package libzipperposition
Library for Zipperposition
Install
Dune Dependency
Authors
Maintainers
Sources
1.6.tar.gz
md5=97cdb2f90468e9e27c7bbe3b4fb160bb
sha512=fee73369f673a91dfa9e265fc69be08b32235e10a495f3af6477d404fcd01e3452a0d012b150f3d7f97c00af2f6045019ad039164bf698f70d771231cc4efe5d
doc/src/libzipperposition.calculi/superposition.ml.html
Source file superposition.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
(* This file is free software, part of Zipperposition. See file "license" for more details. *) open Logtk open Libzipperposition module BV = CCBV module T = Term module O = Ordering module S = Subst module Lit = Literal module Lits = Literals module Comp = Comparison module US = Unif_subst module P = Position let section = Util.Section.make ~parent:Const.section "sup" (* flag meaning the clause has been simplified already *) let flag_simplified = SClause.new_flag() module type S = Superposition_intf.S (* statistics *) let stat_basic_simplify_calls = Util.mk_stat "sup.basic_simplify calls" let stat_basic_simplify = Util.mk_stat "sup.basic_simplify" let stat_superposition_call = Util.mk_stat "sup.superposition calls" let stat_equality_resolution_call = Util.mk_stat "sup.equality_resolution calls" let stat_equality_factoring_call = Util.mk_stat "sup.equality_factoring calls" let stat_subsumption_call = Util.mk_stat "sup.subsumption_calls" let stat_eq_subsumption_call = Util.mk_stat "sup.equality_subsumption calls" let stat_eq_subsumption_success = Util.mk_stat "sup.equality_subsumption success" let stat_subsumed_in_active_set_call = Util.mk_stat "sup.subsumed_in_active_set calls" let stat_subsumed_by_active_set_call = Util.mk_stat "sup.subsumed_by_active_set calls" let stat_clauses_subsumed = Util.mk_stat "sup.num_clauses_subsumed" let stat_demodulate_call = Util.mk_stat "sup.demodulate calls" let stat_demodulate_step = Util.mk_stat "sup.demodulate steps" let stat_semantic_tautology = Util.mk_stat "sup.semantic_tautologies" let stat_condensation = Util.mk_stat "sup.condensation" let stat_ext_dec = Util.mk_stat "sup.ext_dec calls" let stat_clc = Util.mk_stat "sup.clc" let prof_demodulate = Util.mk_profiler "sup.demodulate" let prof_back_demodulate = Util.mk_profiler "sup.backward_demodulate" let prof_pos_simplify_reflect = Util.mk_profiler "sup.simplify_reflect+" let prof_neg_simplify_reflect = Util.mk_profiler "sup.simplify_reflect-" let prof_clc = Util.mk_profiler "sup.contextual_literal_cutting" let prof_semantic_tautology = Util.mk_profiler "sup.semantic_tautology" let prof_condensation = Util.mk_profiler "sup.condensation" let prof_basic_simplify = Util.mk_profiler "sup.basic_simplify" let prof_subsumption = Util.mk_profiler "sup.subsumption" let prof_eq_subsumption = Util.mk_profiler "sup.equality_subsumption" let prof_subsumption_set = Util.mk_profiler "sup.forward_subsumption" let prof_subsumption_in_set = Util.mk_profiler "sup.backward_subsumption" let prof_infer_active = Util.mk_profiler "sup.infer_active" let prof_infer_passive = Util.mk_profiler "sup.infer_passive" let prof_ext_dec = Util.mk_profiler "sup.ext_dec" let prof_infer_fluidsup_active = Util.mk_profiler "sup.infer_fluidsup_active" let prof_infer_fluidsup_passive = Util.mk_profiler "sup.infer_fluidsup_passive" let prof_infer_equality_resolution = Util.mk_profiler "sup.infer_equality_resolution" let prof_infer_equality_factoring = Util.mk_profiler "sup.infer_equality_factoring" let k_trigger_bool_inst = Flex_state.create_key () let k_sup_at_vars = Flex_state.create_key () let k_sup_in_var_args = Flex_state.create_key () let k_sup_under_lambdas = Flex_state.create_key () let k_sup_true_false = Flex_state.create_key () let k_sup_at_var_headed = Flex_state.create_key () let k_fluidsup = Flex_state.create_key () let k_dupsup = Flex_state.create_key () let k_lambdasup = Flex_state.create_key () let k_sup_w_pure_vars = Flex_state.create_key () let k_demod_in_var_args = Flex_state.create_key () let k_lambda_demod = Flex_state.create_key () let k_ext_dec_lits = Flex_state.create_key () let k_max_lits_ext_dec = Flex_state.create_key () let k_use_simultaneous_sup = Flex_state.create_key () let k_unif_alg = Flex_state.create_key () let k_fluidsup_penalty = Flex_state.create_key () let k_ground_subs_check = Flex_state.create_key () let k_solid_subsumption = Flex_state.create_key () let k_dot_sup_into = Flex_state.create_key () let k_dot_sup_from = Flex_state.create_key () let k_dot_simpl = Flex_state.create_key () let k_dot_demod_into = Flex_state.create_key () let k_recognize_injectivity = Flex_state.create_key () let k_complete_ho_unification = Flex_state.create_key () let k_max_infs = Flex_state.create_key () let k_switch_stream_extraction = Flex_state.create_key () let k_dont_simplify = Flex_state.create_key () let k_use_semantic_tauto = Flex_state.create_key () let k_restrict_fluidsup = Flex_state.create_key () let _NO_LAMSUP = -1 module Make(Env : Env.S) : S with module Env = Env = struct module Env = Env module Ctx = Env.Ctx module C = Env.C module PS = Env.ProofState module I = PS.TermIndex module TermIndex = PS.TermIndex module SubsumIdx = PS.SubsumptionIndex module UnitIdx = PS.UnitIndex module Stm = Stream.Make(struct module Ctx = Ctx module C = C end) module StmQ = StreamQueue.Make(Stm) module Bools = Booleans.Make(Env) module SS = SolidSubsumption.Make(struct let st = Env.flex_state () end) (** {6 Stream queue} *) type queue = {q : StmQ.t;} let _stmq = {q = StmQ.default();} (** {6 Index Management} *) let _idx_sup_into = ref (TermIndex.empty ()) let _idx_lambdasup_into = ref (TermIndex.empty ()) let _idx_fluidsup_into = ref (TermIndex.empty ()) let _idx_dupsup_into = ref (TermIndex.empty ()) let _idx_sup_from = ref (TermIndex.empty ()) let _idx_back_demod = ref (TermIndex.empty ()) let _idx_fv = ref (SubsumIdx.empty ()) (* let _idx_fv = ref (SubsumIdx.of_signature (Ctx.signature()) ()) *) let _idx_simpl = ref (UnitIdx.empty ()) let _cls_w_pred_vars = ref (C.ClauseSet.empty) let _trigger_bools = ref (Term.Set.empty) let _ext_dec_from_idx = ref (ID.Map.empty) let _ext_dec_into_idx = ref (ID.Map.empty) let idx_sup_into () = !_idx_sup_into let idx_sup_from () = !_idx_sup_from let idx_fv () = !