package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/itvUtils/intItv.ml.html
Source file intItv.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2021 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** IntItv - Intervals for arbitrary precision integers. We rely on Zarith for arithmetic operations, and IntBounds to represent unbounded intervals. *) open Bot module B = IntBound (** {2 Types} *) type t = B.t (** lower bound *) * B.t (** upper bound *) (** The type of non-empty intervals: a lower bound and an upper bound. The lower bound can be MINF, but not PINF; the upper bound can be PINF, but not MINF. Moreover, lower bound ≤ upper bound. *) type t_with_bot = t with_bot (** The type of possibly empty intervals. *) let is_valid ((a,b):t) : bool = B.leq a b && a <> B.PINF && b <> B.MINF (** {2 Constructors} *) let of_bound (a:B.t) (b:B.t) : t = if a = B.PINF || b = B.MINF || B.gt a b then invalid_arg (Printf.sprintf "IntItv.of_bound [%s,%s]" (B.to_string a) (B.to_string b)); a, b let of_z (a:Z.t) (b:Z.t) : t = if Z.gt a b then invalid_arg (Printf.sprintf "IntItv.of_z [%s,%s]" (Z.to_string a) (Z.to_string b)); B.Finite a, B.Finite b let of_int (a:int) (b:int) : t = if a > b then invalid_arg (Printf.sprintf "IntItv.of_int [%i,%i]" a b); B.of_int a, B.of_int b let of_int64 (a:int64) (b:int64) : t = if a > b then invalid_arg (Printf.sprintf "IntItv.of_int64 [%Li,%Li]" a b); B.of_int64 a, B.of_int64 b (** Constructs a non-empty interval. *) let of_float (a:float) (b:float) : t = if a > b || a = infinity || b = neg_infinity then invalid_arg (Printf.sprintf "IntItv.of_float [%f,%f]" a b); B.of_float a, B.of_float b (** Constructs a non-empty interval. *) let of_range = of_z let of_bound_bot (a:B.t) (b:B.t) : t_with_bot = if B.gt a b || a = B.PINF || b = B.MINF then BOT else Nb (a, b) let of_range_bot (a:Z.t) (b:Z.t) : t_with_bot = if Z.gt a b then BOT else Nb (B.Finite a, B.Finite b) let of_int_bot (a:int) (b:int) : t_with_bot = if a > b then BOT else Nb (B.of_int a, B.of_int b) let of_int64_bot (a:int64) (b:int64) : t_with_bot = if a > b then BOT else Nb (B.of_int64 a, B.of_int64 b) (** Constructs a possibly empty interval. *) let of_float_bot (a:float) (b:float) : t_with_bot = if a > b || a = infinity || b = neg_infinity then BOT else Nb (B.of_float a, B.of_float b) (** Constructs a possibly empty interval. *) let hull (a:B.t) (b:B.t) : t = B.min a b, B.max a b (** Constructs the smallest interval containing a and b. *) let cst (c:Z.t) : t = B.Finite c, B.Finite c (** Singleton interval. *) let cst_int (c:int) : t = cst (Z.of_int c) let cst_int64 (c:int64) : t = cst (Z.of_int64 c) let zero : t = cst Z.zero (** [0,0] *) let one : t = cst Z.one (** [1,1] *) let mone : t = cst Z.minus_one (** [-1,-1] *) let zero_one : t = B.Finite Z.zero, B.Finite Z.one (** [0,1] *) let mone_zero : t = B.Finite Z.minus_one, B.Finite Z.zero (** [-1,0] *) let mone_one : t = B.Finite Z.minus_one, B.Finite Z.one (** [-1,1] *) let zero_inf : t = B.Finite Z.zero, B.PINF (** [0,+∞] *) let minf_zero : t = B.MINF, B.Finite Z.zero (** [-∞,0] *) let minf_inf : t = B.MINF, B.PINF (** [-∞,+∞] *) let unsigned (bits:int) : t = B.zero, B.pred (B.pow2 bits) let unsigned8 : t = unsigned 8 let unsigned16 : t = unsigned 16 let unsigned32 : t = unsigned 32 let unsigned64 : t = unsigned 64 (** Intervals of unsigned integers with the specified bitsize. *) let signed (bits:int) : t = B.neg (B.pow2 (bits-1)), B.pred (B.pow2 (bits-1)) let signed8 : t = signed 8 let signed16 : t = signed 16 let signed32 : t = signed 32 let signed64 : t = signed 64 (** Intervals of two