package logtk

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file util_tip.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

(* This file is free software, part of Zipperposition. See file "license" for more details. *)

(** {1 Utils for TIP} *)

open Logtk

module E = CCResult
module A = Tip_ast
module UA = UntypedAST
module T = STerm

type parser_res = (A.statement Iter.t, string) E.t
type 'a parser_ = 'a -> parser_res

let parse_lexbuf_ lex =
  let l = Tip_parser.parse_list Tip_lexer.token lex in
  Iter.of_list l

let parse_lexbuf file : parser_res =
  try parse_lexbuf_ file |> E.return
  with e -> E.of_exn e

let parse_stdin () : parser_res =
  let lexbuf = Lexing.from_channel stdin in
  ParseLocation.set_file lexbuf "stdin";
  parse_lexbuf lexbuf

let parse_file file : parser_res =
  if file="stdin"
  then parse_stdin()
  else
    try
      CCIO.with_in file
        (fun ic ->
           let lexbuf = Lexing.from_channel ic in
           ParseLocation.set_file lexbuf file;
           parse_lexbuf_ lexbuf)
      |> E.return
    with
      | Sys_error e ->
        CCResult.fail (Util.err_spf "sys_error when parsing `%s`:@ %s" file e)
      | e -> E.of_exn e

let conv_loc (loc:A.Loc.t): ParseLocation.t =
  let {A.Loc.file; start_line; start_column; stop_line; stop_column} = loc in
  ParseLocation.mk file start_line start_column stop_line stop_column

let rec conv_ty ty = match ty with
  | A.Ty_bool -> T.prop
  | A.Ty_arrow (args,ret) ->
    T.fun_ty (List.map conv_ty args) (conv_ty ret)
  | A.Ty_app ("Int",[]) -> T.builtin Builtin.TyInt
  | A.Ty_app ("Rat",[]) -> T.builtin Builtin.TyRat
  | A.Ty_app (s, []) ->
    T.var s (* var or const: let type inference decide *)
  | A.Ty_app (s, args) ->
    T.app (T.var s) (List.map conv_ty args)

let app ?loc x y = T.app ?loc x [y]
let app_l = T.app

let conv_tyvar v = T.V v, Some T.tType
let conv_var (v,ty) = T.V v, Some (conv_ty ty)
let conv_vars = List.map conv_var

(* left-associative *)
let rec app_reduce f zero l = match l with
  | [] -> zero
  | [x] -> x
  | [x;y] -> T.app_builtin f [x; y]
  | x :: y :: tail -> app_reduce f zero (T.app_builtin f [x; y] :: tail)

module BA = Builtin.Arith

let zero = T.int_ Z.zero
let one = T.int_ Z.one
let plus_l = app_reduce BA.sum zero
let minus_l = app_reduce BA.difference zero
let prod_l = app_reduce BA.product one
let quotient_l = app_reduce BA.quotient_e one

let as_int s = try Some (Z.of_string s) with _ -> None
let as_rat s = try Some (Q.of_string s) with _ -> None

let rec conv_term (t:A.term): T.t =
  match t with
    | A.True -> T.true_
    | A.False -> T.false_
    | A.App (s,[])
    | A.Const s ->
      (* look for integer constants, but otherwise
         let type inference distinguish constants and variables *)
      begin match as_int s, as_rat s with
        | Some z, _ -> T.int_ z
        | None, Some q -> T.rat q
        | None, None -> T.var s
      end
    | A.App (f,l) ->
      let l = List.map conv_term l in
      begin match f, l with
        | "+", _ -> plus_l l
        | "-", _ -> minus_l l
        | "*", _ -> prod_l l
        | "/", _ -> quotient_l l
        | ">=", [a;b] -> T.app_builtin BA.greatereq [a;b]
        | "<=", [a;b] -> T.app_builtin BA.lesseq [a;b]
        | ">", [a;b] -> T.app_builtin BA.greater [a;b]
        | "<", [a;b] -> T.app_builtin BA.less [a;b]
        | "mod", [a;b] -> T.app_builtin BA.remainder_e [a;b]
        | "div", [a;b] -> T.app_builtin BA.quotient_e [a;b]
        | _ -> T.app_const f l
      end
    | A.HO_app (a,b) ->
      app (conv_term a) (conv_term b)
    | A.If (a,b,c) ->
      T.ite (conv_term a)(conv_term b)(conv_term c)
    | A.Distinct l ->
      l
      |> List.rev_map conv_term
      |> CCList.diagonal
      |> List.rev_map (fun (a,b) -> T.neq a b)
      |> T.and_ ?loc:None
    | A.Match (u,l) ->
      let u = conv_term u in
      let l = List.map
          (function
            | A.Match_default t -> T.Match_default (conv_term t)
            | A.Match_case (s,vars,t) ->
              let vars = List.map (fun v->T.V v) vars in
              T.Match_case (s,vars,conv_term t))
          l
      in
      T.match_ u l
    | A.Let (l,u) ->
      let l = List.map (fun (v,t) -> T.V v, conv_term t) l in
      let u = conv_term u in
      T.let_ l u
    | A.Fun (v,t) ->
      let v = conv_var v in
      let t = conv_term t in
      T.lambda [v] t
    | A.Eq (a,b) ->
      T.eq (conv_term a)(conv_term b)
    | A.Imply (a,b) -> T.imply (conv_term a)(conv_term b)
    | A.And l -> T.and_ (List.map conv_term l)
    | A.Or l -> T.or_ (List.map conv_term l)
    | A.Not a -> T.not_ (conv_term a)
    | A.Forall (vars,body) ->
      let vars = conv_vars vars in
      let body = conv_term body in
      T.forall vars body
    | A.Exists (vars,body) ->
      let vars = conv_vars vars in
      let body = conv_term body in
      T.exists vars body
    | A.Cast (a,_) -> conv_term a

