package mopsa
MOPSA: A Modular and Open Platform for Static Analysis using Abstract Interpretation
Install
Dune Dependency
Authors
Maintainers
Sources
mopsa-analyzer-v1.1.tar.gz
md5=fdee20e988343751de440b4f6b67c0f4
sha512=f5cbf1328785d3f5ce40155dada2d95e5de5cce4f084ea30cfb04d1ab10cc9403a26cfb3fa55d0f9da72244482130fdb89c286a9aed0d640bba46b7c00e09500
doc/src/itvUtils/floatItv.ml.html
Source file floatItv.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
(****************************************************************************) (* *) (* This file is part of MOPSA, a Modular Open Platform for Static Analysis. *) (* *) (* Copyright (C) 2017-2019 The MOPSA Project. *) (* *) (* This program is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as published *) (* by the Free Software Foundation, either version 3 of the License, or *) (* (at your option) any later version. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU Lesser General Public License for more details. *) (* *) (* You should have received a copy of the GNU Lesser General Public License *) (* along with this program. If not, see <http://www.gnu.org/licenses/>. *) (* *) (****************************************************************************) (** FloatItv - Floating-point interval arithmetics with rounding. We rely on C code to provide functions with correct rounding (rounding direction and rounding precision). *) open Bot module F = Float module B = IntBound module II = IntItv (** {2 Types} *) type t = { mutable lo: float; (** lower bound *) mutable up: float; (** upper bound *) } (** The type of non-empty intervals: a lower bound and an upper bound. The bounds can be -∞ and +∞. In particular, we can have [-∞,-∞] and [+∞,+∞] (useful to model sets of floating-point numbers). We must have lo ≤ up. The bounds shall not be NaN. *) type t_with_bot = t with_bot (** The type of possibly empty intervals. *) let is_valid (a:t) : bool = a.lo <= a.up && not (F.is_nan a.lo || F.is_nan a.up) (** {2 Constructors} *) let mk (lo:float) (up:float) : t = { lo; up; } let zero : t = mk 0. 0. let one : t = mk 1. 1. let two : t = mk 2. 2. let mone : t = mk (-1.) (-1.) let zero_one : t = mk 0. 1. let mone_zero : t = mk (-1.) 0. let mone_one : t = mk (-1.) 1. let mhalf_half : t = mk (-0.5) 0.5 let zero_inf : t = mk 0. infinity let minf_zero : t = mk neg_infinity 0. let minf_inf : t = mk neg_infinity infinity (** Useful intervals *) let of_float (lo:float) (up:float) : t = let lo = if F.is_nan lo then neg_infinity else lo and up = if F.is_nan up then infinity else up in if lo > up then invalid_arg (Printf.sprintf "FloatItv.of_float: invalid bound [%g,%g]" lo up) else { lo; up; } (** Constructs a non-empty interval. We must have lo ≤ up, or an exception is raised. NaN bounds are transformed into infinities. *) let of_float_bot (lo:float) (up:float) : t_with_bot = let lo = if F.is_nan lo then neg_infinity else lo and up = if F.is_nan up then infinity else up in if lo <= up then Nb { lo; up; } else BOT (** Constructs a possibly empty interval (no rounding). NaN bounds are transformed into infinities. *) let hull (a:float) (b:float) : t = if F.is_nan a || F.is_nan b then minf_inf else mk (min a b) (max a b) (** Constructs the smallest interval containing a and b. *) let cst (c:float) : t = if F.is_nan c then minf_inf else mk c c (** Singleton interval. *) (** {2 Predicates} *) let equal (a:t) (b:t) : bool = a = b let equal_bot : t_with_bot -> t_with_bot -> bool = bot_equal equal let included (a:t) (b:t) : bool = a.lo >= b.lo && a.up <= b.up (** Set ordering. = also works to compare for equality. *) let included_bot : t_with_bot -> t_with_bot -> bool = bot_included included let intersect (a:t) (b:t) : bool = a.lo <= b.up && b.lo <= a.up (** Whether the intervals have an non-empty intersection. *) let intersect_bot : t_with_bot -> t_with_bot -> bool = bot_dfl2 false intersect let contains (x:float) (a:t) = a.lo <= x && a.up >= x (** Whether the interval contains a certain value. *) let compare (a:t) (b:t) : int = if a.lo = b.lo then compare a.up b.up else compare a.lo b.lo (** A total ordering of intervals (lexical ordering) returning -1, 0, or 1. Can be used as compare for sets, maps, etc. (The hypothesis that bounds cannot be NaN is important to make the order total. *) let compare_bot (x:t with_bot) (y:t with_bot) : int = Bot.bot_compare compare x y (** Total ordering on possibly empty intervals. *) let is_zero (a:t) : bool = equal a zero let is_positive (a:t) : bool = a.lo >= 0. let is_negative (a:t) : bool = a.up <= 0. let is_positive_strict (a:t) : bool = a.lo > 0. let is_negative_strict (a:t) : bool = a.up < 0. let is_nonzero (a:t) : bool = a.lo > 0. || a.up < 0. (** Interval sign. *) let contains_positive (a:t) : bool = a.up >= 0. let contains_negative (a:t) : bool = a.lo <= 0. let contains_positive_strict (a:t) : bool = a.up > 0. let contains_negative_strict (a:t) : bool = a.lo < 0. let contains_zero (a:t) : bool = a.lo <= 0. && a.up >= 0. let contains_nonzero (a:t) : bool = a.lo <> 0. || a.up <> 0. (** Whether the interval contains an element of the specified sign. *) let is_singleton (a:t) : bool = a.lo = a.up (** Whether the interval contains a single element. *) let is_bounded (a:t) : bool = a.lo > neg_infinity && a.up < infinity (** Whether the interval has finite bounds. *) let is_in_range (a:t) (lo:float) (up:float) = included a { lo; up; } (** Whether the interval is included in the range [lo,up]. *) let is_log_eq (ab:t) (ab':t) : bool = intersect ab ab' let is_log_leq ({lo=a;up=b}:t) ({lo=a';up=b'}:t) : bool = F.leq a b' let is_log_geq ({lo=a;up=b}:t) ({lo=a';up=b'}:t) : bool = F.geq b a' let is_log_lt ({lo=a;up=b}:t) ({lo=a';up=b'}:t) : bool = F.lt a b' let is_log_gt ({lo=a;up=b}:t) ({lo=a';up=b'}:t) : bool = F.gt b a' let is_log_neq (ab:t) (ab':t) : bool = not (equal ab ab' && is_singleton ab) (** C comparison tests. Returns true if the test may succeed, false if it cannot. *) (** {2 Printing} *) type print_format = F.print_format let dfl_fmt = F.dfl_fmt let to_string (fmt:print_format) (x:t) : string = "["^(F.to_string fmt x.lo)^","^(F.to_string fmt x.up)^"]" let print fmt ch (x:t) = output_string ch (to_string fmt x) let fprint fmt ch (x:t) = Format.pp_print_string ch (to_string fmt x) let bprint fmt ch (x:t) = Buffer.add_string ch (to_string fmt x) let to_string_bot fmt = bot_to_string (to_string fmt) let print_bot fmt = bot_print (print fmt) let fprint_bot fmt = bot_fprint (fprint fmt) let bprint_bot fmt = bot_bprint (bprint fmt) (** {2 Operations without rounding} *) let neg (t:t) : t = of_float (-.t.up) (-.t.lo) (** Negation. *) let abs (t:t) : t = if t.lo <= 0. then if t.up <= 0. then neg t else of_float 0. (max (-.t.lo) t.up) else t (** Absolute value. *) let fmod (x:t) (y:t) : t_with_bot = (* x % y = x % |y| *) let y = abs y in if y = zero then BOT else (* case [a,b] % {0} ⟹ ⊥ *) if x.lo > -. y.lo && x.up < y.lo then (* case x ⊆ [-min y, min y] ⟹ identity *) Nb x else if y.lo = y.up && F.is_finite y.lo && F.is_finite x.lo && F.is_finite x.up && F.Double.round_int_zero (F.Double.div_zero x.lo y.lo) = F.Double.round_int_zero (F.Double.div_zero x.up y.lo) then (* case x % {z} and x ⊆ [zk,z(k+1)] *) Nb (of_float (F.fmod x.lo y.lo) (F.fmod x.up y.lo)) else