_idx_fv (* Beta-Eta-Normalizes terms before comparing them. Note that the Clause module calls Ctx.ord () independently, but clauses should be normalized independently by simplification rules. *) let ord = Ctx.ord () let pred_vars c = (* instantiate only variables in eligible lits *) let eligible = C.Eligible.res c in let lits = CCArray.mapi (fun i lit -> (i, lit)) (C.lits c) |> CCArray.filter_map (fun (i,lit) -> if eligible i lit then Some lit else None) in CCList.to_seq (Literals.vars lits) |> Iter.filter (fun v -> let ty = HVar.ty v in Type.is_fun ty && Type.returns_prop ty) |> Iter.to_list let get_triggers c = let trivial_trigger t = T.is_const (T.head_term t) || T.is_var (snd @@ T.open_fun t) in Literals.fold_terms ~ord ~subterms:true ~eligible:C.Eligible.always ~which:`All (C.lits c) ~fun_bodies:false |> Iter.filter_map (fun (t,p) -> let ty = Term.ty t and hd = Term.head_term t in let cached_t = Subst.FO.canonize_all_vars t in if not (Term.Set.mem cached_t !Higher_order.prim_enum_terms) && Type.is_fun ty && Type.returns_prop ty && not (Term.is_var hd) && not (trivial_trigger t) then ( Some t ) else None ) let handle_pred_var_inst c = if C.proof_depth c < Env.flex_get k_trigger_bool_inst then ( if not (CCList.is_empty (pred_vars c)) then ( _cls_w_pred_vars := C.ClauseSet.add c !_cls_w_pred_vars; ); _trigger_bools := Term.Set.add_seq !_trigger_bools (get_triggers c); ); Signal.ContinueListening let fluidsup_applicable cl = not (Env.flex_get k_restrict_fluidsup) || Array.length (C.lits cl) <= 2 || (C.proof_depth cl) == 0 (* Syntactic overapproximation of fluid or deep terms *) let is_fluid_or_deep c t = (* Fluid (1): Applied variables *) T.is_var (T.head_term t) && not (CCList.is_empty @@ T.args t) (* Fluid (2): A lambda-expression that might eta-reduce to a non-lambda-expression after substitution (overapproximated) *) || T.is_fun t && not (T.is_ground t) (* Deep: A variable also occurring in a lambda-expression or in an argument of a variable in the same clause*) || match T.as_var t with | Some v -> Lits.fold_terms ~vars:false ~var_args:false ~fun_bodies:false ~ty_args:false ~which:`All ~ord ~subterms:true ~eligible:(fun _ _ -> true) (C.lits c) |> Iter.exists (fun (t, _) -> match T.view t with | App (head, args) when T.is_var head -> Iter.exists (HVar.equal Type.equal v) (args |> Iter.of_list |> Iter.flat_map T.Seq.vars) | Fun (_, body) -> Iter.exists (HVar.equal Type.equal v) (T.Seq.vars body) | _ -> false) | None -> false (* apply operation [f] to some parts of the clause [c] just added/removed from the active set *) let _update_active f c = (* index subterms that can be rewritten by superposition *) let sup_at_vars = Env.flex_get k_sup_at_vars in let sup_in_var_args = Env.flex_get k_sup_in_var_args in let sup_under_lambdas = Env.flex_get k_sup_under_lambdas in let sup_t_f = Env.flex_get k_sup_true_false in let sup_at_var_headed = Env.flex_get k_sup_at_var_headed in let fluidsup = Env.flex_get k_fluidsup in let dupsup = Env.flex_get k_dupsup in let lambdasup = Env.flex_get k_lambdasup in let sup_with_pure_vars = Env.flex_get k_sup_w_pure_vars in let demod_in_var_args = Env.flex_get k_demod_in_var_args in let lambda_demod = Env.flex_get k_lambda_demod in _idx_sup_into := Lits.fold_terms ~vars:sup_at_vars ~var_args:sup_in_var_args ~fun_bodies:sup_under_lambdas ~ty_args:false ~ord ~which:`Max ~subterms:true ~eligible:(C.Eligible.res c) (C.lits c) |> Iter.filter (fun (t, _) -> (* Util.debugf ~section 3 "@[ Filtering vars %a,1 @]" (fun k-> k