package logtk

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file HO_unif.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586

(* This file is free software, part of Zipperposition. See file "license" for more details. *)

(** {1 Higher-Order Unification} *)

module RW = Rewrite
module T = Term
module US = Unif_subst

let stat_unif_calls = Util.mk_stat "ho_unif.calls"
let stat_unif_steps = Util.mk_stat "ho_unif.steps"

let prof_norm_subst = Util.mk_profiler "ho_unif.norm_subst"

let section = Util.Section.make "ho_unif"

type term = Term.t

type penalty = int
(** penalty on the search space *)

type pair = Type.t list * term * term

(* options *)

let default_fuel = ref 15

let enable_norm_subst = ref true

(* number of ty and non-ty arguments *)
let term_arity args =
  args
  |> Util.take_drop_while (fun t -> T.is_type t)
  |> CCPair.map List.length List.length

let enum_prop ?(mode=`Full) ((v:Term.var), sc_v) ~offset : (Subst.t * penalty) list =
  let ty_v = HVar.ty v in
  let n, ty_args, ty_ret = Type.open_poly_fun ty_v in
  assert (Type.is_prop ty_ret);
  if n>0 then [] (* FIXME: what to do? *)
  else (
    (* local variables to build the λ-term *)
    let vars = List.mapi (fun i ty -> HVar.make ~ty i) ty_args in
    (* projection with "¬": [λvars. ¬ (F vars)] *)
    let l_not = match mode with
      | `None -> None
      | `Neg | `Full ->
        let f = HVar.make offset ~ty:ty_v in
        T.fun_of_fvars vars
          (T.Form.not_ (T.app (T.var f) (List.map T.var vars)))
        |> CCOpt.return
    (* projection with "∧": [λvars. (F1 vars) ∧ (F2 vars)] *)
    and l_and = match mode with
      | `Neg | `None -> None
      | `Full ->
        let f = HVar.make offset ~ty:ty_v in
        let g = HVar.make (offset+1) ~ty:ty_v in
        T.fun_of_fvars vars
          (T.Form.and_
             (T.app (T.var f) (List.map T.var vars))
             (T.app (T.var g) (List.map T.var vars)))
        |> CCOpt.return
    (* projection with "=": [λvars. (F1 vars) = (F2 vars)]
       where [F1 : Πa. ty_args -> a] *)
    and l_eq = match mode with
      | `Neg | `None -> None
      | `Full ->
        let a = HVar.make offset ~ty:Type.tType in
        let ty_fun = Type.arrow ty_args (Type.var a) in
        let f = HVar.make (offset+1) ~ty:ty_fun in
        let g = HVar.make (offset+2) ~ty:ty_fun in
        T.fun_of_fvars vars
          (T.Form.eq
             (T.app (T.var f) (List.map T.var vars))
             (T.app (T.var g) (List.map T.var vars)))
        |> CCOpt.return
    in
    CCList.filter_map
      (fun (o,penalty) -> match o with
         | None -> None
         | Some t ->
           assert (T.DB.is_closed t);
           let subst = Subst.FO.bind' Subst.empty (v,sc_v) (t,sc_v) in
           Some (subst, penalty))
      [ l_not, 2;
        l_and, 5;
        l_eq, 10;
      ]
  )

let pp_pair out ((env,t,u):pair) =
  Format.fprintf out "(@[@[`%a` =?=@]@ `%a`@ :env [@[%a@]]@])"
    T.pp t T.pp u (Util.pp_list ~sep:", " Type.pp) env

module U = struct
  type pb = {
    pairs: pair list;
    subst: US.t;
    penalty: penalty;
    offset: int;
  }

  type state = {
    sc: Scoped.scope;
    mutable fuel: int;
    queue: pb Queue.t;
    offset0: int; (* initial offset *)
    mutable sols: (US.t * penalty) list; (* totally solved *)
  }

  let empty sc fuel offset =
    { sc; fuel; queue=Queue.create(); sols=[]; offset0=offset; }

  let add (st:state) pb : unit = Queue.push pb st.queue

  let pp_pb out (pb:pb) =
    Format.fprintf out "(@[pb :subst %a@ :pairs (@[<hv>%a@])@])"
      US.pp pb.subst (Util.pp_list ~sep:" " pp_pair) pb.pairs

  let pp out (t:state): unit =
    Format.fprintf out
      "(@[<hv2>ho_unif_pb@ %a@])"
      (Util.pp_seq ~sep:" " pp_pb) (Iter.of_queue t.queue)