if x.lo >= 0. then (* case x % y positive *) Nb (of_float 0. y.up) else if x.up <= 0. then (* case x % y negative *) Nb (of_float (-.y.up) 0.) else (* general case *) Nb (of_float (-.y.up) y.up) (** Remainder (fmod). *) let to_z (r:t) : Z.t * Z.t = if not (F.is_finite r.lo && F.is_finite r.up) then invalid_arg "Inifnites or NaN in FloatItv.to_z"; Z.of_float r.lo, Z.of_float r.up (** Conversion to integer (using truncation). *) let to_int_itv (r:t) : II.t with_bot = if F.is_nan r.lo || F.is_nan r.up then Nb II.minf_inf else if r.lo = infinity || r.up = neg_infinity then BOT else let x = if r.lo = neg_infinity then B.MINF else B.Finite (Z.of_float r.lo) and y = if r.up = infinity then B.PINF else B.Finite (Z.of_float r.up) in Nb (x,y) let join (a:t) (b:t) : t = of_float (min a.lo b.lo) (max a.up b.up) (** Join of non-empty intervals. *) let join_bot (a:t_with_bot) (b:t_with_bot) : t_with_bot = bot_neutral2 join a b (** Join of possibly empty intervals. *) let join_list (l:t list) : t_with_bot = List.fold_left (fun a b -> join_bot a (Nb b)) BOT l (** Join of a list of (non-empty) intervals. *) let meet (a:t) (b:t) : t_with_bot = of_float_bot (max a.lo b.lo) (min a.up b.up) (** Intersection of non-emtpty intervals (possibly empty) *) let meet_bot (a:t_with_bot) (b:t_with_bot) : t_with_bot = bot_absorb2 meet a b (** Intersection of possibly empty intervals. *) let meet_list (l:t list) : t_with_bot = List.fold_left (fun a b -> meet_bot a (Nb b)) (Nb minf_inf) l (** Meet of a list of (non-empty) intervals. *) let positive (a:t) : t_with_bot = meet a zero_inf let negative (a:t) : t_with_bot = meet a minf_zero (** Positive and negative part. *) let meet_zero (a:t) : t_with_bot = meet a zero (** Intersects with {0}. *) let widen (a:t) (a':t) : t = of_float (if F.lt a'.lo a.lo then neg_infinity else a.lo) (if F.gt a'.up a.up then infinity else a.up) (** Basic widening: put unstable bounds to infinity. *) let widen_bot (a:t_with_bot) (b:t_with_bot) : t_with_bot = bot_neutral2 widen a b let bwd_default_unary (a:t) (r:t) : t_with_bot = Nb a (** Fallback for backward unary operators *) let bwd_default_binary (a:t) (b:t) (r:t) : (t*t) with_bot = Nb (a,b) (** Fallback for backward binary operators *) let bwd_neg (a:t) (r:t) : t_with_bot = meet a (neg r) (** Backward negation. *) let bwd_abs (a:t) (r:t) : t_with_bot = join_bot (meet a r) (meet a (neg r)) (** Backward absolute value. *) let bwd_fmod (x:t) (y:t) (r:t) : (t*t) with_bot = let yy = abs y in if x.lo > -. yy.lo && x.up < yy.lo then (* case x ⊆ [-min |y|, min |y|] ⟹ fmod is the identity on x *) bot_merge2 (meet x r) (Nb y) else (* default: no refinement *) Nb (x,y) (** Backward remainder (fmod). *) (** {2 Rounding-dependent functions} *) (** Interval operations support six rounding modes. The first four correspond to rounding both bounds in the same direction: to nearest, upwards, downards, or to zero. To this, we add outer rounding (lower bound downwards and upper bound upwards) and inner rounding (lower bound upwards and upper bound downwards). Rounding can be performed for single-precision or double-precision. Outer interval arithmetic can model soundly real arithmetic. In this case, infinities model unbounded intervals. Directed roundings and outer arithmetics can model soundly float arithmetic. In this case, infinite bounds signal the precence of infinite float values. Directed roundings can produce [-∞,-∞] or [+∞,+∞] (denoting a set of floats reduced to an infinite float). Inner rounding can return empty intervals. Divisions and square roots can return empty intervals for any rounding mode. We do not track NaN. NaN bounds, as in [-∞,-∞] + [+∞,+∞], are transformed into infinities. *) (* binding to (internal) C functions *) (* The C functions are designed to avoid allocation. We pass them the struct that will be set to the result. We do not export them directly, but we wrap in some OCaml code to give them a functional flavor. *) external add_dbl_itv_near: t -> t -> t -> unit = "ml_add_dbl_itv_near" external add_dbl_itv_up: t -> t -> t -> unit = "ml_add_dbl_itv_up" external add_dbl_itv_down: t -> t -> t -> unit = "ml_add_dbl_itv_down" external add_dbl_itv_zero: t -> t -> t -> unit = "ml_add_dbl_itv_zero" external add_dbl_itv_outer: t -> t -> t -> unit = "ml_add_dbl_itv_outer" external add_dbl_itv_inner: t -> t -> t -> unit = "ml_add_dbl_itv_inner" external add_sgl_itv_near: t -> t -> t -> unit = "ml_add_sgl_itv_near" external add_sgl_itv_up: t -> t -> t -> unit = "ml_add_sgl_itv_up" external add_sgl_itv_down: t -> t -> t -> unit = "ml_add_sgl_itv_down" external add_sgl_itv_zero: t -> t -> t -> unit = "ml_add_sgl_itv_zero" external add_sgl_itv_outer: t -> t -> t -> unit = "ml_add_sgl_itv_outer" external add_sgl_itv_inner: t -> t -> t -> unit = "ml_add_sgl_itv_inner" external sub_dbl_itv_near: t -> t -> t -> unit = "ml_sub_dbl_itv_near" external sub_dbl_itv_up: t -> t -> t -> unit = "ml_sub_dbl_itv_up" external sub_dbl_itv_down: t -> t -> t -> unit = "ml_sub_dbl_itv_down" external sub_dbl_itv_zero: t -> t -> t -> unit = "ml_sub_dbl_itv_zero" external sub_dbl_itv_outer: t -> t -> t -> unit = "ml_sub_dbl_itv_outer" external sub_dbl_itv_inner: t -> t -> t -> unit = "ml_sub_dbl_itv_inner" external sub_sgl_itv_near: t -> t -> t -> unit = "ml_sub_sgl_itv_near" external sub_sgl_itv_up: t -> t -> t -> unit = "ml_sub_sgl_itv_up" external sub_sgl_itv_down: t -> t -> t -> unit = "ml_sub_sgl_itv_down" external sub_sgl_itv_zero: t -> t -> t -> unit = "ml_sub_sgl_itv_zero" external sub_sgl_itv_outer: t -> t -> t -> unit = "ml_sub_sgl_itv_outer" external sub_sgl_itv_inner: t -> t -> t -> unit = "ml_sub_sgl_itv_inner" external mul_dbl_itv_near: t -> t -> t -> unit = "ml_mul_dbl_itv_near" external mul_dbl_itv_up: t -> t -> t -> unit = "ml_mul_dbl_itv_up" external mul_dbl_itv_down: t -> t -> t -> unit = "ml_mul_dbl_itv_down" external mul_dbl_itv_zero: t -> t -> t -> unit = "ml_mul_dbl_itv_zero" external mul_dbl_itv_outer: t -> t -> t -> unit = "ml_mul_dbl_itv_outer" external mul_dbl_itv_inner: t -> t -> t -> unit = "ml_mul_dbl_itv_inner" external mul_sgl_itv_near: t -> t -> t -> unit = "ml_mul_sgl_itv_near" external mul_sgl_itv_up: t -> t -> t -> unit = "ml_mul_sgl_itv_up" external mul_sgl_itv_down: t -> t -> t -> unit = "ml_mul_sgl_itv_down" external mul_sgl_itv_zero: t -> t -> t -> unit = "ml_mul_sgl_itv_zero" external mul_sgl_itv_outer: t -> t -> t -> unit = "ml_mul_sgl_itv_outer" external mul_sgl_itv_inner: t -> t -> t -> unit = "ml_mul_sgl_itv_inner" external divpos_dbl_itv_near: t -> t -> t -> unit = "ml_divpos_dbl_itv_near" external divpos_dbl_itv_up: t -> t -> t -> unit = "ml_divpos_dbl_itv_up" external divpos_dbl_itv_down: t -> t -> t -> unit = "ml_divpos_dbl_itv_down" external divpos_dbl_itv_zero: t -> t -> t -> unit = "ml_divpos_dbl_itv_zero" external divpos_dbl_itv_outer: t -> t -> t -> unit = "ml_divpos_dbl_itv_outer" external divpos_dbl_itv_inner: t -> t -> t -> unit = "ml_divpos_dbl_itv_inner" external divpos_sgl_itv_near: t -> t -> t -> unit = "ml_divpos_sgl_itv_near" external divpos_sgl_itv_up: t -> t -> t -> unit = "ml_divpos_sgl_itv_up" external divpos_sgl_itv_down: t -> t -> t -> unit = "ml_divpos_sgl_itv_down" external divpos_sgl_itv_zero: t -> t -> t -> unit = "ml_divpos_sgl_itv_zero" external divpos_sgl_itv_outer: t -> t -> t -> unit = "ml_divpos_sgl_itv_outer" external divpos_sgl_itv_inner: t -> t -> t -> unit = "ml_divpos_sgl_itv_inner" (* internal utilities *) let mkop () = { lo=0.; up=0.; } let wrap_op1 f = fun a -> let r = mkop () in f a r; r let wrap_op2 f = fun a b -> let r = mkop () in f a b r; r (* wrapper helpers from imperative C to functional OCaml *) let wrap_op1_bot f a = let r = wrap_op1 f a in if r.lo <= r.up then Nb r else BOT let wrap_op2_bot f a b = let r = wrap_op2 f a b in if r.lo <= r.up then Nb r else BOT let wrap_sqrt f g a = if a.up < 0. then BOT else of_float_bot (f (max 0. a.lo)) (g a.up) (* wrapper for sqrt *) let wrap_div_unmerged d a b = let l1 = if b.up > 0. then [d a { b with lo = if F.sign b.lo > 0 then b.lo else 0.; }] else [] and l2 = if b.lo < 0. then [d a { b with up = if F.sign b.up < 0 then b.up else -.0.; }] else [] in l1@l2 (* wrapper for division; we split into a positive divisor interval and a negative divisor interval; we have to be extra careful of the sign of zeros when splitting (to get the correct infinity); returns a list of intervals to keep precision; *) let wrap_div_unmerged_bot d a b = list_remove_bot (wrap_div_unmerged d a b) let wrap_div d a b = join_list (wrap_div_unmerged d a b) (* wrapper for division; returns a single (possibly empty) interval *) let wrap_div_bot d a b = join_list (wrap_div_unmerged_bot d a b) module Double = struct module FF = F.Double (** {2 Arithmetic} *) let add_near : t -> t -> t = wrap_op2 add_dbl_itv_near let add_up : t -> t -> t = wrap_op2 add_dbl_itv_up let add_down : t -> t -> t = wrap_op2 add_dbl_itv_down let add_zero : t -> t -> t = wrap_op2 add_dbl_itv_zero let add_outer : t -> t -> t = wrap_op2 add_dbl_itv_outer let add_inner : t -> t -> t_with_bot = wrap_op2_bot add_dbl_itv_inner (** Addition. *) let sub_near : t -> t -> t = wrap_op2 sub_dbl_itv_near let sub_up : t -> t -> t = wrap_op2 sub_dbl_itv_up let sub_down : t -> t -> t = wrap_op2 sub_dbl_itv_down let sub_zero : t -> t -> t = wrap_op2 sub_dbl_itv_zero let sub_outer : t -> t -> t = wrap_op2 sub_dbl_itv_outer let sub_inner : t -> t -> t_with_bot = wrap_op2_bot sub_dbl_itv_inner (** Subtraction. *) let mul_near : t -> t -> t = wrap_op2 mul_dbl_itv_near let mul_up : t -> t -> t = wrap_op2 mul_dbl_itv_up let mul_down : t -> t -> t = wrap_op2 mul_dbl_itv_down let mul_zero : t -> t -> t = wrap_op2 mul_dbl_itv_zero let mul_outer : t -> t -> t = wrap_op2 mul_dbl_itv_outer let mul_inner : t -> t -> t_with_bot = wrap_op2_bot mul_dbl_itv_inner (** Multiplication. *) let divpos_near : t -> t -> t = wrap_op2 divpos_dbl_itv_near let divpos_up : t -> t -> t = wrap_op2 divpos_dbl_itv_up let divpos_down : t -> t -> t = wrap_op2 divpos_dbl_itv_down let divpos_zero : t -> t -> t = wrap_op2 divpos_dbl_itv_zero let divpos_outer : t -> t -> t = wrap_op2 divpos_dbl_itv_outer let divpos_inner : t -> t -> t_with_bot = wrap_op2_bot divpos_dbl_itv_inner (* Division by a divisor of constant sign. *) let div_unmerged_near : t -> t -> t list = wrap_div_unmerged divpos_near let div_unmerged_up : t -> t -> t list = wrap_div_unmerged divpos_up let div_unmerged_down : t -> t -> t list = wrap_div_unmerged divpos_down let div_unmerged_zero : t -> t -> t list = wrap_div_unmerged divpos_zero let div_unmerged_outer : t -> t -> t list = wrap_div_unmerged divpos_outer let div_unmerged_inner : t -> t -> t list = wrap_div_unmerged_bot divpos_inner (** Division. Returns a list of 0, 1, or 2 intervals to remain precise. *) let div_near : t -> t -> t_with_bot = wrap_div divpos_near let div_up : t -> t -> t_with_bot = wrap_div divpos_up let div_down : t -> t -> t_with_bot = wrap_div divpos_down let div_zero : t -> t -> t_with_bot = wrap_div divpos_zero let div_outer : t -> t -> t_with_bot = wrap_div divpos_outer let div_inner : t -> t -> t_with_bot = wrap_div_bot divpos_inner (** Division. Returns a single interval. *) let square_near (a:t) : t = let aa = abs a in mul_near aa aa let square_up (a:t) : t = let aa = abs a in mul_up aa aa let square_down (a:t) : t = let aa = abs a in mul_down aa aa let square_zero (a:t) : t = let aa = abs a in mul_zero aa aa let square_outer (a:t) : t = let aa = abs a in mul_outer aa aa let square_inner (a:t) : t_with_bot = let aa = abs a in mul_inner aa aa (** Square. *) let sqrt_near : t -> t_with_bot = wrap_sqrt FF.sqrt_near FF.sqrt_near let sqrt_up : t -> t_with_bot = wrap_sqrt FF.sqrt_up FF.sqrt_up let sqrt_down : t -> t_with_bot = wrap_sqrt FF.sqrt_down FF.sqrt_down let sqrt_zero : t -> t_with_bot = wrap_sqrt FF.sqrt_zero FF.sqrt_zero let sqrt_outer : t -> t_with_bot = wrap_sqrt FF.sqrt_down FF.sqrt_up let sqrt_inner : t -> t_with_bot = wrap_sqrt FF.sqrt_up FF.sqrt_down (** Square root. Returns the square root of the positive part, possibly ⊥. *) let round_int_near (a:t) : t = of_float (FF.round_int_near a.lo) (FF.round_int_near a.up) let round_int_up (a:t) : t = of_float (FF.round_int_up a.lo) (FF.round_int_up a.up) let round_int_down (a:t) : t = of_float (FF.round_int_down a.lo) (FF.round_int_down a.up) let round_int_zero (a:t) : t = of_float (FF.round_int_zero a.lo) (FF.round_int_zero a.up) let round_int_outer (a:t) : t = of_float (FF.round_int_down a.lo) (FF.round_int_up a.up) let round_int_inner (a:t) : t_with_bot = of_float_bot (FF.round_int_up a.lo) (FF.round_int_down a.up) (** Round to integer. *) let unround_int_near (a:t) : t = add_outer a mhalf_half let unround_int_up (a:t) : t = sub_outer a zero_one let unround_int_down (a:t) : t = add_outer a zero_one let unround_int_zero (a:t) : t = of_float (if a.lo <= 0. then FF.sub_down a.lo 1. else a.lo) (if a.up >= 0. then FF.add_up a.up 1. else a.up) let unround_int_any (a:t) : t = sub_outer a mone_one (** Values that, after rounding to integer in the specified direction, may be in the argument interval. Useful for backward operators. *) let unround_near (a:t) : t = of_float (FF.pred a.lo) (FF.succ a.up) let unround_up (a:t) : t = of_float (FF.pred a.lo) (a.up) let unround_down (a:t) : t = of_float (a.lo) (FF.succ a.up) let unround_zero (a:t) : t = of_float (if a.lo <= 0. then FF.pred a.lo else a.lo) (if a.up >= 0. then FF.succ a.up else a.up) let unround_any (a:t) : t = unround_near a (** Values that, after rounding to float, may be in the argument interval. Useful for backward operators. *) let of_int_near (lo:int) (up:int) : t = of_float (FF.of_int_near lo) (FF.of_int_near up) let of_int_up (lo:int) (up:int) : t = of_float (FF.of_int_up lo) (FF.of_int_up up) let of_int_down (lo:int) (up:int) : t = of_float (FF.of_int_down lo) (FF.of_int_down up) let of_int_zero (lo:int) (up:int) : t = of_float (FF.of_int_zero lo) (FF.of_int_zero up) let of_int_outer (lo:int) (up:int) : t = of_float (FF.of_int_down lo) (FF.of_int_up up) let of_int_inner (lo:int) (up:int) : t_with_bot = of_float_bot (FF.of_int_up lo) (FF.of_int_down up) (** Conversion from int. *) let of_int64_near (lo:int64) (up:int64) : t = of_float (FF.of_int64_near lo) (FF.of_int64_near up) let of_int64_up (lo:int64) (up:int64) : t = of_float (FF.of_int64_up lo) (FF.of_int64_up up) let of_int64_down (lo:int64) (up:int64) : t = of_float (FF.of_int64_down lo) (FF.of_int64_down up) let of_int64_zero (lo:int64) (up:int64) : t = of_float (FF.of_int64_zero