let conv_decl (d:A.ty A.fun_decl): string * T.t =
  let tyvars = List.map conv_tyvar d.A.fun_ty_vars in
  let ty_args = List.map conv_ty d.A.fun_args in
  let ty_ret = conv_ty d.A.fun_ret in
  let ty = T.forall_ty tyvars (T.fun_ty ty_args ty_ret) in
  d.A.fun_name, ty

(* return [f, vars, ty_f] *)
let conv_def (d:A.typed_var A.fun_decl): string * T.typed_var list * T.t =
  let tyvars = List.map conv_tyvar d.A.fun_ty_vars in
  let vars = List.map conv_var d.A.fun_args in
  let ty_args = List.map (CCFun.compose snd conv_ty) d.A.fun_args in
  let ty_ret = conv_ty d.A.fun_ret in
  let ty = T.forall_ty tyvars (T.fun_ty ty_args ty_ret) in
  d.A.fun_name, tyvars @ vars, ty

let conv_def ?loc decl body =
  (* translate into definitions *)
  let f, vars, ty_f = conv_def decl in
  let vars_as_t =
    List.map
      (function
        | T.Wildcard, _ -> assert false
        | T.V s, _ -> T.var s)
      vars
  in
  let def =
    let body = conv_term body in
    T.forall ?loc vars (T.eq ?loc (T.app_const ?loc f vars_as_t) body)
  in
  UA.mk_def f ty_f [def]

let convert (st:A.statement): UA.statement list =
  let loc = CCOpt.map conv_loc st.A.loc in
  Util.debugf 3 "@[<2>convert TIP statement@ @[%a@]@,%a@]"
    (fun k->k A.pp_stmt st ParseLocation.pp_opt loc);
  match st.A.stmt with
    | A.Stmt_decl_sort (s,i) ->
      let ty = T.fun_ty (CCList.init i (fun _ -> T.tType) ) T.tType in
      [UA.decl ?loc s ty]
    | A.Stmt_decl d ->
      let s, ty = conv_decl d in
      [UA.decl ?loc s ty]
    | A.Stmt_assert t ->
      let t = conv_term t in
      [UA.assert_ ?loc t]
    | A.Stmt_lemma t ->
      let t = conv_term t in
      [UA.lemma ?loc t]
    | A.Stmt_assert_not (tyvars,g) ->
      (* goal *)
      let tyvars = List.map conv_tyvar tyvars in
      let g = conv_term g in
      let g = T.forall ?loc tyvars g in
      [UA.goal ?loc g]
    | A.Stmt_data (tyvars, l) ->
      let l = List.map
          (fun (id, cstors) ->
             let cstors =
               List.map
                 (fun c ->
                    let args =
                      c.A.cstor_args
                      |> List.map (CCPair.map CCOpt.return conv_ty) in
                    c.A.cstor_name, args)
                 cstors
             in
             {UA.
               data_name=id;
               data_vars=tyvars;
               data_cstors=cstors;
             })
          l
      in
      [UA.data ?loc l]
    | A.Stmt_check_sat -> [] (* trivial *)
    | A.Stmt_fun_def fr
    | A.Stmt_fun_rec fr ->
      (* translate into definitions *)
      let l = [conv_def ?loc fr.A.fr_decl fr.A.fr_body] in
      [UA.def ?loc l]
    | A.Stmt_funs_rec {A. fsr_decls; fsr_bodies } ->
      assert (List.length fsr_decls = List.length fsr_bodies);
      let l = List.map2 (conv_def ?loc) fsr_decls fsr_bodies in
      [UA.def ?loc l]

let convert_seq = Iter.flat_map_l convert


OCaml

Innovation. Community. Security.