Source file apron_transformer.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
(** ToolBox module for Apron interfacing *)
open Mopsa
open Common
open Ast
open Apron_manager
module ApronTransformer(ApronManager : APRONMANAGER) =
struct
let debug fmt = Debug.debug ~channel:"universal.numeric.relational.apron_transformer" fmt
let with_context ctx a = a, ctx
let is_numerical_var (v: var): bool =
match vtyp v with
| T_bool | T_int | T_float _ -> true
| _ -> false
let empty_env = Apron.Environment.make [| |] [| |]
let print_env = Apron.Environment.print
~first:("[")
~sep:(",")
~last:("]")
let filter_env int_filter real_filter env =
let int_var, real_var = Apron.Environment.vars env in
let list_int_var_to_keep =
Array.fold_left (fun list_int_var_to_keep int_var ->
if int_filter int_var then
int_var :: list_int_var_to_keep
else list_int_var_to_keep
) [] int_var
in
let list_real_var_to_keep =
Array.fold_left (fun list_real_var_to_keep real_var ->
if real_filter real_var then
real_var :: list_real_var_to_keep
else list_real_var_to_keep
) [] real_var
in
let array_int_res = Array.of_list list_int_var_to_keep in
let array_real_res = Array.of_list list_real_var_to_keep in
Apron.Environment.make array_int_res array_real_res
let fold_env f env acc =
let int_var, real_var = Apron.Environment.vars env in
let acc' = Array.fold_left (fun acc x -> f x acc) acc int_var in
Array.fold_left (fun acc x -> f x acc) acc' real_var
let exists_env f env =
let exception Exists in
try
let () = fold_env (fun e () -> if f e then raise Exists) env () in
false
with
| Exists -> true
let gce a b =
filter_env
(fun int_var -> Apron.Environment.mem_var b int_var)
(fun int_var -> Apron.Environment.mem_var b int_var)
a
let diff a b =
filter_env
(fun int_var -> not (Apron.Environment.mem_var b int_var))
(fun int_var -> not (Apron.Environment.mem_var b int_var))
a
(** Construct a list of linear constraints from an abstract value. *)
let to_constraints (a,bnd) =
let earray = Apron.Abstract1.to_lincons_array ApronManager.man a in
let ll = ref [] in
for i = 0 to Apron.Lincons1.array_length earray -1 do
let l = ref [] in
let cons = Apron.Lincons1.array_get earray i in
Apron.Lincons1.iter (fun c v ->
l := (c, Binding.apron_to_mopsa_var v bnd) :: !l
) cons;
ll := (!l, Apron.Lincons1.get_cst cons, Apron.Lincons1.get_typ cons) :: !ll
done;
!ll
(** Restrict linear constraints involving variable [v] *)
let constraints_of_var v constraints =
List.filter (fun (cons,_,_) ->
List.exists (fun (c, v') ->
(compare_var v v' = 0)
&& not (Apron.Coeff.is_zero c)
) cons
) constraints
(** Get the list of variables with which [v] has numeric relations. Note that
this function performs only one search iteration and doesn't return all
related variables. *)
let related_vars v (a,bnd) =
to_constraints (a,bnd) |>
constraints_of_var v |>
List.fold_left (fun acc (cons,_,_) ->
List.fold_left (fun acc (c, v') ->
if compare_var v v' <> 0 && not (Apron.Coeff.is_zero c) then
v' :: acc
else
acc
) acc cons
) []
(** Get the list of constant variables *)
let constant_vars (a,bnd) =
let rec iter candidate l =
match l with
| [] -> candidate
| (c, v) :: tl ->