compement's integers with the specified bitsize. *) (** {2 Predicates} *) let equal ((a,b):t) ((a',b'):t) : bool = B.eq a a' && B.eq b b' (** Equality. = also works *) let equal_bot : t_with_bot -> t_with_bot -> bool = bot_equal equal let included ((a,b):t) ((a',b'):t) : bool = B.geq a a' && B.leq b b' (** Set ordering. *) let included_bot : t_with_bot -> t_with_bot -> bool = bot_included included let intersect ((a,b):t) ((a',b'):t) : bool = B.leq a b' && B.leq a' b (** Whether the intervals have an non-empty intersection. *) let intersect_bot : t_with_bot -> t_with_bot -> bool = bot_dfl2 false intersect let contains (x:Z.t) ((a,b):t) : bool = B.leq a (B.Finite x) && B.leq (B.Finite x) b (** Whether the interval contains a (finite) value. *) let compare ((a,b):t) ((a',b'):t) : int = if B.eq a a' then B.compare b b' else B.compare a a' (** A total ordering (lexical ordering) returning -1, 0, or 1. Can be used as compare for sets, maps, etc. *) let compare_bot (x:t with_bot) (y:t with_bot) : int = Bot.bot_compare compare x y (** Total ordering on possibly empty intervals. *) let contains_zero ((a,b):t) : bool = B.sign a <= 0 && B.sign b >= 0 (** [a,b] contains 0. *) let contains_one ((a,b):t) : bool = B.leq a B.one && B.geq b B.one (** [a,b] contains 1. *) let contains_nonzero ((a,b):t) : bool = B.neq a B.zero || B.neq b B.zero (** [a,b] contains a non-zero value. *) let is_zero (ab:t) : bool = ab = zero let is_one (ab:t) : bool = ab = one let is_positive ((a,b):t) : bool = B.is_positive a let is_negative ((a,b):t) : bool = B.is_negative b let is_positive_strict ((a,b):t) : bool = B.is_positive_strict a let is_negative_strict ((a,b):t) : bool = B.is_negative_strict b let is_nonzero ((a,b):t) : bool = B.gt a B.zero || B.lt b B.zero (** Interval sign. *) let is_singleton ((a,b):t) : bool = B.eq a b (** [a,b] contains a single element. *) let is_bounded ((a,b):t) : bool = a <> B.MINF && b <> B.PINF (** [a,b] has finite bounds. *) let is_minf_inf ((a,b):t) : bool = a = B.MINF && b = B.PINF (** [a,b] represents [-∞,+∞]. *) let is_in_range (a:t) (lo:Z.t) (up:Z.t) = included a (B.Finite lo, B.Finite up) (** Whether the interval is included in the range [lo,up]. *) (** {2 Printing} *) let to_string ((a,b):t) : string = "["^(B.to_string a)^","^(B.to_string b)^"]" let print ch (x:t) = output_string ch (to_string x) let fprint ch (x:t) = Format.pp_print_string ch (to_string x) let bprint ch (x:t) = Buffer.add_string ch (to_string x) let to_string_bot = bot_to_string to_string let print_bot = bot_print print let fprint_bot = bot_fprint fprint let bprint_bot = bot_bprint bprint (** {2 Enumeration} *) let size ((a,b):t) = match a,b with | B.Finite x, B.Finite y -> Z.succ (Z.sub y x) | _ -> invalid_arg (Printf.sprintf "IntItv.size: unbounded interval %s" (to_string (a,b))) (** Number of elements. Raises an invalid argument if it is unbounded. *) let to_list ((a,b):t) = let rec doit l h acc = if l=h then l :: acc else doit l (Z.pred h) (h::acc) in match a,b with | B.Finite x, B.Finite y -> doit x y [] | _ -> invalid_arg (Printf.sprintf "IntItv.to_list: unbounded interval %s" (to_string (a,b))) (** List of elements, in increasing order. Raises an invalid argument if it is unbounded. *) (** {2 Set operations} *) let join ((a,b):t) ((a',b'):t) : t = B.min a a', B.max b b' (** Join of non-empty intervals. *) let join_bot (a:t_with_bot) (b:t_with_bot) : t_with_bot = bot_neutral2 join a b (** Join of possibly empty intervals. *) let join_list (l:t list) : t_with_bot = List.fold_left (fun a b -> join_bot a (Nb b)) BOT l (** Join of a list of (non-empty) intervals. *) let meet ((a,b):t) ((a',b'):t) : t_with_bot = of_bound_bot (B.max a a') (B.min b b') (** Intersection of non-emtpty intervals (possibly empty) *) let meet_bot (a:t_with_bot) (b:t_with_bot) : t_with_bot = bot_absorb2 meet a b (** Intersection of possibly empty intervals. *) let meet_list (l:t list) : t_with_bot = List.fold_left (fun a b -> meet_bot a (Nb b)) (Nb minf_inf) l (** Meet of a list of (non-empty) intervals. *) let widen ((a,b):t) ((a',b'):t) : t = (if B.lt a' a then B.MINF else a), (if B.gt b' b then B.PINF else b) (** Basic widening: put unstable bounds to infinity. *) let widen_bot (a:t_with_bot) (b:t_with_bot) : t_with_bot = bot_neutral2 widen a b let positive (a:t) : t_with_bot = meet a zero_inf let negative (a:t) : t_with_bot = meet a minf_zero (** Positive and negative part. *) let meet_zero (a:t) : t_with_bot = meet a zero (** Intersects with {0}. *) let meet_nonzero ((a,b):t) : t_with_bot = match B.is_zero a, B.is_zero b with | true, true -> BOT | true, false -> Nb (B.succ a, b) | false, true -> Nb (a, B.pred b) | false, false -> Nb (a,b) (** Keeps only non-zero elements. *) (** {2 Forward operations} *) (** Given one or two interval argument(s), return the interval result. *) let neg ((a,b):t) : t = B.neg b, B.neg a (** Negation. *) let abs ((a,b):t) : t = if B.sign a <= 0 then if B.sign b <= 0 then neg (a,b) else B.zero, B.max (B.neg a) b else a,b (** Absolute value. *) let succ ((a,b):t) : t = B.succ a, B.succ b (** Add 1. *) let pred ((a,b):t) : t = B.pred a, B.pred b (** Subtract 1. *) let add ((a,b):t) ((a',b'):t) : t = B.add a a', B.add b b' (** Addition. *) let sub ((a,b):t) ((a',b'):t) : t = B.sub a b', B.sub b a' (** Subtraction. *) let minmax4 op (a,b) (c,d) = let x,y,z,t = op a c, op a d, op b c, op b d in B.min (B.min x y) (B.min z t), B.max (B.max x y) (B.max z t) (* utility used internally for multiplication and others *) let mul (ab:t) (ab':t) : t = minmax4 B.mul ab ab' (** Multiplication. *) let div_unmerged (ab:t) ((a',b'):t) : t list = (* division by an interval of constant sign *) let div_pos ab ab' = minmax4 B.div ab ab' in (* split denominator and do 2 cases *) (if B.is_positive_strict b' then [div_pos ab (B.max a' B.one, b')] else [])@ (if B.is_negative_strict a' then [div_pos ab (a', B.min b' B.minus_one)] else []) (** Division (with truncation). Returns a list of 0, 1, or 2 intervals to remain precise. *) let ediv_unmerged (ab:t) ((a',b'):t) : t list = (* division by an interval of constant sign *) let div_pos ab ab' = minmax4 B.ediv ab ab' in (* split denominator and do 2 cases *) (if B.is_positive_strict b' then [div_pos ab (B.max a' B.one, b')] else [])@ (if B.is_negative_strict a' then [div_pos ab (a', B.min b' B.minus_one)] else []) (** Euclidian division (towards -oo). Returns a list of 0, 1, or 2 intervals to remain precise. *) let div (a:t) (b:t) : t_with_bot = join_list (div_unmerged a b) (** Division (with truncation). Returns a single (possibly empty) overapproximating interval. *) let ediv (a:t) (b:t) : t_with_bot = join_list (ediv_unmerged a b) (** Division (euclidian, towards -oo) Returns a single (possibly empty) overapproximating interval. *) let rem ((a,b):t) (ab':t) : t_with_bot = (* x % y = x % |y| *) let a',b' = abs ab' in if B.is_zero b' then BOT else (* case [a,b] % {0} ⟹ ⊥ *) let m = B.pred b' in if B.gt a (B.neg a') && B.lt b a' then (* case [a,b] ⊆ [-a+1',a'-1] ⟹ identity *) Nb (a,b) else if B.equal a' b' && B.equal (B.div a a') (B.div b a') then (* case [a,b] % {a'} and [a,b] ⊆ [a'k,a'(k+1)-1] *) Nb (B.rem a a', B.rem b a') else if B.is_positive a then (* case [a,b] % [a',b'] positive *) Nb (B.zero, m) else if B.is_negative b then (* case [a,b] % [a',b'] negative *) Nb (B.neg m, B.zero) else (* general case *) Nb (B.neg m, m) (** Remainder. Uses the C semantics for remainder (%). *) let erem ((a,b):t) (ab':t) : t_with_bot = (* x erem y = x erem |y| *) let a',b' = abs ab' in if B.is_zero b' then BOT else (* case [a,b] erem {0} ⟹ ⊥ *) let m = B.pred b' in if B.equal a' b' && B.equal (B.ediv a a') (B.ediv b a') then (* case [a,b] erem {a'} and [a,b] ⊆ [a'k,a'(k+1)-1] *) Nb (B.erem a a', B.erem b a') else (* general case *) Nb (B.zero, m) (** Euclidian remainder. rounding towards -oo *) let pow (ab:t) (ab':t) : t = minmax4 B.pow ab ab' (** Power. *) let wrap ((a,b):t) (lo:Z.t) (up:Z.t) : t = match a,b with | B.MINF,_ | _,B.PINF -> B.Finite lo, B.Finite up | B.Finite aa, B.Finite bb -> if aa >= lo && bb <= up then a,b (* no wrap-around case *) else let w = Z.succ (Z.sub up lo) in let (aq,ar), (bq,br) = Z.ediv_rem (Z.sub aa lo) w, Z.ediv_rem (Z.sub bb lo) w in if aq = bq then (* included in some [lo,up]+kw *) B.Finite (Z.add ar lo), B.Finite (Z.add br lo) else (* crosses interval boundaries *) B.Finite lo, B.Finite up | _ -> invalid_arg (Printf.sprintf "IntItv.wrap %s in [%s,%s]" (to_string (a,b)) (Z.to_string lo) (Z.to_string up)) (** Put back the interval inside [lo,up] by modular arithmetics. Useful to model the effect of arithmetic or conversion overflow. *) let to_bool (can_be_zero:bool) (can_be_one:bool) : t = match can_be_zero, can_be_one with | true, false -> zero | false, true -> one | true, true -> zero_one | _ -> failwith "unreachable case encountered in IntItv.to_bool" (* helper function for operators returning a boolean that can be zero and/or one *) let log_cast (ab:t) : t = to_bool (contains_zero ab) (contains_nonzero ab) (** Conversion from integer to boolean in [0,1]: maps 0 to 0 (false) and non-zero to 1 (true). *) let log_not (ab:t) : t = to_bool (contains_nonzero ab) (contains_zero ab) (** Logical negation. Logical operation use the C semantics: they accept 0 and non-0 respectively as false and true, but they always return 0 and 1 respectively for false and true. *) let log_and (ab:t) (ab':t) : t = to_bool (contains_zero ab || contains_zero ab') (contains_nonzero ab && contains_nonzero ab') (** Logical and. *) let log_or (ab:t) (ab':t) : t = to_bool (contains_zero ab && contains_zero ab') (contains_nonzero ab || contains_nonzero ab') (** Logical or. *) let log_xor (ab:t) (ab':t) : t = let f,f' = contains_zero ab, contains_zero ab' and t,t' = contains_nonzero ab, contains_nonzero ab' in to_bool ((f && f') || (t && t')) ((f && t') || (t && f')) (** Logical exclusive or. *) let log_eq (ab:t) (ab':t) : t = to_bool (not (equal ab ab' && is_singleton ab)) (intersect ab ab') let log_leq ((a,b):t) ((a',b'):t) : t = to_bool (B.gt b a') (B.leq a b') let log_geq ((a,b):t) ((a',b'):t) : t = to_bool (B.lt a b') (B.geq b a') let log_lt ((a,b):t) ((a',b'):t) : t = to_bool (B.geq b a') (B.lt a b') let log_gt ((a,b):t) ((a',b'):t) : t = to_bool (B.leq a b') (B.gt b a') let log_neq (ab:t) (ab':t) : t = to_bool (intersect ab ab') (not (equal ab ab' && is_singleton ab)) (** C comparison tests. Returns an interval included in [0,1] (a boolean) *) let is_log_eq (ab:t) (ab':t) : bool = intersect ab ab' let is_log_leq ((a,b):t) ((a',b'):t) : bool = B.leq a b' let is_log_geq ((a,b):t) ((a',b'):t) : bool = B.geq b a' let is_log_lt ((a,b):t) ((a',b'):t) : bool = B.lt a b' let is_log_gt ((a,b):t) ((a',b'):t) : bool = B.gt b a' let is_log_neq (ab:t) (ab':t) : bool = not (equal ab ab' && is_singleton