  (** {6 normalization of pairs} *)

  type pair_kind =
    | P_rigid_rigid
    | P_flex_rigid
    | P_flex_flex

  let classify_pair (_,t,u) = match T.is_ho_app t, T.is_ho_app u with
    | false, false -> P_rigid_rigid
    | false, true
    | true, false -> P_flex_rigid
    | true, true -> P_flex_flex

  let is_flex_flex p = classify_pair p = P_flex_flex

  (* comparison of pairs that put the flex/rigid or rigid/rigid in front *)
  let cmp_pairs p1 p2 : int =
    let hardness =
      function P_rigid_rigid -> 0 | P_flex_rigid -> 1 | P_flex_flex -> 2
    in
    CCOrd.int (classify_pair p1 |> hardness) (classify_pair p2 |> hardness)

  let whnf_deref (subst:US.t) (t,sc) =
    let t = match T.view t with
      | T.Var _ -> US.FO.deref subst (t,sc) |> fst
      | T.App (f, l) when T.is_var f ->
        T.app (US.FO.deref subst (f,sc) |> fst) l
      | _ -> t
    in
    Lambda.whnf t

  let mk_pairs env l1 l2 = List.map2 (fun t u -> env, t, u) l1 l2

  (* perform syntactic unification aggressively on rigid/rigid pairs *)
  let flatten_rigid_rigid sc subst pairs : pair list option =
    try
      let rec aux acc l = match l with
        | [] -> acc
        | (env,t, u) :: tail ->
          (* deref+normalize terms *)
          let t = whnf_deref subst (t,sc) in
          let u = whnf_deref subst (u,sc) in
          begin match T.Classic.view t, T.Classic.view u with
            | _ when T.equal t u -> aux acc tail (* drop trivial *)
            | T.Classic.App (id1, l1), T.Classic.App (id2, l2) ->
              if ID.equal id1 id2 && List.length l1 = List.length l2
              then aux acc (mk_pairs env l1 l2 @ tail)
              else raise Exit (* failure *)
            | T.Classic.AppBuiltin (b1,l1), T.Classic.AppBuiltin (b2,l2) ->
              if Builtin.equal b1 b2 && List.length l1=List.length l2
              then aux acc (mk_pairs env l1 l2 @ tail)
              else raise Exit
            | _ -> aux ((env,t,u) :: acc) tail
          end
      in
      Some (aux [] pairs)
    with Exit ->
      None

  let mk_pb ~subst ~penalty ~offset pairs : pb =
    { subst; penalty; offset; pairs; }

  (* normalize problem w.r.t rigid/rigid equations *)
  let normalize_pb sc (pb:pb): pb option =
    begin match flatten_rigid_rigid sc pb.subst pb.pairs with
      | None -> None
      | Some pairs ->
        let pairs = List.sort cmp_pairs pairs in
        Some { pb with pairs; }
    end

  (** {6 Main loop} *)

  let mk_fresh_var offset ty = offset+1, HVar.make offset ~ty

  let mk_fresh_vars offset ty_l = CCList.fold_map mk_fresh_var offset ty_l

  (* unify [v args] and [t], where [t] is a lambda-term.
     If [t = λy1…yn. body], then the new pair is [v' args…y1…yn = body]
     where [v = λy1…yn. v' args…y1…yn] *)
  let unif_lambda ~offset env v args t : pair list * int =
    assert (T.is_fun t);
    let ty_t_args, t_body = T.open_fun t in
    assert (ty_t_args<>[]);
    assert (not (T.is_fun t_body));
    let all_args = List.map T.ty args @ ty_t_args in
    (* allocate new variable *)
    let offset, v' =
      let ty_v' = Type.arrow all_args (T.ty t_body) in
      mk_fresh_var offset ty_v'
    in
    (* bind [v] to [λavars…y1…yn. v' avars…y1…yn] where [avars] are fresh
       variables standing for [args] *)
    let bind_v =
      let n = List.length all_args in
      let rhs =
        T.app (T.var v')
          (List.mapi (fun i ty -> T.bvar ~ty (n-i-1)) all_args)
        |> T.fun_l all_args
      in
      env, T.var v, rhs
    (* unify [v' args…t_vars = t_body] *)
    and new_pair_body =
      let n = List.length ty_t_args in
      let lhs =
        T.app (T.var v')
          (List.map (T.DB.shift n) args @
             List.mapi (fun i ty -> T.bvar ~ty (n-i-1)) ty_t_args) in
      ty_t_args @ env, lhs, t_body
    in
    let new_pairs = [ bind_v; new_pair_body ] in
    new_pairs, offset