lo) (FF.of_int64_zero up) let of_int64_outer (lo:int64) (up:int64) : t = of_float (FF.of_int64_down lo) (FF.of_int64_up up) let of_int64_inner (lo:int64) (up:int64) : t_with_bot = of_float_bot (FF.of_int64_up lo) (FF.of_int64_down up) (** Conversion from int64. *) let of_z_near (lo:Z.t) (up:Z.t) : t = of_float (FF.of_z_near lo) (FF.of_z_near up) let of_z_up (lo:Z.t) (up:Z.t) : t = of_float (FF.of_z_up lo) (FF.of_z_up up) let of_z_down (lo:Z.t) (up:Z.t) : t = of_float (FF.of_z_down lo) (FF.of_z_down up) let of_z_zero (lo:Z.t) (up:Z.t) : t = of_float (FF.of_z_zero lo) (FF.of_z_zero up) let of_z_outer (lo:Z.t) (up:Z.t) : t = of_float (FF.of_z_down lo) (FF.of_z_up up) let of_z_inner (lo:Z.t) (up:Z.t) : t_with_bot = of_float_bot (FF.of_z_up lo) (FF.of_z_down up) (** Conversion from Z.t. *) (** {2 Filters} *) (** Given two interval aruments, return the arguments assuming that the predicate holds. *) let filter_leq (a:t) (b:t) : (t*t) with_bot = bot_merge2 (of_float_bot a.lo (min a.up b.up)) (of_float_bot (max a.lo b.lo) b.up) let filter_geq (a:t) (b:t) : (t*t) with_bot = bot_merge2 (of_float_bot (max a.lo b.lo) a.up) (of_float_bot b.lo (min a.up b.up)) let filter_lt (a:t) (b:t) : (t*t) with_bot = bot_merge2 (of_float_bot a.lo (min a.up (FF.pred b.up))) (of_float_bot (max (FF.succ a.lo) b.lo) b.up) let filter_gt (a:t) (b:t) : (t*t) with_bot = bot_merge2 (of_float_bot (max a.lo (FF.succ b.lo)) a.up) (of_float_bot b.lo (min (FF.pred a.up) b.up)) let filter_eq (a:t) (b:t) : (t*t) with_bot = match meet a b with BOT -> BOT | Nb x -> Nb (x,x) let filter_neq (a:t) (b:t) : (t*t) with_bot = match a.lo = a.up, b.lo = b.up with | true, true when a.lo = b.lo -> BOT | true, false when a.lo = b.lo -> bot_merge2 (Nb a) (of_float_bot (FF.succ b.lo) b.up) | true, false when a.up = b.up -> bot_merge2 (Nb a) (of_float_bot b.lo (FF.pred b.up)) | false, true when a.lo = b.lo -> bot_merge2 (of_float_bot (FF.succ a.lo) a.up) (Nb b) | false, true when a.up = b.up -> bot_merge2 (of_float_bot a.lo (FF.pred a.up)) (Nb b) | _ -> Nb (a,b) (** {2 Backward operations} *) (** Given one or two interval argument(s) and a result interval, return the argument(s) assuming the result in the operation is in the given result. *) let bwd_add (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = round(a + b) ⇒ a = unround(r) - b ∧ b = unround(r) - a *) bot_merge2 (meet a (sub_outer r b)) (meet b (sub_outer r a)) let bwd_add_near a b r = bwd_add a b (unround_near r) let bwd_add_up a b r = bwd_add a b (unround_up r) let bwd_add_down a b r = bwd_add a b (unround_down r) let bwd_add_zero a b r = bwd_add a b (unround_zero r) let bwd_add_any a b r = bwd_add a b (unround_any r) let bwd_add_noround a b r = bwd_add a b r (** Backward addition. *) let bwd_sub (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = round(a - b) ⇒ a = b + unround(r) ∧ b = a - unround(r) *) bot_merge2 (meet a (add_outer b r)) (meet b (sub_outer a r)) let bwd_sub_near a b r = bwd_sub a b (unround_near r) let bwd_sub_up a b r = bwd_sub a b (unround_up r) let bwd_sub_down a b r = bwd_sub a b (unround_down r) let bwd_sub_zero a b r = bwd_sub a b (unround_zero r) let bwd_sub_any a b r = bwd_sub a b (unround_any r) let bwd_sub_noround a b r = bwd_sub a b r (** Backward subtraction. *) let bwd_mul (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = round(a * b) ⇒ ((a = unround(r) / b) ∨ (b = r = 0) ∨ (b unbounded)) ∧ ((b = unround(r) / a) ∨ (a = r = 0) ∨ (a unbounded)) *) let aa = if not (is_bounded b) || (contains_zero b && contains_zero r) then Nb a else meet_bot (Nb a) (div_outer r b) and bb = if not (is_bounded a) || (contains_zero a && contains_zero r) then Nb b else meet_bot (Nb b) (div_outer r a) in bot_merge2 aa bb let bwd_mul_near a b r = bwd_mul a b (unround_near r) let bwd_mul_up a b r = bwd_mul a b (unround_up r) let bwd_mul_down a b r = bwd_mul a b (unround_down r) let bwd_mul_zero a b r = bwd_mul a b (unround_zero r) let bwd_mul_any a b r = bwd_mul a b (unround_any r) let bwd_mul_noround a b r = bwd_mul a b r (** Backward multiplication. *) let bwd_div (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = round(a / b) ⇒ ((a = b * unround(r)) ∧ (b = a / unround(r)) ∨ (a = r = 0)) ∨ unbounded) *) if not (is_bounded a && is_bounded b && is_bounded r) then Nb (a,b) else let aa = meet a (mul_outer b r) and bb = if (contains_zero a && contains_zero r) then Nb b else meet_bot (Nb b) (div_outer a r) in bot_merge2 aa bb let bwd_div_near a b r = bwd_div a b (unround_near r) let bwd_div_up a b r = bwd_div a b (unround_up r) let bwd_div_down a b r = bwd_div a b (unround_down r) let bwd_div_zero a b r = bwd_div a b (unround_zero r) let bwd_div_any a b r = bwd_div a b (unround_any r) let bwd_div_noround a b r = bwd_div a b r (** Backward division. *) let bwd_round_int_near a r = meet a (unround_int_near r) let bwd_round_int_up a r = meet a (unround_int_up r) let bwd_round_int_down a r = meet a (unround_int_down r) let bwd_round_int_zero a r = meet a (unround_int_zero r) let bwd_round_int_any a r = meet a (unround_int_any r) let bwd_round_int_noround a r = meet a r (** Backward rounding to int. *) let bwd_round_near a r = meet a (unround_near r) let bwd_round_up a r = meet a (unround_up r) let bwd_round_down a r = meet a (unround_down r) let bwd_round_zero a r = meet a (unround_zero r) let bwd_round_any a r = meet a (unround_any r) let bwd_round_noround a r = meet a r (** Backward rounding from real. *) let bwd_square (a:t) (r:t) : t_with_bot = let rr = sqrt_outer r in join_bot (meet_bot (Nb a) rr) (meet_bot (Nb a) (bot_lift1 neg rr)) let bwd_square_near a r = bwd_square a (unround_near r) let bwd_square_up a r = bwd_square a (unround_up r) let bwd_square_down a r = bwd_square a (unround_down r) let bwd_square_zero a r = bwd_square a (unround_zero r) let bwd_square_any a r = bwd_square a (unround_any r) let bwd_square_noround a r = bwd_square a r (** Backward square. *) let bwd_sqrt (a:t) (r:t) : t_with_bot = meet a (square_outer r) let bwd_sqrt_near a r = bwd_sqrt a (unround_near r) let bwd_sqrt_up a r = bwd_sqrt a (unround_up r) let bwd_sqrt_down a r = bwd_sqrt a (unround_down r) let bwd_sqrt_zero a r = bwd_sqrt a (unround_zero r) let bwd_sqrt_any a r = bwd_sqrt a (unround_any r) let bwd_sqrt_noround a r = bwd_sqrt a r (** Backward square root. *) let bwd_of_z unround lo up r = let r = unround r in if F.is_finite r.lo && F.is_finite r.up then let lo = Z.max lo (Z.of_float r.lo) and up = Z.min up (Z.of_float r.up) in if Z.leq lo up then Nb (lo,up) else BOT else Nb (lo,up) let bwd_of_z_near lo up r = bwd_of_z unround_int_near lo up r let bwd_of_z_up lo up r = bwd_of_z unround_int_up lo up r let bwd_of_z_down lo up r = bwd_of_z unround_int_down lo up r let bwd_of_z_zero lo up r = bwd_of_z unround_int_zero lo up r let bwd_of_z_any lo up r = bwd_of_z unround_int_any lo up r let bwd_of_z_noround lo up r = bwd_of_z (fun x -> x) lo up r (** Backward conversion from int. *) let bwd_to_z (lo:Z.t) (up:Z.t) (r:t) : t_with_bot = bwd_round_int_zero r (mk (FF.of_z_down lo) (FF.of_z_up up)) (** Backward conversion to int. *) let meet_nonzero (a:t) : t_with_bot = let lo = if a.lo = 0. then FF.min_denormal else a.lo and up = if a.up = 0. then -. FF.min_denormal else a.up in of_float_bot lo up (** Keeps only