FI.print_format let dfl_fmt = FI.dfl_fmt let to_string (fmt:print_format) (x:t) : string = let app x y = if x = "" then y else x ^ "∨" ^ y in let r = (match x.itv with Nb i -> FI.to_string fmt i | BOT -> "") in let r = if x.pinf then app r "+∞" else r in let r = if x.minf then app r "-∞" else r in let r = if x.nan then app r "NaN" else r in if r = "" then bot_string else r let print fmt ch (x:t) = output_string ch (to_string fmt x) let fprint fmt ch (x:t) = Format.pp_print_string ch (to_string fmt x) let bprint fmt ch (x:t) = Buffer.add_string ch (to_string fmt x) (** {2 C predicates} *) let is_log_eq (a:t) (b:t) : bool = (intersect_finite a b) || (a.pinf && b.pinf) || (a.minf && b.minf) let is_log_leq (a:t) (b:t) : bool = (match a.itv, b.itv with Nb x, Nb y -> x.FI.lo <= y.FI.up | _ -> false) || (a.minf && contains_non_nan b) || (b.pinf && contains_non_nan a) let is_log_lt (a:t) (b:t) : bool = (match a.itv, b.itv with Nb x, Nb y -> x.FI.lo < y.FI.up | _ -> false) || (a.minf && (b.pinf || b.itv <> BOT)) || (b.pinf && (a.minf || a.itv <> BOT)) let is_log_geq (a:t) (b:t) : bool = is_log_leq b a let is_log_gt (a:t) (b:t) : bool = is_log_lt b a let is_log_neq (a:t) (b:t) : bool = match approx_size a, approx_size b with | 0,_ | _,0 -> false | 1,1 -> a.nan || b.nan || not (equal a b) | _ -> true (** C comparison tests. Returns true if the test may succeed, false if it cannot. Note that NaN always compares different to all values (including NaN). *) let is_log_leq_false (a:t) (b:t) : bool = is_log_gt a b || (a.nan && not (is_bot b)) || (b.nan && not (is_bot a)) let is_log_lt_false (a:t) (b:t) : bool = is_log_geq a b || (a.nan && not (is_bot b)) || (b.nan && not (is_bot a)) let is_log_geq_false (a:t) (b:t) : bool = is_log_leq_false b a let is_log_gt_false (a:t) (b:t) : bool = is_log_lt_false b a let is_log_eq_false = is_log_neq let is_log_neq_false = is_log_eq (** Returns true if the test may fail, false if it cannot. Due to NaN, which compare always different, <= (resp. >) do not return the boolean negation of > (resp. <). However, == is the negation of != even for NaN. *) (** {2 Forward arithmetic} *) let fix_itv (prec:prec) (x:t) : t = match prec with | (`SINGLE | `DOUBLE) as prec -> (* map infinite and NaN bounds back to finite bounds and set flags *) let m = F.max_normal prec in (match x.itv with | BOT -> x | Nb i -> let lo,minf,nan1 = if F.is_nan i.FI.lo then -. m, false, true else if i.FI.lo < -. m then -. m, true, false else i.FI.lo, false, false and up,pinf,nan2 = if F.is_nan i.FI.up then m, false, true else if i.FI.up > m then m, true, false else i.FI.up, false, false in { itv = FI.of_float_bot lo up; nan = x.nan || nan1 || nan2; minf = x.minf || minf; pinf = x.pinf || pinf; }) | `EXTRA -> (* keep infinite bounds to infinity and set flags *) (match x.itv with | BOT -> x | Nb i -> let lo,minf,nan1 = if F.is_nan i.FI.lo then neg_infinity, true, true else if i.FI.lo = neg_infinity then neg_infinity, true, false else i.FI.lo, false, false and up,pinf,nan2 = if F.is_nan i.FI.up then infinity, true, true else if i.FI.up = infinity then infinity, true, false else i.FI.up, false, false in { itv = FI.of_float_bot lo up; nan = x.nan || nan1 || nan2; minf = x.minf || minf; pinf = x.pinf || pinf; }) | `REAL -> (* no flags *) { bot with itv = x.itv; } (* Utility to fix interval bounds after an operation. NaN, infinities and overflowing bounds are reset to maximal bounds according to the precision, and the nan, minf, and pinf fields are updated. *) let neg (x:t) : t = { itv = bot_lift1 FI.neg x.itv; nan = x.nan; pinf = x.minf; minf = x.pinf; } (** Negation. *) let abs (x:t) : t = { itv = bot_lift1 FI.abs x.itv; nan = x.nan; pinf = x.pinf || x.minf; minf = false; } (** Absolute value. *) let fix_prec (prec:prec) : FI.prec = match prec with | `SINGLE -> `SINGLE | `DOUBLE -> `DOUBLE | `REAL | `EXTRA -> `REAL let add (prec:prec) (round:round) (x:t) (y:t) = fix_itv prec { itv = bot_lift2 (FI.add (fix_prec prec) round) x.itv y.itv; nan = x.nan || y.nan || (x.pinf && y.minf) || (x.minf && y.pinf); pinf = (x.pinf && y.pinf) || (x.pinf && contains_finite y) || (y.pinf && contains_finite x); minf = (x.minf && y.minf) || (x.minf && contains_finite y) || (y.minf && contains_finite x); } (** Addition. *) let sub (prec:prec) (round:round) (x:t) (y:t) = fix_itv prec { itv = bot_lift2 (FI.sub (fix_prec prec) round) x.itv y.itv; nan = x.nan || y.nan || (x.pinf && y.pinf) || (x.minf && y.minf); pinf = (x.pinf && y.minf) || (x.pinf && contains_finite y) || (y.minf && contains_finite x); minf = (x.minf && y.pinf) || (x.minf && contains_finite y) || (y.pinf && contains_finite x); } (** Subtraction. *) let mul (prec:prec) (round:round) (x:t) (y:t) = (* signs of x and y *) let xm, xz, xp, xi = contains_negative_strict x, contains_zero x, contains_positive_strict x, contains_infinity x and ym, yz, yp, yi = contains_negative_strict y, contains_zero y, contains_positive_strict y, contains_infinity y in fix_itv prec { itv = bot_lift2 (FI.mul (fix_prec prec) round) x.itv y.itv; nan = x.nan || y.nan || (xz && yi) || (xi && yz); pinf = (x.pinf && yp) || (x.minf && ym) || (y.pinf && xp) || (y.minf && xm); minf = (x.pinf && ym) || (x.minf && yp) || (y.pinf && xm) || (y.minf && xp); } (** Multiplication. *) let div (prec:prec) (round:round) (x:t) (y:t) = (* signs of x and y *) let xm, xz, xp, xi = contains_negative_strict x, contains_zero x, contains_positive_strict x, contains_infinity x and ym, yz, yp, yi = contains_negative y, contains_zero y, contains_positive y, contains_infinity y in let r = fix_itv prec { itv = bot_absorb2 (FI.div (fix_prec prec) round) x.itv y.itv; nan = x.nan || y.nan || (xi && yi) || (xz && yz); pinf = yz || (x.pinf && yp) || (x.minf && ym); minf = yz || (x.pinf && ym) || (x.minf && yp); } in (* add zero if dividing by infinity *) if yi then join zero r else r (** Division. *) let fmod (prec:prec) (round:round) (x:t) (y:t) : t = fix_itv prec { itv = bot_absorb2 FI.fmod x.itv y.itv; nan = (contains_special x) || y.nan || (contains_zero y); minf = false; pinf = false; } (** Remainder (modulo). *) let square (prec:prec) (round:round) (x:t) : t = fix_itv prec { itv = bot_lift1 (FI.square (fix_prec prec) round) x.itv; nan = x.nan; pinf = x.pinf || x.minf; minf = false; } (** Square. *) let sqrt (prec:prec) (round:round) (x:t) : t = fix_itv prec { itv = bot_absorb1 (FI.sqrt (fix_prec prec) round) x.itv; nan = x.nan || (contains_negative_strict x); pinf = x.pinf; minf = false; } (** Square root. *) let round_int (prec:prec) (round:round) (x:t) : t = fix_itv prec { x with itv = bot_lift1 (FI.round_int (fix_prec prec) round) x.itv; } (** Round to integer. *) let round (prec:prec) (round:round) (x:t) : t = fix_itv prec { x with itv = bot_lift1 (FI.round (fix_prec prec) round) x.itv; } (** Round to float. *) let of_int (prec:prec) (round:round) (x:int) (y:int) : t = fix_itv prec { bot with itv = Nb (FI.of_int (fix_prec prec) round x y); } (** Conversion from integer range. *) let of_int64 (prec:prec) (round:round) (x:int64) (y:int64) : t = fix_itv prec { bot with itv = Nb (FI.of_int64 (fix_prec prec) round x y); } (** Conversion from int64 range. *) let of_z (prec:prec) (round:round) (x:Z.t) (y:Z.t) : t = fix_itv prec { bot with itv = Nb (FI.of_z (fix_prec prec) round x y); } (** Conversion from integer range. *) let to_z (x:t) : (Z.t * Z.t) with_bot = bot_lift1 FI.to_z x.itv (** Conversion to integer range with truncation. NaN and infinities are discarded. *) let of_float_prec (prec:prec) (round:round) (lo:float) (up:float) : t = let r = FI.of_float_bot lo up in fix_itv prec { bot with itv = bot_lift1 (FI.round (fix_prec prec) round) r; } (** From bounds, with rounding, precision and handling of specials. *) let of_int_itv (prec:prec) (round:round) ((lo,up):II.t) : t = let prec,round = match prec with | `SINGLE -> `SINGLE, round | `DOUBLE -> `DOUBLE, round | `REAL | `EXTRA -> `DOUBLE, `ANY in let lo = match lo, round with | B.Finite l, `NEAR -> F.of_z prec `NEAR l | B.Finite l, (`DOWN | `ANY) -> F.of_z prec `DOWN l | B.Finite l, `UP -> F.of_z prec `UP l | B.Finite l, `ZERO -> F.of_z prec `ZERO l | _ -> neg_infinity and up = match up, round with | B.Finite l, `NEAR -> F.of_z prec `NEAR l | B.Finite l, `DOWN -> F.of_z prec `DOWN l | B.Finite l, (`ANY | `UP) -> F.of_z prec `UP l | B.Finite l, `ZERO -> F.of_z prec `ZERO l | _ -> infinity in if lo > up then bot else fix_itv prec { bot with itv = Nb { lo; up; }; } (** Conversion from integer intervals (handling overflows to infinities). *) let of_int_itv_bot (prec:prec) (round:round) (i:II.t with_bot) : t = match i with | BOT -> bot | Nb (lo,up) -> of_int_itv prec round (lo,up) (** Conversion from integer intervals (handling overflows to infinities). *) let to_int_itv (r:t) : II.t with_bot = match r.itv with | BOT -> if is_bot r then BOT else Nb II.minf_inf | Nb i -> II.of_bound_bot (if r.minf || Float.is_infinite i.lo then B.MINF else B.Finite (Z.of_float i.lo)) (if r.pinf || Float.is_infinite i.up then B.PINF else B.Finite (Z.of_float i.up)) (** Conversion to integer interval with truncation. Handles infinities. *) (** {2 Filters} *) let filter_eq (prec:prec) (x:t) (y:t) : t * t = let r = meet x y in let r = { r with nan = false; } in r, r let lift_filter_itv f x y = match bot_absorb2 f x.itv y.itv with | BOT -> BOT, BOT | Nb (xx,yy) -> Nb xx, Nb yy let filter_leq (prec:prec) (x:t) (y:t) : t * t = (* compare finite with finite *) let ix, iy = lift_filter_itv (FI.filter_leq (fix_prec prec)) x y in (* compare finite with infinity *) let ix = if