  let delay_pair (p:pair) sc : Unif_constr.t =
    let env, t1, t2 = p in
    let t1 = T.fun_l env t1 in
    let t2 = T.fun_l env t2 in
    let tags = [Proof.Tag.T_ho] in
    Unif_constr.FO.make ~tags (t1,sc)(t2,sc)

  (* unify [v args = t], where [t] is rigid *)
  let unif_rigid ~sc ~subst ~offset env v args t : (pair list * _ * _ * _) Iter.t =
    assert (args<>[]);
    (* eta-expand locally *)
    let n_params, ty_args, ty_ret = Type.open_poly_fun (T.ty t) in
    assert (n_params=0);
    let n_ty_args = List.length ty_args in
    let all_ty_args = List.map T.ty args @ ty_args in
    let hd_t = T.head_term t in
    (* bound variables for [ty_args] *)
    let vars_right =
      List.mapi (fun i ty -> T.bvar ~ty (n_ty_args-i-1)) ty_args
    (* bound variables that abstract over [args].
       Careful about shifting them, they are inside the scope of [vars_right]. *)
    and vars_left =
      let n = n_ty_args + List.length args in
      List.mapi (fun i arg -> T.bvar ~ty:(T.ty arg) (n-i-1)) args
    in
    let all_vars = vars_left @ vars_right in
    (* now unify [v args…vars_right = t vars_right] *)
    let rhs = T.app (T.DB.shift n_ty_args t) vars_right in
    let lhs_args = List.map (T.DB.shift n_ty_args) args @ vars_right in
    (* projections: if [k]-th element of [args…vars] has type [τ1…τm → ty_ret],
       then we can try [v := λx1…xn. x_k (F1 x1…xn)…(Fm x1…xn)]
       where the [F] are fresh,
       and return the pair [arg_k (F1 x1…xn)…(Fm x1…xn) = t args] *)
    let proj =
      Iter.of_list all_ty_args |> Util.seq_zipi
      |> Iter.filter_map
        (fun (i,ty_arg_i) ->
           let ty_args_i, ty_ret_i = Type.open_fun ty_arg_i in
           try
             let subst = Unif.Ty.unify_full ~subst (ty_ret_i,sc) (ty_ret,sc) in
             (* now make fresh variables for [ty_args_i] *)
             let offset, f_vars =
               ty_args_i
               |> List.map (Type.arrow all_ty_args)
               |> mk_fresh_vars offset
             in
             (* [λall_vars. (F1 all_vars)…(Fm all_vars)] *)
             let lambda =
               let f_vars_applied =
                 List.map (fun f_var -> T.app (T.var f_var) all_vars) f_vars
               in
               T.app (List.nth all_vars i) f_vars_applied
               |> T.fun_l (List.map T.ty all_vars)
             (* [x_k (F1 args…vars_right)…(Fm args…vars_right] *)
             and lhs =
               let f_vars_applied =
                 List.map (fun f_var -> T.app (T.var f_var) lhs_args) f_vars
               in
               T.app (List.nth lhs_args i) f_vars_applied
             in
             let subst = US.FO.bind subst (v,sc) (lambda,sc) in
             Some ([ty_args@env,lhs,rhs],subst,offset,"proj")
           with Unif.Fail ->
             None)
    (* imitate: if [t=f u1…um],
       create new variables [F1…Fm] and try
       [v := λall_vars. f (F1 all_vars)…(Fm all_vars)] *)
    and imitate = match T.view hd_t with
      | T.AppBuiltin (b,l) when vars_right=[] && T.args t=[] ->
        (* imitate builtin *)
        let ty_params, l = CCList.take_drop_while T.is_type l in
        let ty_args_t = List.map T.ty l in
        let offset, f_vars =
          ty_args_t
          |> List.map (Type.arrow all_ty_args)
          |> mk_fresh_vars offset
        in
        (* [λall_vars. b (F1 all_vars)…(Fm all_vars)] *)
        let lambda =
          let f_vars_applied =
            List.map (fun f_var -> T.app (T.var f_var) all_vars) f_vars
          in
          T.app_builtin ~ty:(T.ty t) b f_vars_applied
          |> T.fun_l (List.map T.ty all_vars)
        (* [b (F1 args…vars_right)…(Fm args…vars_right)] *)
        and lhs =
          let f_vars_applied =
            List.map (fun f_var -> T.app (T.var f_var) lhs_args) f_vars
          in
          T.app_builtin ~ty:(T.ty t) b (ty_params @ f_vars_applied)
        in
        (* imitate constant *)
        let subst = US.FO.bind subst (v,sc) (lambda,sc) in
        Iter.return ([ty_args@env, lhs, rhs],subst,offset,"imitate_b")
      | T.Const _ ->
        (* now make fresh variables as arguments of [id]. Each variable
           is parametrized by [all_vars] and returns the type of the k-th arg *)
        let t_mono = T.head_term_mono t in
        let n, ty_args_t, _ = Type.open_poly_fun (T.ty t_mono) in
        assert (n=0);
        let offset, f_vars =
          ty_args_t
          |> List.map (Type.arrow all_ty_args)
          |> mk_fresh_vars offset
        in
        (* [λall_vars. f (F1 all_vars)…(Fm all_vars)] *)
        let lambda =
          let f_vars_applied =
            List.map (fun f_var -> T.app (T.var f_var) all_vars) f_vars
          in
          T.app t_mono f_vars_applied
          |> T.fun_l (List.map T.ty all_vars)
        (* [f (F1 args…vars_right)…(Fm args…vars_right)] *)
        and lhs =
          let f_vars_applied =
            List.map (fun f_var -> T.app (T.var f_var) lhs_args) f_vars
          in
          T.app t_mono f_vars_applied
        in
        let subst = US.FO.bind subst (v,sc) (lambda,sc) in
        Iter.return ([ty_args@env,lhs,rhs],subst,offset,"imitate")
      | _ ->
        Iter.empty
    in
    Iter.append imitate proj