if Apron.Coeff.is_zero c
then iter candidate tl
else
match candidate with
| Some vv -> None
| None -> iter (Some v) tl
in
to_constraints (a,bnd) |>
List.fold_left (fun acc (cons,c,t) ->
match t with
| Apron.Lincons1.EQ ->
begin
match iter None cons with
| None -> acc
| Some v -> v :: acc
end
| _ -> acc
) []
(** Similar to [get_related_vars], but ensures that all related variables are returned. *)
let all_related_vars v a =
let rec iter acc wq =
if VarSet.is_empty wq then acc
else
let v = VarSet.choose wq in
let wq = VarSet.remove v wq in
if VarSet.mem v acc then iter acc wq
else
let acc = VarSet.add v acc in
let related = related_vars v a |> VarSet.of_list in
let new_related = VarSet.diff related acc in
let wq = VarSet.union wq new_related in
iter acc wq
in
iter VarSet.empty (VarSet.singleton v) |>
VarSet.elements
exception UnsupportedExpression
exception ImpreciseExpression
let binop_to_apron = function
| O_plus -> Apron.Texpr1.Add
| O_minus -> Apron.Texpr1.Sub
| O_mult -> Apron.Texpr1.Mul
| O_div -> Apron.Texpr1.Div
| O_ediv -> Apron.Texpr1.Div
| O_mod -> Apron.Texpr1.Mod
| O_erem -> Apron.Texpr1.Mod
| _ -> raise ImpreciseExpression
let typ_to_apron = function
| T_bool -> Apron.Texpr1.Int
| T_int -> Apron.Texpr1.Int
| T_float F_SINGLE -> Apron.Texpr1.Single
| T_float F_DOUBLE -> Apron.Texpr1.Double
| T_float F_LONG_DOUBLE -> Apron.Texpr1.Extended
| T_float F_FLOAT128 -> Apron.Texpr1.Extended
| T_float F_REAL -> Apron.Texpr1.Real
| t -> panic ~loc:__LOC__ "typ_to_apron: unsupported type %a" pp_typ t
let is_env_var v (abs,bnd) =
let env = Apron.Abstract1.env abs in
Apron.Environment.mem_var env (Binding.mopsa_to_apron_var v bnd |> fst)
let is_env_var_apron v abs =
let env = Apron.Abstract1.env abs in
Apron.Environment.mem_var env v
let remove_tmp tmpl abs =
let env = Apron.Abstract1.env abs in
let vars =
List.filter (fun v -> is_env_var_apron v abs) tmpl
in
let env = Apron.Environment.remove env (Array.of_list vars) in
Apron.Abstract1.change_environment ApronManager.man abs env true
let rec exp_to_apron isnan exp (abs,bnd) l =
if not (is_numeric_type (etyp exp)) then raise UnsupportedExpression else
match ekind exp with
| E_constant (C_int_interval (ItvUtils.IntBound.Finite lo, ItvUtils.IntBound.Finite hi)) when Z.(lo = hi) ->
Apron.Texpr1.Cst(Apron.Coeff.Scalar(Apron.Scalar.of_mpq @@ Mpq.of_string @@ Z.to_string lo)),
abs, bnd, l
| E_constant C_top _
| E_constant C_int_interval _
| E_constant C_float_interval _
| E_unop (O_wrap _, _) ->
raise ImpreciseExpression
| E_constant(C_bool true) ->
Apron.Texpr1.Cst(Apron.Coeff.Scalar(Apron.Scalar.of_int 1)),
abs, bnd, l
| E_constant(C_bool false) ->
Apron.Texpr1.Cst(Apron.Coeff.Scalar(Apron.Scalar.of_int 0)),
abs, bnd, l
| E_constant(C_int n) ->
Apron.Texpr1.Cst(Apron.Coeff.Scalar(Apron.Scalar.of_mpq @@ Mpq.of_string @@ Z.to_string n)),
abs, bnd, l
| E_constant(C_float f) ->
Apron.Texpr1.Cst(Apron.Coeff.Scalar(Apron.Scalar.of_float f)),
abs, bnd, l
| E_var (x, mode) when var_mode x mode = STRONG ->
let xx, bnd = Binding.mopsa_to_apron_var x bnd in
Apron.Texpr1.Var(xx), abs, bnd, l
| E_var (x, mode) when var_mode x mode = WEAK ->