ab) (** C comparison tests. Returns a boolean if the test may succeed *) (** {2 Bit operations} *) let shift_left (ab:t) (ab':t) : t_with_bot = match positive ab' with | BOT -> BOT | Nb ab'' -> Nb (minmax4 B.shift_left ab ab'') (** Bitshift left: multiplication by a power of 2. *) let shift_right (ab:t) (ab':t) : t_with_bot = match positive ab' with | BOT -> BOT | Nb ab'' -> Nb (minmax4 B.shift_right ab ab'') (** Bitshift right: division by a power of 2 rounding towards -∞. *) let shift_right_trunc (ab:t) (ab':t) : t_with_bot = match positive ab' with | BOT -> BOT | Nb ab'' -> Nb (minmax4 B.shift_right_trunc ab ab'') (** Unsigned bitshift right: division by a power of 2 with truncation. *) let bit_not (ab:t) : t = pred (neg ab) (** Bitwise negation: ~x = -x-1 *) (** Internal functions *) (* minimum value of [a,b] | [c,d] Hacker's delight, Sec. 4.3, Fig. 4-3 slightly changed to make bit masking more explicit assumes that neither argument contains both positive and strictly negative values *) let min_or (a:Z.t) (b:Z.t) (c:Z.t) (d:Z.t) : Z.t = let rec doit i = if i < 0 then Z.logor a c else let ai, ci = Z.shift_right a i, Z.shift_right c i in match Z.is_even ai, Z.is_even ci with | true, false -> let a' = Z.shift_left (Z.logor ai Z.one) i in if a' <= b then Z.logor a' c else doit (i-1) | false, true -> let c' = Z.shift_left (Z.logor ci Z.one) i in if c' <= d then Z.logor a c' else doit (i-1) | _ -> doit (i-1) in let mag = if (a >= Z.zero) = (c >= Z.zero) then (* start the search at the leftmost bit that differ between a and c *) Z.numbits (Z.logxor a c) - 1 else (* if infinitely many differ, fallback to operator magnitude *) max (max (Z.numbits a) (Z.numbits b)) (max (Z.numbits c) (Z.numbits d)) in doit mag (* maximum value of [a,b] | [c,d] Hacker's delight, Sec. 4.3, Fig. 4-4 assumes that neither argument contains both positive and strictly negative values *) let max_or (a:Z.t) (b:Z.t) (c:Z.t) (d:Z.t) : Z.t = let rec doit i = if i < 0 then Z.logor b d else let bi, di = Z.shift_right b i, Z.shift_right d i in if Z.is_odd bi && Z.is_odd di then let b' = Z.pred (Z.shift_left bi i) in if a <= b' then Z.logor b' d else let d' = Z.pred (Z.shift_left di i) in if c <= d' then Z.logor b d' else doit (i-1) else doit (i-1) in let mag = if (a >= Z.zero) || (c >= Z.zero) then (* start the search at the leftmost bit set in both a and c *) Z.numbits (Z.logand b d) - 1 else (* if infinitely many, fallback to operator magnitude *) max (max (Z.numbits a) (Z.numbits b)) (max (Z.numbits c) (Z.numbits d)) in doit mag (* handles the cases of intervals crossing zero for [a,b] | [c,d] Hacker's delight, Sec. 4.3, Table 4.1 *) let bounds_or (a:Z.t) (b:Z.t) (c:Z.t) (d:Z.t) : Z.t * Z.t = match a >= Z.zero || b < Z.zero, c >= Z.zero || d < Z.zero with | true, true -> min_or a b c d, max_or a b c d | false, true -> if c >= Z.zero then min_or a Z.minus_one c d, max_or Z.zero b c d else c, Z.minus_one | true, false -> if a >= Z.zero then min_or a b c Z.minus_one, max_or a b Z.zero d else a, Z.minus_one | false, false -> Z.min a c, max_or Z.zero b Z.zero d (* [a,b] & [c,d] Hacker's delight, Sec. 4.3, algebraic method because: x & y = ~(~x | y) and: (a <= x <= b) <=> (~b <= ~x <= ~a) *) let bounds_and (a:Z.t) (b:Z.t) (c:Z.t) (d:Z.t) : Z.t * Z.t = let nh,nl = bounds_or (Z.lognot b) (Z.lognot a) (Z.lognot d) (Z.lognot c) in Z.lognot nl, Z.lognot nh (* minimum value of [a,b] ^ [c,d] Hacker's delight, Sec. 4.3 assumes that neither argument contains both positive and strictly negative values *) let min_xor (a:Z.t) (b:Z.t) (c:Z.t) (d:Z.t) : Z.t = let rec doit a c i = if i < 0 then Z.logxor a c else let ai, ci = Z.shift_right a i, Z.shift_right c i in match Z.is_even ai, Z.is_even ci with | true, false -> let a' = Z.shift_left (Z.logor ai Z.one) i in doit (if a' <= b then a' else a) c (i-1) | false, true -> let c' = Z.shift_left (Z.logor ci Z.one) i in doit a (if c' <= d then c' else c) (i-1) | _ -> doit a c (i-1) in let mag = if (a >= Z.zero) = (c >= Z.zero) then Z.numbits (Z.logxor a c) - 1 else max (max (Z.numbits a) (Z.numbits b)) (max (Z.numbits c) (Z.numbits d)) in doit a c mag (* maximum value of [a,b] ^ [c,d] Hacker's delight, Sec. 4.3 assumes that neither argument contains both positive and strictly negative values *) let max_xor (a:Z.t) (b:Z.t) (c:Z.t) (d:Z.t) : Z.t = let rec doit b d i = if i < 0 then Z.logxor b d else let bi, di = Z.shift_right b i, Z.shift_right d i in if Z.is_odd bi && Z.is_odd di then let b' = Z.pred (Z.shift_left bi i) in if a <= b' then doit b' d (i-1) else let d' = Z.pred (Z.shift_left di i) in if c <= d' then doit b d' (i-1) else doit b d (i-1) else doit b d (i-1) in let mag = if (a >= Z.zero) || (c >= Z.zero) then Z.numbits (Z.logand b d) - 1 else max (max (Z.numbits a) (Z.numbits b)) (max (Z.numbits c) (Z.numbits d)) in doit b d mag (* handles the cases of intervals crossing zero for [a,b] ^ [c,d] *) let bounds_xor (a:Z.t) (b:Z.t) (c:Z.t) (d:Z.t) : Z.t * Z.t = let combine2 a1 b1 c1 d1 a2 b2 c2 d2 = (* join two cases *) let l1,h1 = min_xor a1 b1 c1 d1, max_xor a1 b1 c1 d1 and l2,h2 = min_xor a2 b2 c2 d2, max_xor a2 b2 c2 d2 in Z.min l1 l2, Z.max h1 h2 in match a >= Z.zero || b < Z.zero, c >= Z.zero || d < Z.zero with | true,true -> min_xor a b c d, max_xor a b c d | false,true -> (* 2-way split *) combine2 a Z.minus_one c d Z.zero b c d | true,false -> (* 2-way split *) combine2 a b c Z.minus_one a b Z.zero d | false,false -> (* 4-way split *) let l1,h1 = combine2 a Z.minus_one c Z.minus_one Z.zero b c Z.minus_one and l2,h2 = combine2 a Z.minus_one Z.zero d Z.zero b Z.zero d in Z.min l1 l2, Z.max h1 h2 (** Interval functions, based on the previous ones *) let bit_or (ab:t) (ab':t) : t = match ab, ab' with | (B.Finite al, B.Finite ah), (B.Finite bl, B.Finite bh) -> (* finite case *) if al=ah && bl=bh then (* singleton case *) cst (Z.logor al bl) else (* general case *) let l,h = bounds_or al ah bl bh in B.Finite l, B.Finite h | _ -> (* infinite cases (might be improvable) *) if is_positive ab && is_positive ab' then (* positive case *) zero_inf else (* general case *) minf_inf (** Bitwise or. *) let bit_and (ab:t) (ab':t) : t = match ab, ab' with | (B.Finite al, B.Finite ah), (B.Finite bl, B.Finite bh) -> (* finite cases *) if al=ah && bl=bh then (* singleton case *) cst (Z.logand al bl) else (* general case *) let l,h = bounds_and al ah bl bh in B.Finite l, B.Finite h | _ -> (* infinite cases (might be improvable) *) if is_positive ab || is_positive ab' then (* positive case *) zero_inf else (* general case *) minf_inf (** Bitwise and. *) let bit_xor (ab:t) (ab':t) : t = match ab, ab' with | (B.Finite al, B.Finite ah), (B.Finite bl, B.Finite bh) -> (* finite cases *) if al=ah && bl=bh then (* singleton case *) cst (Z.logxor al bl) else (* general case *) let l,h = bounds_xor al ah bl bh in B.Finite l, B.Finite h | _ -> (* infinite cases (might be improvable) *) if is_positive ab && is_positive ab' then (* positive case *) zero_inf else (* general case *) minf_inf (** Bitwise exclusive or. *) (** {2 Filters} *) (** Given two interval aruments, return the arguments assuming that the predicate holds. *) let filter_leq ((a,b):t) ((a',b'):t) : (t*t) with_bot = bot_merge2 (of_bound_bot a (B.min b b')) (of_bound_bot (B.max a a') b') let filter_geq ((a,b):t) ((a',b'):t) : (t*t) with_bot = bot_merge2 (of_bound_bot (B.max a a') b) (of_bound_bot a' (B.min b b')) let filter_lt ((a,b):t) ((a',b'):t) : (t*t) with_bot = bot_merge2 (of_bound_bot a (B.min b (B.pred b'))) (of_bound_bot (B.max (B.succ a) a') b') let filter_gt ((a,b):t) ((a',b'):t) : (t*t) with_bot = bot_merge2 (of_bound_bot (B.max a (B.succ a')) b) (of_bound_bot a' (B.min (B.pred b) b')) let filter_eq ((a,b):t) ((a',b'):t) : (t*t) with_bot = match meet (a,b) (a',b') with BOT -> BOT | Nb x -> Nb (x,x) let filter_neq ((a,b):t) ((a',b'):t) : (t*t) with_bot = match B.equal a b, B.equal a' b' with | true, true when B.equal a a' -> BOT | true, false when B.equal a a' -> bot_merge2 (Nb (a,b)) (of_bound_bot (B.succ a') b') | true, false when B.equal b b' -> bot_merge2 (Nb (a,b)) (of_bound_bot a' (B.pred b')) | false, true when B.equal a a' -> bot_merge2 (of_bound_bot (B.succ a) b) (Nb (a',b')) | false, true when B.equal b b' -> bot_merge2 (of_bound_bot a (B.pred b)) (Nb (a',b')) | _ -> Nb ((a,b),(a',b')) (** {2 Backward operations} *) (** Given one or two interval argument(s) and a result interval, return the argument(s) assuming the result in the operation is in the given result. *) let bwd_default_unary (a:t) (r:t) : t_with_bot = Nb a (** Fallback for backward unary operators *) let bwd_default_binary (a:t) (b:t) (r:t) : (t*t) with_bot = Nb (a,b) (** Fallback for backward binary operators *) let bwd_neg (a:t) (r:t) : t_with_bot = meet a (neg r) let bwd_abs (a:t) (r:t) : t_with_bot = join_bot (meet a r) (meet a (neg r)) let bwd_succ (a:t) (r:t) : t_with_bot = meet a (pred r) let bwd_pred (a:t) (r:t) : t_with_bot = meet a (succ r) let bwd_add (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = a + b ⇒ a = r - b ∧ b = r - a *) bot_merge2 (meet a (sub r b)) (meet b (sub r a)) let bwd_sub (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = a - b ⇒ a = b + r ∧ b = a - r *) bot_merge2 (meet a (add b r)) (meet b (sub a r)) let bwd_mul (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = a * b ⇒ ((a = r / b) ∨ (b = r = 0)) ∧ ((b = r / a) ∨ (a = r = 0)) *) let aa = if contains_zero b && contains_zero r then Nb a else div r b and bb = if contains_zero a && contains_zero r then Nb b else div r a in bot_merge2 aa bb let bwd_div ((a,a'):t) ((b,b'):t) (r:t) : (t*t) with_bot = (* r = a / b ⇒ (a = r * b + r % b) ∧ ((b = (a - r % b) / r) ∨ ((a - r % b) = r = 0)) *) (* m = max [b,b'] - 1 *) let m = B.pred (B.max (B.abs b) (B.abs b')) in (* md = approximate r % b *) let md = (if B.is_negative_strict a then B.neg m else B.zero), (if B.is_positive_strict a' then m else B.zero) in (* aa = r * b + r % b *) let aa = meet (a,a') (add (mul r (b,b')) md) in (* (bb = a / r) ∨ (bb = b ∧ (a - r % b) = r = 0)*) let ax = sub (a,a') md in let bb = if contains_zero ax && contains_zero r then Nb (b,b') else meet_bot (Nb (b,b')) (div ax r) in bot_merge2 aa bb let bwd_ediv ((a,a'):t) ((b,b'):t) (r:t) : (t*t) with_bot = (* m = max [b,b'] - 1 *) let m = B.pred (B.max (B.abs b) (B.abs b')) in (* md = approximate r erem b *) let md = B.zero, m in (* aa = r * b + r erem b *) let aa = meet (a,a') (add (mul r (b,b')) md) in (* (bb = a ediv r) ∨ (bb = b ∧ (a - r erem b) = r = 0) *) let ax = sub (a,a') md in let bb = if contains_zero ax && contains_zero r then Nb (b,b') else meet_bot (Nb (b,b')) (ediv ax r) in bot_merge2 aa bb let bwd_bit_not (a:t) (r:t) : t_with_bot = meet a (bit_not r) let bwd_join (a:t) (b:t) (r:t) : (t*t) with_bot = bot_merge2 (meet a r) (meet b r) (** Backward