  (* TODO: flex/flex (if they remain, then it means there are only flex/flex
     and we can bind to [λx1…xn. A] where [A] is fresh *)

  (* TODO: special handling of prop-typed pairs (list of true cases/list of
     false cases? subsume elim_pred_var?) *)

  (* TODO: introduce `if/then/else` for imitating several distinct
     symbols: [F a = f t, F b = g u] could be imitation with
     [F := λx. if x=a then f (F1 x) else if x=b then g (F2 x) else F3 x]
     and constraint [a != b]
     and new pairs [(F1 a = t), (F2 b = u)]
  *)

  (* main unification loop *)
  let unif_loop (st:state): unit =
    let sc = st.sc in
    let add_sol subst penalty =
      Util.debugf ~section 5 "(@[add_sol@ :subst %a@])" (fun k->k US.pp subst);
      st.sols <- (subst, penalty) :: st.sols
    in
    while st.fuel > 0 && not (Queue.is_empty st.queue) do
      let pb = Queue.pop st.queue in
      let pb = normalize_pb sc pb in
      begin match pb with
        | None -> () (* fail *)
        | Some {pairs=[]; subst; penalty; _} ->
          (* total solution! *)
          add_sol subst penalty;
        | Some ({penalty; offset; subst; pairs=(env,t1,t2) :: pairs_tl} as pb) ->
          (* try to unify the first pair *)
          Util.debugf ~section 5 "(@[ho_unif.try_pair %a@ :subst %a@])"
            (fun k->k pp_pair (env,t1,t2) US.pp subst);
          begin
            try
              let fail() = raise Unif.Fail in
              let consume_fuel() = st.fuel <- st.fuel - 1 in
              let push_new ~penalty ~subst ~offset rule pairs : unit =
                (* unify types of pairs *)
                let subst =
                  List.fold_left
                    (fun subst (_,t,u) ->
                       Unif.Ty.unify_full ~subst (T.ty t,sc) (T.ty u,sc))
                    subst pairs
                in
                let pb' =
                  mk_pb ~penalty ~subst ~offset (pairs @ pairs_tl)
                  |> normalize_pb sc
                in
                begin match pb' with
                  | None ->  ()
                  | Some pb' ->
                    Util.debugf ~section 5 "(@[ho_unif.push@ :rule %s@ %a@])"
                      (fun k->k rule pp_pb pb');
                    Queue.push pb' st.queue
                end
              in
              (* unify types *)
              let subst = Unif.Ty.unify_full ~subst (T.ty t1,sc) (T.ty t2,sc) in
              (* unify terms *)
              let t1 = whnf_deref subst (t1,sc) in
              let t2 = whnf_deref subst (t2,sc) in
              let hd1, l1 = T.as_app t1 in
              let hd2, l2 = T.as_app t2 in
              begin match T.view hd1, T.view hd2 with
                | _ when T.equal t1 t2 ->
                  push_new "triv" ~penalty ~offset ~subst [] (* trivial *)
                | T.Const id1, T.Const id2 ->
                  if ID.equal id1 id2 && List.length l1=List.length l2
                  then (
                    (* unify arguments pairwise *)
                    let new_pairs = mk_pairs env l1 l2 in
                    push_new "rigid" ~penalty ~offset ~subst new_pairs
                  ) else fail()
                | T.DB a, T.DB b ->
                  if a=b then push_new "db" ~penalty ~offset ~subst [] else fail()
                | T.Var _, _ when l1=[] ->
                  (* just bind or fail (with occur-check) *)
                  let subst = Unif.FO.unify_full ~subst (t1,0) (t2,0) in
                  push_new "bind" ~penalty ~offset ~subst []
                | _, T.Var _ when l2=[] ->