let x' = mktmp ~typ:exp.etyp () in
let x_apr, bnd = Binding.mopsa_to_apron_var x bnd in
let x_apr', _ = Binding.mopsa_to_apron_var x' bnd in
let abs = Apron.Abstract1.expand ApronManager.man abs x_apr [| x_apr' |] in
(Apron.Texpr1.Var x_apr', abs, bnd, x_apr' :: l)
| E_binop(O_convex_join, e1, e2) ->
let tmp = mktmp ~typ:exp.etyp () in
let tmp_apr, _ = Binding.mopsa_to_apron_var tmp bnd in
let env = Apron.Environment.add (Apron.Abstract1.env abs) [|tmp_apr|] [||] in
let abs = Apron.Abstract1.change_environment ApronManager.man abs env false in
let e1', abs, bnd, l = exp_to_apron isnan e1 (abs,bnd) l in
let e2', abs, bnd, l = exp_to_apron isnan e2 (abs,bnd) l in
let typ' = typ_to_apron exp.etyp in
let round = if typ' = Apron.Texpr1.Int then Apron.Texpr1.Zero else !opt_float_rounding in
let constraints_1 = tcons_array_of_tcons_list env [
Apron.Tcons1.make (Apron.Texpr1.binop Apron.Texpr0.Sub (Apron.Texpr1.var env tmp_apr) (Apron.Texpr1.of_expr env e1') typ' round) Apron.Lincons0.SUPEQ;
Apron.Tcons1.make (Apron.Texpr1.binop Apron.Texpr0.Sub (Apron.Texpr1.of_expr env e2') (Apron.Texpr1.var env tmp_apr) typ' round) Apron.Lincons0.SUPEQ;
] in
let abs_1 = Apron.Abstract1.meet_tcons_array ApronManager.man abs constraints_1 in
let constraints_2 = tcons_array_of_tcons_list env [
Apron.Tcons1.make (Apron.Texpr1.binop Apron.Texpr0.Sub (Apron.Texpr1.var env tmp_apr) (Apron.Texpr1.of_expr env e2') typ' round) Apron.Lincons0.SUPEQ;
Apron.Tcons1.make (Apron.Texpr1.binop Apron.Texpr0.Sub (Apron.Texpr1.of_expr env e1') (Apron.Texpr1.var env tmp_apr) typ' round) Apron.Lincons0.SUPEQ;
] in
let abs_2 = Apron.Abstract1.meet_tcons_array ApronManager.man abs constraints_2 in
let abs = Apron.Abstract1.join ApronManager.man abs_1 abs_2 in
(Apron.Texpr1.Var tmp_apr, abs, bnd, tmp_apr :: l)
| E_binop((O_ediv|O_erem) as binop, e1, e2) ->
let binop' = binop_to_apron binop in
let e1', abs, bnd, l = exp_to_apron isnan e1 (abs,bnd) l in
let e2', abs, bnd, l = exp_to_apron isnan e2 (abs,bnd) l in
let typ' = typ_to_apron exp.etyp in
let round = if typ' = Apron.Texpr1.Int then Apron.Texpr1.Down else !opt_float_rounding in
Apron.Texpr1.Binop(binop', e1', e2', typ', round), abs, bnd, l
| E_binop(binop, e1, e2) ->
let binop' = binop_to_apron binop in
let e1', abs, bnd, l = exp_to_apron isnan e1 (abs,bnd) l in
let e2', abs, bnd, l = exp_to_apron isnan e2 (abs,bnd) l in
let typ' = typ_to_apron exp.etyp in
let round = if typ' = Apron.Texpr1.Int then Apron.Texpr1.Zero else !opt_float_rounding in
Apron.Texpr1.Binop(binop', e1', e2', typ', round), abs, bnd, l
| E_unop (O_plus, e) ->
exp_to_apron isnan e (abs,bnd) l
| E_unop(O_cast, e) ->
let e', abs, bnd, l = exp_to_apron isnan e (abs,bnd) l in
let typ' = typ_to_apron exp.etyp in
let round = if typ' = Apron.Texpr1.Int then Apron.Texpr1.Zero else !opt_float_rounding in
Apron.Texpr1.Unop(Apron.Texpr1.Cast, e', typ', round), abs, bnd, l
| E_unop(O_minus, e) ->
let e', abs, bnd, l = exp_to_apron isnan e (abs,bnd) l in
let typ' = typ_to_apron e.etyp in
let round = if typ' = Apron.Texpr1.Int then Apron.Texpr1.Zero else !opt_float_rounding in
Apron.Texpr1.Unop(Apron.Texpr1.Neg, e', typ', round), abs, bnd, l