join: both arguments are intersected with the result. *) let bwd_shift_left (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = a << b ⇒ a = r >> b *) match shift_right r b with | Nb aa -> bot_merge2 (meet a aa) (Nb b) | BOT -> Nb (a,b) let bwd_shift_right (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = a >> b ⇒ r << b <= a < (r << b) + (1 << b) *) match shift_left r b with | Nb (l, h) -> let aa = l, B.add h (B.pred (B.shift_left B.one (snd b))) in bot_merge2 (meet a aa) (Nb b) | BOT -> Nb (a,b) let bwd_shift_right_trunc (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = a >>> b ⇒ (r << b) - (1 << b) < a < (r << b) + (1 << b) *) match shift_left r b with | Nb (l, h) -> let m = B.pred (B.shift_left B.one (snd b)) in let l = if B.is_negative_strict (fst a) then B.sub l m else l and h = if B.is_positive_strict (snd a) then B.add h m else h in bot_merge2 (meet a (l,h)) (Nb b) | BOT -> Nb (a,b) let bwd_bit_or (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = a | b ⇒ a = a & r ∧ b = b & r, might be improved *) let aa = meet a (bit_and r a) and bb = meet b (bit_and r b) in bot_merge2 aa bb let bwd_bit_and (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = a & b ⇒ a = ~(~a & ~r) ∧ b = ~(~b & ~r), might be improved *) let aa = meet a (bit_not( bit_and (bit_not a) (bit_not r))) and bb = meet b (bit_not (bit_and (bit_not b) (bit_not r))) in bot_merge2 aa bb let bwd_bit_xor (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = a xor b ⇒ a = r xor b ∧ b = r xor a *) bot_merge2 (meet a (bit_xor b r)) (meet b (bit_xor a r)) let bwd_convex_join (a:t) (b:t) (r:t) : (t*t) with_bot = bot_merge2 (meet a r) (meet b r) (* utility for bwd_log_xxx *) let bwd_log_gen if_one if_zero (a:t) (b:t) (r:t) : (t*t) with_bot = match contains_zero r, contains_one r with | true, true -> Nb (a,b) | true, false -> if_zero a b | false, true -> if_one a b | false, false -> BOT let bwd_log_eq = bwd_log_gen filter_eq filter_neq let bwd_log_neq = bwd_log_gen filter_neq filter_eq let bwd_log_lt = bwd_log_gen filter_lt filter_geq let bwd_log_gt = bwd_log_gen filter_gt filter_leq let bwd_log_leq = bwd_log_gen filter_leq filter_gt let bwd_log_geq = bwd_log_gen filter_geq filter_lt let bwd_wrap (a:t) range (r:t) : t_with_bot = if included a (of_z (fst range) (snd range)) then meet a r (* no overflow *) else match meet r (of_z (fst range) (snd range)) with | BOT -> BOT | Nb (Finite lr, Finite ur) -> let range_size = Z.sub (snd range) (fst range) |> Z.succ in (* bwd_wrap(., [l,u], [lr,ur]) ⊆ ⋃_{k ∈ ℤ} [lr+k*(u-l+1), ur+k*(u-l+1)] *) let compute_bound div a (r1, r2) = match a with | B.Finite a -> let k = div Z.(a - r2) range_size in B.Finite Z.(r1 + k * range_size) | MINF | PINF -> a in let lower_bound = compute_bound Z.cdiv (fst a) (lr, ur) in let upper_bound = compute_bound Z.fdiv (snd a) (ur, lr) in meet_bot (Nb a) (of_bound_bot lower_bound upper_bound) | Nb _ -> assert false let pos_mod a b = let r = IntBound.rem a b in if IntBound.geq r IntBound.zero then r else IntBound.add b r let bwd_rem (a:t) (b:t) (r: t) : (t * t) with_bot = if is_singleton r && is_singleton b && not (contains_zero b) && is_bounded a then let al, ah = a in let rs, _ = r in let bs, _ = b in let al = IntBound.add al (pos_mod (IntBound.sub rs al) bs) in let ah = IntBound.sub ah (pos_mod (IntBound.sub ah rs) bs) in if ah < al then BOT else Nb ((al, ah), b) else bwd_default_binary a b r let bwd_erem : t -> t -> t -> (t*t) with_bot = bwd_default_binary let bwd_pow = bwd_default_binary (* TODO: more precise backward functions *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>