                  (* just bind or fail (with occur-check) *)
                  let subst = Unif.FO.unify_full ~subst (t1,0) (t2,0) in
                  push_new "bind" ~penalty ~offset ~subst []
                | T.AppBuiltin (b1, l1'), T.AppBuiltin (b2,l2') ->
                  assert (l1=[]);
                  assert (l2=[]);
                  if Builtin.equal b1 b2 && List.length l1'=List.length l2'
                  then (
                    (* unify arguments pairwise *)
                    let new_pairs = mk_pairs env l1 l2 in
                    push_new "rigid" ~penalty ~offset ~subst new_pairs
                  ) else fail()
                | T.Var v, T.Fun _ ->
                  (* eta-expand *)
                  assert (l2=[]); (* whnf *)
                  let pairs, offset = unif_lambda ~offset env v l1 hd2 in
                  push_new "bind" ~penalty ~subst ~offset pairs
                | T.Fun _, T.Var v ->
                  (* eta-expand *)
                  assert (l1=[]); (* whnf *)
                  let pairs, offset = unif_lambda ~offset env v l2 hd1 in
                  push_new "bind" ~penalty ~subst ~offset pairs
                | T.Fun _, T.Fun _ ->
                  (* eta-expand and unify bodies: to unify [λx.t = λx.u]
                     just unify [t=u] *)
                  assert (l1 = []);
                  assert (l2 = []);
                  let n_params, ty_args, _ = Type.open_poly_fun (T.ty t1) in
                  assert (n_params=0);
                  (* apply to DB indices *)
                  let n = List.length ty_args in
                  let args = List.mapi (fun i ty -> T.bvar ~ty (n-i-1)) ty_args in
                  let pair = ty_args @ env, T.app hd1 args, T.app hd2 args in
                  push_new "eta" ~penalty ~subst ~offset [pair]
                | T.Var v, (T.Const _ | T.AppBuiltin _ | T.DB _) ->
                  (* project/imitate *)
                  assert (l1<>[]);
                  consume_fuel();
                  unif_rigid ~sc ~subst ~offset env v l1 t2
                    (fun (pairs,subst,offset,rule) ->
                       push_new rule ~penalty ~subst ~offset pairs);
                | (T.Const _ | T.AppBuiltin _ | T.DB _), T.Var v ->
                  (* project/imitate *)
                  assert (l2<>[]);
                  consume_fuel();
                  unif_rigid ~sc ~subst ~offset env v l2 t1
                    (fun (pairs,subst,offset,rule) ->
                       push_new rule ~penalty ~subst ~offset pairs);
                | T.Var _, T.Var _ ->
                  (* flex/flex: all should be flex/flex *)
                  Util.debugf ~section 5
                    "(@[ho_unif.all_flex_flex@ %a@])"
                    (fun k->k pp_pb pb);
                  assert (List.for_all is_flex_flex pairs_tl);
                  (* delay all flex/flex pairs *)
                  let subst =
                    List.fold_left
                      (fun subst p -> US.add_constr (delay_pair p sc) subst)
                      pb.subst pb.pairs
                  in
                  add_sol subst pb.penalty
                | T.App _, _ | _, T.App _ -> assert false (* heads *)
                | T.Const _, _
                | T.Fun _, _
                | T.AppBuiltin _, _
                | T.DB _, _
                  -> fail()
              end
            with Unif.Fail ->
              Util.debugf ~section 5 "(@[ho_unif.drop_pb@ %a@])"
                (fun k->k pp_pb pb);
              () (* drop pair *)
          end
      end
    done