y.pinf then x.itv else ix and iy = if x.minf then y.itv else iy in { itv = ix; nan = false; minf = x.minf; pinf = x.pinf && y.pinf; }, { itv = iy; nan = false; pinf = y.pinf; minf = x.minf && y.minf; } let filter_lt (prec:prec) (x:t) (y:t) : t * t = (* compare finite with finite *) let ix, iy = lift_filter_itv (FI.filter_lt (fix_prec prec)) x y in (* compare finite with infinity *) let ix = if y.pinf then x.itv else ix and iy = if x.minf then y.itv else iy in { itv = ix; nan = false; minf = x.minf; pinf = false; }, { itv = iy; nan = false; pinf = y.pinf; minf = false; } (** C comparison filters. Keep the parts of the arguments that can satisfy the condition. NaN is assumed to be different from any value (including NaN). *) let filter_geq (prec:prec) (x:t) (y:t) : t * t = let yy, xx = filter_leq prec y x in xx, yy let filter_gt (prec:prec) (x:t) (y:t) : t * t = let yy, xx = filter_lt prec y x in xx, yy let rec filter_neq (prec:prec) (x:t) (y:t) : t * t = if x.nan || y.nan then x, y (* NaN -> no refinement *) else if is_singleton x then (* case: remove infinity *) if x.pinf then x, { y with pinf = false; } else if x.minf then x, { y with minf = false; } else (* case: remove finite value *) let ix,iy = match bot_absorb2 (FI.filter_neq (fix_prec prec)) x.itv y.itv with | BOT -> BOT, BOT | Nb (xx,yy) -> Nb xx, Nb yy in { x with itv = ix; }, { y with itv = iy; } else if is_singleton y then let yy,xx = filter_neq prec y x in xx, yy (* symmetric case *) else x, y (* no singleton -> no refinement *) let filter_nonzero (prec:prec) (x:t) : t = match bot_absorb2 (FI.filter_neq (fix_prec prec)) x.itv (Nb FI.zero) with | BOT -> { x with itv = BOT; } | Nb (xx,_) -> {x with itv = Nb xx; } let filter_zero (prec:prec) (x:t) : t = let r = meet x zero in { r with nan = false; } (** Refine both arguments assuming that the test is true. *) let filter_leq_false (prec:prec) (x:t) (y:t) : t * t = if x.nan || y.nan then x, y else filter_gt prec x y let filter_lt_false (prec:prec) (x:t) (y:t) : t * t = if x.nan || y.nan then x, y else filter_geq prec x y let filter_geq_false (prec:prec) (x:t) (y:t) : t * t = let yy, xx = filter_leq_false prec y x in xx, yy let filter_gt_false (prec:prec) (x:t) (y:t) : t * t = let yy, xx = filter_lt_false prec y x in xx, yy let filter_eq_false = filter_neq let filter_neq_false = filter_eq let filter_zero_false = filter_nonzero let filter_nonzero_false = filter_zero (** Refine both arguments assuming that the test is false. *) (** {2 Backward arithmetic} *) let bwd_neg (a:t) (r:t) : t = meet a (neg r) (** Backward negation. *) let bwd_abs (a:t) (r:t) : t = join (meet a r) (meet a (neg r)) (** Backward absolute value. *) let bwd_generic2 (prec:prec) (round:round) f (x:t) (y:t) (r:t) : t * t = if contains_special r then (* no refinement if specials in the result *) x, y else (* no special in the result -> no special in the arguments *) match x.itv, y.itv, r.itv with | _, _, BOT -> bot, bot | BOT,_,_ | _,BOT,_ -> x, y | Nb xx, Nb yy, Nb rr -> match f (fix_prec prec) round xx yy rr with | BOT -> x, y | Nb (ix,iy) -> meet x (fix_itv prec { bot with itv = Nb ix; }), meet y (fix_itv prec { bot with itv = Nb iy; }) (* utility