non-zero elements. *) end (** Intervals with rounding to double. *) module Single = struct module FF = F.Single (** {2 Arithmetic} *) let add_near : t -> t -> t = wrap_op2 add_sgl_itv_near let add_up : t -> t -> t = wrap_op2 add_sgl_itv_up let add_down : t -> t -> t = wrap_op2 add_sgl_itv_down let add_zero : t -> t -> t = wrap_op2 add_sgl_itv_zero let add_outer : t -> t -> t = wrap_op2 add_sgl_itv_outer let add_inner : t -> t -> t_with_bot = wrap_op2_bot add_sgl_itv_inner (** Addition. *) let sub_near : t -> t -> t = wrap_op2 sub_sgl_itv_near let sub_up : t -> t -> t = wrap_op2 sub_sgl_itv_up let sub_down : t -> t -> t = wrap_op2 sub_sgl_itv_down let sub_zero : t -> t -> t = wrap_op2 sub_sgl_itv_zero let sub_outer : t -> t -> t = wrap_op2 sub_sgl_itv_outer let sub_inner : t -> t -> t_with_bot = wrap_op2_bot sub_sgl_itv_inner (** Subtraction. *) let mul_near : t -> t -> t = wrap_op2 mul_sgl_itv_near let mul_up : t -> t -> t = wrap_op2 mul_sgl_itv_up let mul_down : t -> t -> t = wrap_op2 mul_sgl_itv_down let mul_zero : t -> t -> t = wrap_op2 mul_sgl_itv_zero let mul_outer : t -> t -> t = wrap_op2 mul_sgl_itv_outer let mul_inner : t -> t -> t_with_bot = wrap_op2_bot mul_sgl_itv_inner (** Multiplication. *) let divpos_near : t -> t -> t = wrap_op2 divpos_sgl_itv_near let divpos_up : t -> t -> t = wrap_op2 divpos_sgl_itv_up let divpos_down : t -> t -> t = wrap_op2 divpos_sgl_itv_down let divpos_zero : t -> t -> t = wrap_op2 divpos_sgl_itv_zero let divpos_outer : t -> t -> t = wrap_op2 divpos_sgl_itv_outer let divpos_inner : t -> t -> t_with_bot = wrap_op2_bot divpos_sgl_itv_inner (* Division by a divisor of constant sign. *) let div_unmerged_near : t -> t -> t list = wrap_div_unmerged divpos_near let div_unmerged_up : t -> t -> t list = wrap_div_unmerged divpos_up let div_unmerged_down : t -> t -> t list = wrap_div_unmerged divpos_down let div_unmerged_zero : t -> t -> t list = wrap_div_unmerged divpos_zero let div_unmerged_outer : t -> t -> t list = wrap_div_unmerged divpos_outer let div_unmerged_inner : t -> t -> t list = wrap_div_unmerged_bot divpos_inner (** Division. Returns a list of 0, 1, or 2 intervals to remain precise. *) let div_near : t -> t -> t_with_bot = wrap_div divpos_near let div_up : t -> t -> t_with_bot = wrap_div divpos_up let div_down : t -> t -> t_with_bot = wrap_div divpos_down let div_zero : t -> t -> t_with_bot = wrap_div divpos_zero let div_outer : t -> t -> t_with_bot = wrap_div divpos_outer let div_inner : t -> t -> t_with_bot = wrap_div_bot divpos_inner (** Division. Returns a single interval. *) let square_near (a:t) : t = let aa = abs a in mul_near aa aa let square_up (a:t) : t = let aa = abs a in mul_up aa aa let square_down (a:t) : t = let aa = abs a in mul_down aa aa let square_zero (a:t) : t = let aa = abs a in mul_zero aa aa let square_outer (a:t) : t = let aa = abs a in mul_outer aa aa let square_inner (a:t) : t_with_bot = let aa = abs a in mul_inner aa aa (** Square. *) let sqrt_near : t -> t_with_bot = wrap_sqrt FF.sqrt_near FF.sqrt_near let sqrt_up : t -> t_with_bot = wrap_sqrt FF.sqrt_up FF.sqrt_up let sqrt_down : t -> t_with_bot = wrap_sqrt FF.sqrt_down FF.sqrt_down let sqrt_zero : t -> t_with_bot = wrap_sqrt FF.sqrt_zero FF.sqrt_zero let sqrt_outer : t -> t_with_bot = wrap_sqrt FF.sqrt_down FF.sqrt_up let sqrt_inner : t -> t_with_bot = wrap_sqrt FF.sqrt_up FF.sqrt_down (** Square root. Returns the square root of the positive part, possibly ⊥. *) let round_int_near (a:t) : t = of_float (FF.round_int_near a.lo) (FF.round_int_near a.up) let round_int_up (a:t) : t = of_float (FF.round_int_up a.lo) (FF.round_int_up a.up) let round_int_down (a:t) : t = of_float (FF.round_int_down a.lo) (FF.round_int_down a.up) let round_int_zero (a:t) : t = of_float (FF.round_int_zero a.lo) (FF.round_int_zero a.up) let round_int_outer (a:t) : t = of_float (FF.round_int_down a.lo) (FF.round_int_up a.up) let round_int_inner (a:t) : t_with_bot = of_float_bot (FF.round_int_up a.lo) (FF.round_int_down a.up) (** Round to integer. *) let unround_int_near (a:t) : t = add_outer a mhalf_half let unround_int_up (a:t) : t = sub_outer a zero_one let unround_int_down (a:t) : t = add_outer a zero_one let unround_int_zero (a:t) : t = of_float (if a.lo <= 0. then FF.sub_down a.lo 1. else a.lo) (if a.up >= 0. then FF.add_up a.up 1. else a.up) let unround_int_any (a:t) : t = add_outer a mone_one (** Values that, after rounding to integer in the specified direction, may be in the argument interval. Useful for backward operators. *) let unround_near (a:t) : t = of_float (FF.pred a.lo) (FF.succ a.up) let unround_up (a:t) : t = of_float (FF.pred a.lo) (a.up) let unround_down (a:t) : t = of_float (a.lo) (FF.succ a.up) let unround_zero (a:t) : t = of_float (if a.lo <= 0. then FF.pred a.lo else a.lo) (if a.up >= 0. then FF.succ a.up else a.up) let unround_any (a:t) : t = unround_near a (** Values that, after rounding to float, may be in the argument interval. Useful for backward operators. *) let of_int_near (lo:int) (up:int) : t = of_float (FF.of_int_near lo) (FF.of_int_near up) let of_int_up (lo:int) (up:int) : t = of_float (FF.of_int_up lo) (FF.of_int_up up) let of_int_down (lo:int) (up:int) : t = of_float (FF.of_int_down lo) (FF.of_int_down up) let of_int_zero (lo:int) (up:int) : t = of_float (FF.of_int_zero lo) (FF.of_int_zero up) let of_int_outer (lo:int) (up:int) : t = of_float (FF.of_int_down lo) (FF.of_int_up up) let of_int_inner (lo:int) (up:int) : t_with_bot = of_float_bot (FF.of_int_up lo) (FF.of_int_down up) (** Conversion from int. *) let of_int64_near (lo:int64) (up:int64) : t = of_float (FF.of_int64_near lo) (FF.of_int64_near up) let of_int64_up (lo:int64) (up:int64) : t = of_float (FF.of_int64_up lo) (FF.of_int64_up up) let of_int64_down (lo:int64) (up:int64) : t = of_float (FF.of_int64_down lo) (FF.of_int64_down up) let of_int64_zero (lo:int64) (up:int64) : t = of_float (FF.of_int64_zero lo) (FF.of_int64_zero up) let of_int64_outer (lo:int64) (up:int64) : t = of_float (FF.of_int64_down lo) (FF.of_int64_up up) let of_int64_inner (lo:int64) (up:int64) : t_with_bot = of_float_bot (FF.of_int64_up lo) (FF.of_int64_down up) (** Conversion from int64. *) let of_double_near (lo:float) (up:float) : t = of_float (FF.of_double_near lo) (FF.of_double_near up) let of_double_up (lo:float) (up:float) : t = of_float (FF.of_double_up lo) (FF.of_double_up up) let of_double_down (lo:float) (up:float) : t = of_float (FF.of_double_down lo) (FF.of_double_down up) let of_double_zero (lo:float) (up:float) : t = of_float (FF.of_double_zero lo) (FF.of_double_zero up) let of_double_outer (lo:float) (up:float) : t = of_float (FF.of_double_down lo) (FF.of_double_up up) let of_double_inner (lo:float) (up:float) : t_with_bot = of_float_bot (FF.of_double_up lo) (FF.of_double_down up) (** Conversion from double. *) let of_z_near (lo:Z.t) (up:Z.t) : t = of_float (FF.of_z_near lo) (FF.of_z_near up) let of_z_up (lo:Z.t) (up:Z.t) : t = of_float (FF.of_z_up lo) (FF.of_z_up up) let of_z_down (lo:Z.t) (up:Z.t) : t = of_float (FF.of_z_down lo) (FF.of_z_down up) let of_z_zero (lo:Z.t) (up:Z.t) : t = of_float (FF.of_z_zero lo) (FF.of_z_zero up) let of_z_outer (lo:Z.t) (up:Z.t) : t = of_float (FF.of_z_down lo) (FF.of_z_up up) let of_z_inner (lo:Z.t) (up:Z.t) : t_with_bot = of_float_bot (FF.of_z_up lo) (FF.of_z_down up) (** Conversion from Z.t. *) (** {2 Filters} *) (** Given two interval aruments, return the arguments assuming that the predicate holds. *) let filter_leq (a:t) (b:t) : (t*t) with_bot = bot_merge2 (of_float_bot a.lo (min a.up b.up)) (of_float_bot (max a.lo b.lo) b.up) let filter_geq (a:t) (b:t) : (t*t) with_bot = bot_merge2 (of_float_bot (max a.lo b.lo) a.up) (of_float_bot b.lo (min a.up b.up)) let filter_lt (a:t) (b:t) : (t*t) with_bot = bot_merge2 (of_float_bot a.lo (min a.up (FF.pred b.up))) (of_float_bot (max (FF.succ a.lo) b.lo) b.up) let filter_gt (a:t) (b:t) : (t*t) with_bot = bot_merge2 (of_float_bot (max a.lo (FF.succ b.lo)) a.up) (of_float_bot b.lo (min (FF.pred a.up) b.up)) let filter_eq (a:t) (b:t) : (t*t) with_bot = match meet a b with BOT -> BOT | Nb x -> Nb (x,x) let filter_neq (a:t) (b:t) : (t*t) with_bot = match a.lo = a.up, b.lo = b.up with | true, true when a.lo = b.lo -> BOT | true, false when a.lo = b.lo -> bot_merge2 (Nb a) (of_float_bot (FF.succ b.lo) b.up) | true, false when a.up = b.up -> bot_merge2 (Nb a) (of_float_bot b.lo (FF.pred b.up)) | false, true when a.lo = b.lo -> bot_merge2 (of_float_bot (FF.succ a.lo) a.up) (Nb b) | false, true when a.up = b.up -> bot_merge2 (of_float_bot a.lo (FF.pred a.up)) (Nb b) | _ -> Nb (a,b) (** {2 Backward operations} *) (** Given one or two interval argument(s) and a result interval, return the argument(s) assuming the result in the operation is in the given result. *) let bwd_add (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = round(a + b) ⇒ a = unround(r) - b ∧ b = unround(r) - a *) bot_merge2 (meet a (sub_outer r b)) (meet b (sub_outer r a)) let bwd_add_near a b r = bwd_add a b (unround_near r) let bwd_add_up a b r = bwd_add a b (unround_up r) let bwd_add_down a b r = bwd_add a b (unround_down r) let bwd_add_zero a b r = bwd_add a b (unround_zero r) let bwd_add_any a b r = bwd_add a b (unround_any r) let bwd_add_noround a b r = bwd_add a b r (** Backward addition. *) let bwd_sub (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = round(a - b) ⇒ a = b + unround(r) ∧ b = a - unround(r) *) bot_merge2 (meet a (add_outer b r)) (meet b (sub_outer a r)) let bwd_sub_near a b r = bwd_sub a b (unround_near r) let bwd_sub_up a b r = bwd_sub a b (unround_up r) let bwd_sub_down a b r = bwd_sub a b (unround_down r) let bwd_sub_zero a b r = bwd_sub a b (unround_zero r) let bwd_sub_any a b r = bwd_sub a b (unround_any r) let bwd_sub_noround a b r = bwd_sub a b r (** Backward subtraction. *) let bwd_mul (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = round(a * b) ⇒ ((a = unround(r) / b) ∨ (b = r = 0) ∨ (b unbounded)) ∧ ((b = unround(r) / a) ∨ (a = r = 0) ∨ (a unbounded)) *) let aa = if not (is_bounded b) || (contains_zero b && contains_zero r) then Nb a else meet_bot (Nb a) (div_outer r b) and bb = if not (is_bounded a) || (contains_zero a && contains_zero r) then Nb b else meet_bot (Nb b) (div_outer r a) in bot_merge2 aa bb let bwd_mul_near a b r = bwd_mul a b (unround_near r) let bwd_mul_up a b r = bwd_mul a b (unround_up r) let bwd_mul_down a b r = bwd_mul a b (unround_down r) let bwd_mul_zero a b r = bwd_mul a b (unround_zero r) let bwd_mul_any a b r = bwd_mul a b (unround_any r) let bwd_mul_noround a b r = bwd_mul a b r (** Backward multiplication. *) let bwd_div (a:t) (b:t) (r:t) : (t*t) with_bot = (* r = round(a / b) ⇒ ((a = b * unround(r)) ∧ (b = a / unround(r)) ∨ (a = r = 0)) ∨ unbounded) *) if not (is_bounded a && is_bounded b && is_bounded r) then Nb (a,b) else let aa = meet a (mul_outer b r) and bb = if (contains_zero a && contains_zero r) then Nb b else meet_bot (Nb b) (div_outer a r) in bot_merge2 aa bb let bwd_div_near a b r = bwd_div a b (unround_near r) let bwd_div_up a b r = bwd_div a b (unround_up r) let bwd_div_down a b r = bwd_div a b (unround_down r) let bwd_div_zero a b r = bwd_div a b (unround_zero r) let bwd_div_any a b r = bwd_div a b (unround_any r) let bwd_div_noround a b r = bwd_div a b r (** Backward division. *) let bwd_round_int_near a r = meet a (unround_int_near r) let bwd_round_int_up a r = meet a (unround_int_up r) let bwd_round_int_down a r = meet a (unround_int_down r) let bwd_round_int_zero a r = meet a (unround_int_zero r) let bwd_round_int_any a r = meet a (unround_int_any r) let bwd_round_int_noround a r = meet a r (** Backward rounding to int. *) let bwd_round_near a r = meet a (unround_near r) let bwd_round_up a r = meet a (unround_up r) let bwd_round_down a r = meet a (unround_down r) let bwd_round_zero a r = meet a (unround_zero r) let bwd_round_any a r = meet a (unround_any r) let bwd_round_noround a r = meet a r (** Backward rounding from double or real. *) let bwd_square (a:t) (r:t) : t_with_bot = let rr = sqrt_outer r in join_bot (meet_bot (Nb a) rr) (meet_bot (Nb a) (bot_lift1 neg rr)) let bwd_square_near a r = bwd_square a (unround_near r) let bwd_square_up a r = bwd_square a (unround_up r) let bwd_square_down a r = bwd_square a (unround_down r) let bwd_square_zero a r = bwd_square a (unround_zero r) let bwd_square_any a r = bwd_square a (unround_any r) let bwd_square_noround a r = bwd_square a r (** Backward square. *) let bwd_sqrt (a:t) (r:t) : t_with_bot = meet a (square_outer r) let bwd_sqrt_near a r = bwd_sqrt a (unround_near r) let bwd_sqrt_up a r = bwd_sqrt a (unround_up r) let bwd_sqrt_down a r = bwd_sqrt a (unround_down r) let bwd_sqrt_zero a r = bwd_sqrt a (unround_zero r) let bwd_sqrt_any a r = bwd_sqrt a (unround_any r) let bwd_sqrt_noround a r = bwd_sqrt a r (** Backward square root. *) let bwd_of_z unround lo up r = let r = unround r in if F.is_finite r.lo && F.is_finite r.up then let lo = Z.max lo (Z.of_float r.lo) and up = Z.min up (Z.of_float r.up) in if Z.leq lo up then Nb (lo,up) else BOT else Nb (lo,up) let bwd_of_z_near lo up r = bwd_of_z unround_int_near lo up r let bwd_of_z_up lo up r = bwd_of_z unround_int_up lo up r let bwd_of_z_down lo up r = bwd_of_z unround_int_down lo up r let bwd_of_z_zero lo up r = bwd_of_z unround_int_zero lo up r let bwd_of_z_any lo up r = bwd_of_z unround_int_any lo up r let bwd_of_z_noround lo up r = bwd_of_z (fun x -> x) lo up r (** Backward conversion from int. *) let bwd_to_z (lo:Z.t) (up:Z.t) (r:t) : t_with_bot = bwd_round_int_zero (mk (FF.of_z_down lo) (FF.of_z_up up)) r (** Backward conversion to int. *) let meet_nonzero (a:t) : t_with_bot = let lo = if a.lo = 0. then FF.min_denormal else a.lo and up = if a.up = 0. then -. FF.min_denormal else a.up in of_float_bot lo up (** Keeps only non-zero elements. *) end (** Intervals with rounding to float. *) (** {2 Operations with rounding mode as argument} *) type prec = [ `SINGLE (** 32-bit single precision *) | `DOUBLE (** 64-bit double precision *) | `REAL (** real arithmetic (outward double rounding is used) *) ] (** Precision. *) type round = [ `NEAR (** To nearest *) | `UP (** Upwards *) | `DOWN (** Downwards *) | `ZERO (** Towards 0 *) | `ANY (** Any rounding mode *) ] (** Rounding direction. This is ignored for real arithmetic. *) let add (prec:prec) (round:round) (x:t) (y:t) : t = match prec,round with | `SINGLE, `NEAR -> Single.add_near x y | `SINGLE, `UP -> Single.add_up x y | `SINGLE, `DOWN -> Single.add_down x y | `SINGLE, `ZERO -> Single.add_zero x y | `SINGLE, `ANY -> Single.add_outer x y | `DOUBLE, `NEAR -> Double.add_near x y | `DOUBLE, `UP -> Double.add_up x y | `DOUBLE, `DOWN -> Double.add_down x y | `DOUBLE, `ZERO -> Double.add_zero x y | `DOUBLE, `ANY -> Double.add_outer x y | `REAL, _ -> Double.add_outer x y (** Addition. *) let sub (prec:prec) (round:round) (x:t) (y:t) : t = match prec,round with | `SINGLE, `NEAR -> Single.sub_near x y | `SINGLE, `UP -> Single.sub_up x y | `SINGLE, `DOWN -> Single.sub_down x y | `SINGLE, `ZERO -> Single.sub_zero x y | `SINGLE, `ANY -> Single.sub_outer x y | `DOUBLE, `NEAR -> Double.sub_near x y | `DOUBLE, `UP -> Double.sub_up x y | `DOUBLE, `DOWN -> Double.sub_down x y | `DOUBLE, `ZERO -> Double.sub_zero x y | `DOUBLE, `ANY -> Double.sub_outer x y | `REAL, _ -> Double.sub_outer x y (** Subtraction. *) let mul (prec:prec) (round:round) (x:t) (y:t) :t = match prec,round with | `SINGLE, `NEAR -> Single.mul_near x y | `SINGLE, `UP -> Single.mul_up x y | `SINGLE, `DOWN -> Single.mul_down x y | `SINGLE, `ZERO -> Single.mul_zero x y | `SINGLE, `ANY -> Single.mul_outer x y | `DOUBLE, `NEAR -> Double.mul_near x y | `DOUBLE, `UP -> Double.mul_up x y | `DOUBLE, `DOWN -> Double.mul_down x y | `DOUBLE, `ZERO -> Double.mul_zero x y | `DOUBLE, `ANY -> Double.mul_outer x y | `REAL, _ -> Double.mul_outer x y (** Multiplication. *) let div (prec:prec) (round:round) (x:t) (y:t) : t_with_bot = match prec,round with | `SINGLE, `NEAR -> Single.div_near x y | `SINGLE, `UP -> Single.div_up x y | `SINGLE, `DOWN -> Single.div_down x y | `SINGLE, `ZERO -> Single.div_zero x y | `SINGLE, `ANY -> Single.div_outer x y | `DOUBLE, `NEAR -> Double.div_near x y | `DOUBLE, `UP -> Double.div_up x y | `DOUBLE, `DOWN -> Double.div_down x y | `DOUBLE, `ZERO -> Double.div_zero x y | `DOUBLE, `ANY -> Double.div_outer x y | `REAL, _ -> Double.div_outer x y (** Division. *) let div_unmerged (prec:prec) (round:round) (x:t) (y:t) : t list = match prec,round with | `SINGLE, `NEAR -> Single.div_unmerged_near x y | `SINGLE, `UP -> Single.div_unmerged_up x y | `SINGLE, `DOWN -> Single.div_unmerged_down x y | `SINGLE, `ZERO -> Single.div_unmerged_zero x y | `SINGLE, `ANY -> Single.div_unmerged_outer x y | `DOUBLE, `NEAR -> Double.div_unmerged_near x y | `DOUBLE, `UP -> Double.div_unmerged_up x y | `DOUBLE, `DOWN -> Double.div_unmerged_down x y | `DOUBLE, `ZERO -> Double.div_unmerged_zero x y | `DOUBLE, `ANY -> Double.div_unmerged_outer x y | `REAL, _ -> Double.div_unmerged_outer x y (** Division. Returns a list of intervals to remain precise. *) let square (prec:prec) (round:round) (x:t) : t = match prec,round with | `SINGLE, `NEAR -> Single.square_near x | `SINGLE, `UP -> Single.square_up x | `SINGLE, `DOWN -> Single.square_down x | `SINGLE, `ZERO -> Single.square_zero x | `SINGLE, `ANY -> Single.square_outer x | `DOUBLE, `NEAR -> Double.square_near x | `DOUBLE, `UP -> Double.square_up x | `DOUBLE, `DOWN -> Double.square_down x | `DOUBLE, `ZERO -> Double.square_zero x | `DOUBLE, `ANY -> Double.square_outer x | `REAL, _ -> Double.square_outer x (** Square. *) let sqrt (prec:prec) (round:round) (x:t) : t_with_bot = match prec,round with | `SINGLE, `NEAR -> Single.sqrt_near x | `SINGLE, `UP -> Single.sqrt_up x | `SINGLE, `DOWN -> Single.sqrt_down x | `SINGLE, `ZERO -> Single.sqrt_zero x | `SINGLE, `ANY -> Single.sqrt_outer x | `DOUBLE, `NEAR -> Double.sqrt_near x | `DOUBLE, `UP -> Double.sqrt_up x | `DOUBLE, `DOWN -> Double.sqrt_down x | `DOUBLE, `ZERO -> Double.sqrt_zero x | `DOUBLE, `ANY -> Double.sqrt_outer x | `REAL, _ -> Double.sqrt_outer x (** Square root. *) let round_int (prec:prec) (round:round) (x:t) : t = match prec,round with | `SINGLE, `NEAR -> Single.round_int_near x | `SINGLE, `UP -> Single.round_int_up x | `SINGLE, `DOWN -> Single.round_int_down x | `SINGLE, `ZERO -> Single.round_int_zero x | `SINGLE, `ANY -> Single.round_int_outer x | `DOUBLE, `NEAR -> Double.round_int_near x | `DOUBLE, `UP -> Double.round_int_up x | `DOUBLE, `DOWN -> Double.round_int_down x | `DOUBLE, `ZERO -> Double.round_int_zero x | `DOUBLE, `ANY -> Double.round_int_outer x | `REAL, _ -> Double.round_int_outer x (** Round to integer. *) let unround_int (prec:prec) (round:round) (x:t) : t = match prec,round with | `SINGLE, `NEAR -> Single.unround_int_near x | `SINGLE, `UP -> Single.unround_int_up x | `SINGLE, `DOWN -> Single.unround_int_down x | `SINGLE, `ZERO -> Single.unround_int_zero x | `SINGLE, `ANY -> Single.unround_int_any x | `DOUBLE, `NEAR -> Double.unround_int_near x | `DOUBLE, `UP -> Double.unround_int_up x | `DOUBLE, `DOWN -> Double.unround_int_down x | `DOUBLE, `ZERO -> Double.unround_int_zero x | `DOUBLE, `ANY -> Double.unround_int_any x | `REAL, _ -> x (** Backward round to integer. *) let round (prec:prec) (round:round) (x:t) : t = match prec,round with | `SINGLE, `NEAR -> Single.of_double_near x.lo x.up | `SINGLE, `UP -> Single.of_double_up x.lo x.up | `SINGLE, `DOWN -> Single.of_double_down x.lo x.up | `SINGLE, `ZERO -> Single.of_double_zero x.lo x.up | `SINGLE, `ANY -> Single.of_double_outer x.lo x.up | `DOUBLE, _ -> x | `REAL, _ -> x (** Round to float. *) let unround (prec:prec) (round:round) (x:t) : t = match prec,round with | `SINGLE, `NEAR -> Single.unround_near x | `SINGLE, `UP -> Single.unround_up x | `SINGLE, `DOWN -> Single.unround_down x | `SINGLE, `ZERO -> Single.unround_zero x | `SINGLE, `ANY -> Single.unround_any x | `DOUBLE, `NEAR -> Double.unround_near x | `DOUBLE, `UP -> Double.unround_up x | `DOUBLE, `DOWN -> Double.unround_down x | `DOUBLE, `ZERO -> Double.unround_zero x | `DOUBLE, `ANY -> Double.unround_any x | `REAL, _ -> x (** Backward round to float. *) let of_int (prec:prec) (round:round) (x:int) (y:int) : t = match prec,round with | `SINGLE, `NEAR -> Single.of_int_near x y | `SINGLE, `UP -> Single.of_int_up x y | `SINGLE, `DOWN -> Single.of_int_down x y | `SINGLE, `ZERO -> Single.of_int_zero x y | `SINGLE, `ANY -> Single.of_int_outer x y | `DOUBLE, `NEAR -> Double.of_int_near x y | `DOUBLE, `UP -> Double.of_int_up x y | `DOUBLE, `DOWN -> Double.of_int_down x y | `DOUBLE, `ZERO -> Double.of_int_zero x y | `DOUBLE, `ANY -> Double.of_int_outer x y | `REAL, _ -> Double.of_int_outer x y (** Conversion from integer range. *) let of_int64 (prec:prec) (round:round) (x:int64) (y:int64) : t = match prec,round with | `SINGLE, `NEAR -> Single.of_int64_near x y | `SINGLE, `UP -> Single.of_int64_up x y | `SINGLE, `DOWN -> Single.of_int64_down x y | `SINGLE, `ZERO -> Single.of_int64_zero x y | `SINGLE, `ANY -> Single.of_int64_outer x y | `DOUBLE, `NEAR -> Double.of_int64_near x y | `DOUBLE, `UP -> Double.of_int64_up x y | `DOUBLE, `DOWN -> Double.of_int64_down x y | `DOUBLE, `ZERO -> Double.of_int64_zero x y | `DOUBLE, `ANY -> Double.of_int64_outer x y | `REAL, _ -> Double.of_int64_outer x y (** Conversion from int64 range. *) let of_z (prec:prec) (round:round) (x:Z.t) (y:Z.t) : t = match prec,round with | `SINGLE, `NEAR -> Single.of_z_near x y | `SINGLE, `UP -> Single.of_z_up x y | `SINGLE, `DOWN -> Single.of_z_down x y | `SINGLE, `ZERO -> Single.of_z_zero x y | `SINGLE, `ANY -> Single.of_z_outer x y | `DOUBLE, `NEAR -> Double.of_z_near x y | `DOUBLE, `UP -> Double.of_z_up x y | `DOUBLE, `DOWN -> Double.of_z_down x y | `DOUBLE, `ZERO -> Double.of_z_zero x y | `DOUBLE, `ANY -> Double.of_z_outer x y | `REAL, _ -> Double.of_z_outer x y (** Conversion from integer range. *) let filter_leq (prec:prec) (x:t) (y:t) : (t*t) with_bot = match prec with | `DOUBLE | `REAL -> Double.filter_leq x y | `SINGLE -> Single.filter_leq x y (** <= filtering. *) let filter_geq (prec:prec) (x:t) (y:t) : (t*t) with_bot = match prec with | `DOUBLE | `REAL -> Double.filter_geq x y | `SINGLE -> Single.filter_geq x y (** >= filtering. *) let filter_lt (prec:prec) (x:t) (y:t) : (t*t) with_bot = match prec with | `DOUBLE -> Double.filter_lt x y | `SINGLE -> Single.filter_lt x y | `REAL -> Double.filter_leq x y (** < filtering. *) let filter_gt (prec:prec) (x:t) (y:t) : (t*t) with_bot = match prec with | `DOUBLE -> Double.filter_gt x y | `SINGLE -> Single.filter_gt x y | `REAL -> Double.filter_geq x y (** > filtering. *) let filter_eq (prec:prec) (x:t) (y:t) : (t*t) with_bot = match prec with | `DOUBLE | `REAL -> Double.filter_eq x y | `SINGLE -> Single.filter_eq x y (** == filtering. *) let filter_neq (prec:prec) (x:t) (y:t) : (t*t) with_bot = match prec with | `DOUBLE -> Double.filter_neq x y | `SINGLE -> Single.filter_neq x y | `REAL -> Nb (x,y) (** != filtering. *) let meet_nonzero (prec:prec) (x:t) : t with_bot = match prec with | `DOUBLE -> Double.meet_nonzero x | `SINGLE -> Single.meet_nonzero x | `REAL -> Nb x let bwd_add (prec:prec) (round:round) (x:t) (y:t) (r:t) : (t*t) with_bot = match prec,round with | `SINGLE, `NEAR -> Single.bwd_add_near x y r | `SINGLE, `UP -> Single.bwd_add_up x y r | `SINGLE, `DOWN -> Single.bwd_add_down x y r | `SINGLE, `ZERO -> Single.bwd_add_zero x y r | `SINGLE, `ANY -> Single.bwd_add_any x y r | `DOUBLE, `NEAR -> Double.bwd_add_near x y r | `DOUBLE, `UP -> Double.bwd_add_up x y r | `DOUBLE, `DOWN -> Double.bwd_add_down x y r | `DOUBLE, `ZERO -> Double.bwd_add_zero x y r | `DOUBLE, `ANY -> Double.bwd_add_any x y r | `REAL, _ -> Double.bwd_add_noround x y r (** Backward addition. *) let bwd_sub (prec:prec) (round:round) (x:t) (y:t) (r:t) : (t*t) with_bot = match prec,round with | `SINGLE, `NEAR -> Single.bwd_sub_near x y r | `SINGLE, `UP -> Single.bwd_sub_up x y r | `SINGLE, `DOWN -> Single.bwd_sub_down x y r | `SINGLE, `ZERO -> Single.bwd_sub_zero x y r | `SINGLE, `ANY -> Single.bwd_sub_any x y r | `DOUBLE, `NEAR -> Double.bwd_sub_near x y r | `DOUBLE, `UP -> Double.bwd_sub_up x y r | `DOUBLE, `DOWN -> Double.bwd_sub_down x y r | `DOUBLE, `ZERO -> Double.bwd_sub_zero x y r | `DOUBLE, `ANY -> Double.bwd_sub_any x y r | `REAL, _ -> Double.bwd_sub_noround x y r (** Backward subtraction. *) let bwd_mul (prec:prec) (round:round) (x:t) (y:t) (r:t) : (t*t) with_bot = match prec,round with | `SINGLE, `NEAR -> Single.bwd_mul_near x y r | `SINGLE, `UP -> Single.bwd_mul_up x y r | `SINGLE, `DOWN -> Single.bwd_mul_down x y r | `SINGLE, `ZERO -> Single.bwd_mul_zero x y r | `SINGLE, `ANY -> Single.bwd_mul_any x y r | `DOUBLE, `NEAR -> Double.bwd_mul_near x y r | `DOUBLE, `UP -> Double.bwd_mul_up x y r | `DOUBLE, `DOWN -> Double.bwd_mul_down x y r | `DOUBLE, `ZERO -> Double.bwd_mul_zero x y r | `DOUBLE, `ANY -> Double.bwd_mul_any x y r | `REAL, _ -> Double.bwd_mul_noround x y r (** Backward multiplication. *) let bwd_div (prec:prec) (round:round) (x:t) (y:t) (r:t) : (t*t) with_bot = match prec,round with | `SINGLE, `NEAR -> Single.bwd_div_near x y r | `SINGLE, `UP -> Single.bwd_div_up x y r | `SINGLE, `DOWN -> Single.bwd_div_down x y r | `SINGLE, `ZERO -> Single.bwd_div_zero x y r | `SINGLE, `ANY -> Single.bwd_div_any x y r | `DOUBLE, `NEAR -> Double.bwd_div_near x y r | `DOUBLE, `UP -> Double.bwd_div_up x y r | `DOUBLE, `DOWN -> Double.bwd_div_down x y r | `DOUBLE, `ZERO -> Double.bwd_div_zero x y r | `DOUBLE, `ANY -> Double.bwd_div_any x y r | `REAL, _ -> Double.bwd_div_noround x y r (** Backward division. *) let bwd_round_int (prec:prec) (round:round) (x:t) (r:t) : t_with_bot = match prec,round with | `SINGLE, `NEAR -> Single.bwd_round_int_near x r | `SINGLE, `UP -> Single.bwd_round_int_up x r | `SINGLE, `DOWN -> Single.bwd_round_int_down x r | `SINGLE, `ZERO -> Single.bwd_round_int_zero x r | `SINGLE, `ANY -> Single.bwd_round_int_any x r | `DOUBLE, `NEAR -> Double.bwd_round_int_near x r | `DOUBLE, `UP -> Double.bwd_round_int_up x r | `DOUBLE, `DOWN -> Double.bwd_round_int_down x r | `DOUBLE, `ZERO -> Double.bwd_round_int_zero x r | `DOUBLE, `ANY -> Double.bwd_round_int_any x r | `REAL, _ -> Double.bwd_round_int_noround x r (** Backward rounding to integer. *) let bwd_round (prec:prec) (round:round) (x:t) (r:t) : t_with_bot = match prec,round with | `SINGLE, `NEAR -> Single.bwd_round_near x r | `SINGLE, `UP -> Single.bwd_round_up x r | `SINGLE, `DOWN -> Single.bwd_round_down x r | `SINGLE, `ZERO -> Single.bwd_round_zero x r | `SINGLE, `ANY -> Single.bwd_round_any x r | `DOUBLE, `NEAR -> Double.bwd_round_near x r | `DOUBLE, `UP -> Double.bwd_round_up x r | `DOUBLE, `DOWN -> Double.bwd_round_down x r | `DOUBLE, `ZERO -> Double.bwd_round_zero x r | `DOUBLE, `ANY -> Double.bwd_round_any x r | `REAL, _ -> Double.bwd_round_noround x r (** Backward rounding to float. *) let bwd_square (prec:prec) (round:round) (x:t) (r:t) : t_with_bot = match prec,round with | `SINGLE, `NEAR -> Single.bwd_square_near x r | `SINGLE, `UP -> Single.bwd_square_up x r | `SINGLE, `DOWN -> Single.bwd_square_down x r | `SINGLE, `ZERO -> Single.bwd_square_zero x r | `SINGLE, `ANY -> Single.bwd_square_any x r | `DOUBLE, `NEAR -> Double.bwd_square_near x r | `DOUBLE, `UP -> Double.bwd_square_up x r | `DOUBLE, `DOWN -> Double.bwd_square_down x r | `DOUBLE, `ZERO -> Double.bwd_square_zero x r | `DOUBLE, `ANY -> Double.bwd_square_any x r | `REAL, _ -> Double.bwd_square_noround x r (** Backward square. *) let bwd_sqrt (prec:prec) (round:round) (x:t) (r:t) : t_with_bot = match prec,round with | `SINGLE, `NEAR -> Single.bwd_sqrt_near x r | `SINGLE, `UP -> Single.bwd_sqrt_up x r | `SINGLE, `DOWN -> Single.bwd_sqrt_down x r | `SINGLE, `ZERO -> Single.bwd_sqrt_zero x r | `SINGLE, `ANY -> Single.bwd_sqrt_any x r | `DOUBLE, `NEAR -> Double.bwd_sqrt_near x r | `DOUBLE, `UP -> Double.bwd_sqrt_up x r | `DOUBLE, `DOWN -> Double.bwd_sqrt_down x r | `DOUBLE, `ZERO -> Double.bwd_sqrt_zero x r | `DOUBLE, `ANY -> Double.bwd_sqrt_any x r | `REAL, _ -> Double.bwd_sqrt_noround x r (** Backward square root. *) let bwd_of_z (prec:prec) (round:round) (lo:Z.t) (up:Z.t) (r:t) : (Z.t*Z.t) with_bot = match prec,round with | `SINGLE, `NEAR -> Single.bwd_of_z_near lo up r | `SINGLE, `UP -> Single.bwd_of_z_up lo up r | `SINGLE, `DOWN -> Single.bwd_of_z_down lo up r | `SINGLE, `ZERO -> Single.bwd_of_z_zero lo up r | `SINGLE, `ANY -> Single.bwd_of_z_any lo up r | `DOUBLE, `NEAR -> Double.bwd_of_z_near lo up r | `DOUBLE, `UP -> Double.bwd_of_z_up lo up r | `DOUBLE, `DOWN -> Double.bwd_of_z_down lo up r | `DOUBLE, `ZERO -> Double.bwd_of_z_zero lo up r | `DOUBLE, `ANY -> Double.bwd_of_z_any lo up r | `REAL, _ -> Double.bwd_of_z_noround lo up r (** Backward conversion from int. *) let bwd_to_z (prec:prec) (lo:Z.t) (up:Z.t) (r:t) : t_with_bot = match prec with | `DOUBLE | `REAL -> Double.bwd_to_z lo up r | `SINGLE -> Single.bwd_to_z lo up r (** Backward conversion to integer. *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>