| E_unop(O_sqrt, e) ->
let e', abs, bnd, l = exp_to_apron isnan e (abs,bnd) l in
let typ' = typ_to_apron exp.etyp in
Apron.Texpr1.Unop(Apron.Texpr1.Sqrt, e', typ', !opt_float_rounding), abs, bnd, l
| _ ->
raise ImpreciseExpression
and bexp_to_apron isnan exp (abs,bnd) l =
match ekind exp with
| E_binop((O_gt | O_ge | O_lt | O_le | O_eq) as comp_op, e0 , e1) ->
if (is_float_type (etyp e0) && isnan e0) || (is_float_type (etyp e1) && isnan e1) then raise ImpreciseExpression;
let e0', abs, bnd, l = exp_to_apron isnan e0 (abs,bnd) l in
let e1', abs, bnd, l = exp_to_apron isnan e1 (abs,bnd) l in
let rev, apron_comp_op = match comp_op with
| O_gt -> false, Apron.Tcons1.SUP
| O_ge -> false, Apron.Tcons1.SUPEQ
| O_lt -> true, Apron.Tcons1.SUP
| O_le -> true, Apron.Tcons1.SUPEQ
| O_eq -> false, Apron.Tcons1.EQ
| _ -> assert false
in
let e0', t0, e1', t1 =
if rev then e1', e1.etyp, e0', e0.etyp
else e0', e0.etyp, e1', e1.etyp in
Dnf.singleton (apron_comp_op, e0', t0, e1', t1), abs, bnd, l
| E_binop(O_ne, e0, e1) ->
if (is_float_type (etyp e0) && isnan e0) || (is_float_type (etyp e1) && isnan e1) then raise ImpreciseExpression;
let e0', abs, bnd, l = exp_to_apron isnan e0 (abs,bnd) l in
let e1', abs, bnd, l = exp_to_apron isnan e1 (abs,bnd) l in
Dnf.mk_or
(Dnf.singleton (Apron.Tcons1.SUP, e0', e0.etyp, e1', e1.etyp))
(Dnf.singleton (Apron.Tcons1.SUP, e1', e1.etyp, e0', e0.etyp)),
abs, bnd, l
| E_binop(O_log_or, e1, e2) ->
let e1', abs, bnd, l = bexp_to_apron isnan e1 (abs,bnd) l in
let e2', abs, bnd, l = bexp_to_apron isnan e2 (abs,bnd) l in
Dnf.mk_or e1' e2', abs, bnd, l
| E_binop(O_log_and,e1, e2) ->
let e1', abs, bnd, l = bexp_to_apron isnan e1 (abs,bnd) l in
let e2', abs, bnd, l = bexp_to_apron isnan e2 (abs,bnd) l in
Dnf.mk_and e1' e2', abs, bnd, l
| E_binop(O_log_xor, e1, e2) ->
let e1' = mk_binop ~etyp:T_bool e1 O_eq (mk_zero ~typ:T_int exp.erange) exp.erange in
let e2' = mk_binop ~etyp:T_bool e1 O_eq (mk_zero ~typ:T_int exp.erange) exp.erange in
let e1', abs, bnd, l = exp_to_apron isnan e1' (abs,bnd) l in
let e2', abs, bnd, l = exp_to_apron isnan e2' (abs,bnd) l in
Dnf.singleton (Apron.Tcons1.DISEQ, e1', T_bool, e2', T_bool), abs, bnd, l
| E_unop(O_log_not, exp') ->
let dnf, abs, bnd, l = bexp_to_apron isnan exp' (abs,bnd) l in
Dnf.mk_neg (fun (op, e1, t1, e2, t2) ->
match op with
| Apron.Tcons1.EQ ->
Dnf.mk_or
(Dnf.singleton (Apron.Tcons1.SUP, e1, t1, e2, t2))
(Dnf.singleton (Apron.Tcons1.SUP, e2, t2, e1, t1))
| Apron.Tcons1.SUP ->
Dnf.singleton (Apron.Tcons1.SUPEQ, e2, t2, e1, t1)
| Apron.Tcons1.SUPEQ ->
Dnf.singleton (Apron.Tcons1.SUP, e2, t2, e1, t1)
| _ -> assert false
) dnf,
abs, bnd, l
| _ ->
let e0', abs, bnd, l = exp_to_apron isnan exp (abs,bnd) l in
let e1' = Apron.Texpr1.Cst(Apron.Coeff.s_of_int 0) in
Dnf.mk_or
(Dnf.singleton (Apron.Tcons1.SUP, e0', exp.etyp, e1', T_int))
(Dnf.singleton (Apron.Tcons1.SUP, e1', T_int, e0', exp.etyp)),
abs, bnd, l
and tcons_array_of_tcons_list env l =
let n = List.length l in
let cond_array = Apron.Tcons1.array_make env n in
let () = List.iteri (fun i c ->
Apron.Tcons1.array_set cond_array i c;
) l in
cond_array
end