T.pp t); *) (sup_t_f || not (Term.is_true_or_false t)) && (not (T.is_var t) || T.is_ho_var t)) (* TODO: could exclude more variables from the index: they are not needed if they occur with the same args everywhere in the clause *) |> Iter.filter (fun (t, _) -> (* Util.debugf ~section 3 "@[ Filtering vars %a,2 @]" (fun k-> k T.pp t); *) sup_at_var_headed || not (T.is_var (T.head_term t))) |> Iter.fold (fun tree (t, pos) -> (* Util.debugf ~section 3 "@[ Adding %a to into index %B @]" (fun k-> k T.pp t !_sup_under_lambdas); *) let with_pos = C.WithPos.({term=t; pos; clause=c;}) in f tree t with_pos) !_idx_sup_into; (* index subterms that can be rewritten by FluidSup *) if fluidsup then _idx_fluidsup_into := Lits.fold_terms ~vars:true ~var_args:false ~fun_bodies:false ~ty_args:false ~ord ~which:`Max ~subterms:true ~eligible:(C.Eligible.res c) (C.lits c) |> Iter.filter (fun (t, _) -> is_fluid_or_deep c t) |> Iter.fold (fun tree (t, pos) -> let with_pos = C.WithPos.({term=t; pos; clause=c;}) in f tree t with_pos) !_idx_fluidsup_into; if dupsup then _idx_dupsup_into := Lits.fold_terms ~vars:false ~var_args:false ~fun_bodies:false ~ty_args:false ~ord ~which:`Max ~subterms:true ~eligible:(C.Eligible.res c) (C.lits c) |> Iter.filter (fun (t, _) -> T.is_var (T.head_term t) && not (CCList.is_empty @@ T.args t) && Type.is_ground (T.ty t)) (* Only applied variables *) |> Iter.fold (fun tree (t, pos) -> let with_pos = C.WithPos.({term=t; pos; clause=c;}) in f tree t with_pos) !_idx_dupsup_into; (* index subterms that can be rewritten by LambdaSup -- the ones that can rewrite those are actually the ones already indexed by _idx_sup_from*) if lambdasup != _NO_LAMSUP then _idx_lambdasup_into := Lits.fold_terms ~vars:sup_at_vars ~var_args:sup_in_var_args ~fun_bodies:true ~ty_args:false ~ord ~which:`Max ~subterms:true ~eligible:(C.Eligible.res c) (C.lits c) (* We are going only under lambdas *) |> Iter.filter_map (fun (t, p) -> if not (T.is_fun t) then None else (let tyargs, body = T.open_fun t in let new_pos = List.fold_left (fun p _ -> P.(append p (body stop))) p tyargs in let hd = T.head_term body in if (not (T.is_var body) || T.is_ho_var body) && (not (T.is_const hd) || not (ID.is_skolem (T.as_const_exn hd))) && (sup_at_var_headed || not (T.is_var (T.head_term body))) then ( (*CCFormat.printf "Adding %a to LS index.\n" T.pp body; *) Some (body, new_pos)) else None)) |> Iter.fold (fun tree (t, pos) -> let with_pos = C.WithPos.({term=t; pos; clause=c;}) in f tree t with_pos) !_idx_lambdasup_into; (* index terms that can rewrite into other clauses *) _idx_sup_from := Lits.fold_eqn ~ord ~both:true ~sign:true ~eligible:(C.Eligible.param c) (C.lits c) |> Iter.filter (fun (l,r,_,_) -> (sup_with_pure_vars || not (Term.is_var l) || not (Term.is_var r)) && (sup_t_f || not (Term.is_true_or_false l))) |> Iter.filter((fun (l, _, _, _) -> not (T.equal l T.false_))) |> Iter.fold (fun tree (l, _, sign, pos) -> assert sign; let with_pos = C.WithPos.({term=l; pos; clause=c;}) in f tree l with_pos) !_idx_sup_from ; (* terms that can be demodulated: all subterms (but vars) *) _idx_back_demod := (* TODO: allow demod under lambdas under certain conditions (DemodExt) *) Lits.fold_terms ~vars:false ~var_args:(demod_in_var_args) ~fun_bodies:lambda_demod ~ty_args:false ~ord ~subterms:true ~which:`All ~eligible:C.Eligible.always (C.lits c) |> Iter.fold (fun tree (t, pos) -> let with_pos = C.WithPos.