  (* normalize substitution *)
  let norm_subst_ offset sc (us:US.t) () : US.t =
    US.map_subst us
      ~f:(fun subst ->
        Subst.normalize subst
        |> Subst.FO.filter
          (fun (v,sc_v) (t,sc_t) ->
             (* filter out intermediate variables. They are the ones
                that have an index >= offset,
                and only point to other intermediate vars *)
             let is_fvar (v,sc_v) =
               sc_v = sc && HVar.id v >= offset &&
               not (Type.is_tType (HVar.ty v))
             in
             not (is_fvar (v,sc_v)) ||
             (T.Seq.vars t
              |> Iter.exists (fun v' -> not (is_fvar (v',sc_t)))))
        |> Subst.FO.map Lambda.snf
      )

  let norm_subst offset sc us =
    if !enable_norm_subst
    then Util.with_prof prof_norm_subst (norm_subst_ offset sc us) ()
    else us

  let apply_subst pairs us =
    let renaming = Subst.Renaming.create() in
    let subst = Unif_subst.subst us in
    let pairs =
      List.map
        (fun (env,t,u) ->
           let t = Subst.FO.apply renaming subst (T.fun_l env t,0) in
           let u = Subst.FO.apply renaming subst (T.fun_l env u,0) in
           [], t, u)
        pairs
    in
    pairs, renaming

  (* extract the (partial) solutions *)
  let get_solutions (st:state): (pair list * US.t * penalty * Subst.Renaming.t) list =
    let sols1 =
      st.sols
      |> List.rev_map (fun (subst,p) -> [], norm_subst st.offset0 st.sc subst, p, Subst.Renaming.create())
    and sols2 =
      st.queue
      |> Iter.of_queue
      |> Iter.map
        (fun pb ->
           let pairs, renaming = apply_subst pb.pairs pb.subst in
           pairs, norm_subst st.offset0 st.sc pb.subst, pb.penalty, renaming)
      |> Iter.to_rev_list
    in
    List.rev_append sols1 sols2
end

let unif_pairs ?(fuel= !default_fuel) (pairs,sc) ~offset : _ list =
  let st = U.empty sc fuel offset in
  U.add st (U.mk_pb ~offset ~penalty:0 ~subst:US.empty pairs);
  U.unif_loop st;
  U.get_solutions st

let () =
  Options.add_opts
    [ "--ho-unif-fuel", Arg.Set_int default_fuel, " default amount of fuel for HO unification";
      "--ho-unif-norm", Arg.Set enable_norm_subst, " normalize substitutions in HO unif";
      "--no-ho-unif-norm", Arg.Clear enable_norm_subst, " do not normalize substitutions in HO unif";
    ]
OCaml

Innovation. Community. Security.