function for all binary operations *) let bwd_add (prec:prec) (round:round) (x:t) (y:t) (r:t) : t * t = bwd_generic2 prec round FI.bwd_add x y r (** Backward addition. *) let bwd_sub (prec:prec) (round:round) (x:t) (y:t) (r:t) : t * t = bwd_generic2 prec round FI.bwd_sub x y r (** Backward subtraction. *) let bwd_mul (prec:prec) (round:round) (x:t) (y:t) (r:t) : t * t = bwd_generic2 prec round FI.bwd_mul x y r (** Backward multiplication. *) let bwd_div (prec:prec) (round:round) (x:t) (y:t) (r:t) : t * t = let xx, yy = bwd_generic2 prec round FI.bwd_div x y r in (* add back infinities to y if the result can be 0 *) let yy = if contains_zero r then { yy with pinf = y.pinf; minf = y.minf; } else yy in xx, yy (** Backward division. *) let bwd_fmod (prec:prec) (round:round) (x:t) (y:t) (r:t) : t * t = bwd_generic2 prec round (fun _ _ -> FI.bwd_fmod) x y r (** Backward modulo. *) let bwd_generic1 (prec:prec) (round:round) f (x:t) (r:t) : t = if contains_special r then (* no refinement if specials in the result *) x else (* no special in the result -> no special in the arguments *) match x.itv, r.itv with | _, BOT -> bot | BOT, _ -> x | Nb ix, Nb ir -> let itv = f (fix_prec prec) round ix ir in meet x (fix_itv prec { bot with itv; }) let bwd_round_int (prec:prec) (round:round) (x:t) (r:t) : t = bwd_generic1 prec round FI.bwd_round_int x r (** Backward rounding to int. *) let bwd_round (prec:prec) (round:round) (x:t) (r:t) : t = match x.itv, r.itv with | _, BOT -> bot | BOT, _ -> x | Nb ix, Nb ir -> let m = match prec with | (`SINGLE | `DOUBLE) as prec -> F.max_normal prec | `EXTRA -> F.max_normal `DOUBLE | `REAL -> infinity in (* special floats *) let pinf = r.pinf && (x.pinf || ix.FI.up > m) and minf = r.minf && (x.minf || ix.FI.lo < -.m) and nan = r.nan && x.nan in (* interval of non-special floats *) let itv = FI.bwd_round (fix_prec prec) round ix ir in meet x (fix_itv prec { itv; pinf; minf; nan; }) (** Backward rounding to float. *) let bwd_square (prec:prec) (round:round) (x:t) (r:t) : t = bwd_generic1 prec round FI.bwd_square x r (** Backward square. *) let bwd_sqrt (prec:prec) (round:round) (x:t) (r:t) : t = bwd_generic1 prec round FI.bwd_sqrt x r (** Backward square root. *) let bwd_of_int_itv (prec:prec) (round:round) ((lo,up):II.t) (r:t) : II.t_with_bot = match r.itv with | Nb i -> let i = FI.unround_int (fix_prec prec) round i in let l = if F.is_finite i.lo && not r.minf then B.Finite (Z.of_float i.lo) else B.MINF and u = if F.is_finite i.up && not r.pinf then B.Finite (Z.of_float i.up) else B.PINF in II.meet (lo,up) (l,u) | BOT -> if is_bot r then BOT else Nb II.minf_inf (** Backward conversion from integer interval. *) let bwd_to_int_itv (a:t) ((lo,up):II.t) : t = let l = match lo with | B.Finite x -> F.of_z `DOUBLE `DOWN x | _ -> neg_infinity and u = match up with | B.Finite x -> F.of_z `DOUBLE `UP x | _ -> infinity in let itv = bot_absorb1 (fun i -> FI.bwd_round_int `DOUBLE `ZERO i (FI.mk l u)) a.itv in { itv; nan = a.nan; minf = a.pinf && (l == neg_infinity); pinf = a.minf && (u == infinity); } (** Backward conversion to integer interval (with truncation). *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>