( {term=t; pos; clause=c} ) in f tree t with_pos) !_idx_back_demod; Signal.ContinueListening (* update simpl. index using the clause [c] just added or removed to the simplification set *) let _update_simpl f c = assert (CCArray.for_all Lit.no_prop_invariant (C.lits c)); let idx = !_idx_simpl in let idx' = match C.lits c with | [| Lit.Equation (l,r,true) |] -> begin match Ordering.compare ord l r with | Comparison.Gt -> f idx (l,r,true,c) | Comparison.Lt -> assert(not (T.is_true_or_false r)); f idx (r,l,true,c) | Comparison.Incomparable -> assert(T.is_var (T.head_term l) || not (T.is_true_or_false l)); let idx = f idx (l,r,true,c) in f idx (r,l,true,c) | Comparison.Eq -> idx (* no modif *) end | [| Lit.Equation (l,r,false) |] -> assert(not (T.equal r T.true_ || T.equal r T.false_)); f idx (l,r,false,c) | _ -> idx in _idx_simpl := idx'; Signal.ContinueListening let insert_into_ext_dec_index index (c,pos,t) = let key = T.head_exn t in let clause_map = ID.Map.find_opt key !index in let clause_map = match clause_map with | None -> C.Tbl.create 8 | Some res -> res in let all_pos = (try (t,pos) :: (C.Tbl.find clause_map c) with _ -> [(t,pos)]) in C.Tbl.replace clause_map c all_pos; index := ID.Map.add key clause_map !index let remove_from_ext_dec_index index (c,_,t) = let key = T.head_exn t in let clause_map = ID.Map.find_opt key !index in match clause_map with | None -> Util.debugf ~section 1 "all clauses allready deleted." CCFun.id | Some res -> ( C.Tbl.remove res c; index := ID.Map.add key res !index ) let update_ext_dec_indices f c = let which, eligible = if Env.flex_get k_ext_dec_lits = `OnlyMax then `Max, C.Eligible.res c else `All, C.Eligible.always in if C.proof_depth c <= Env.flex_get k_max_lits_ext_dec then ( Lits.fold_terms ~vars:false ~var_args:false ~fun_bodies:false ~ty_args:false ~ord ~which ~subterms:true ~eligible (C.lits c) |> Iter.filter (fun (t, _) -> not (T.is_var t) || T.is_ho_var t) |> Iter.filter (fun (t, _) -> not (T.is_var (T.head_term t)) && T.is_const (T.head_term t) && Term.has_ho_subterm t) |> Iter.iter (fun (t, pos) -> f _ext_dec_into_idx (c,pos,t)); let eligible = if Env.flex_get k_ext_dec_lits = `OnlyMax then C.Eligible.param c else C.Eligible.always in Lits.fold_eqn ~ord ~both:true ~sign:true ~eligible (C.lits c) |> Iter.iter (fun (l, _, sign, pos) -> assert sign; let hd,_ = T.as_app l in if T.is_const hd && Term.has_ho_subterm l then ( (* CCFormat.printf "adding %a to ext_dec index.\n" T.pp l; *) f _ext_dec_from_idx (c,pos,l) ))); Signal.ContinueListening let () = Signal.on PS.ActiveSet.on_add_clause (fun c -> _idx_fv := SubsumIdx.add !_idx_fv c; ignore(_update_active TermIndex.add c); ignore(handle_pred_var_inst c); update_ext_dec_indices insert_into_ext_dec_index c); Signal.on PS.ActiveSet.on_remove_clause (fun c -> _idx_fv := SubsumIdx.remove !_idx_fv c; _cls_w_pred_vars := C.ClauseSet.remove c !_cls_w_pred_vars; ignore(update_ext_dec_indices remove_from_ext_dec_index c); _update_active TermIndex.remove c); Signal.on PS.SimplSet.on_add_clause (_update_simpl UnitIdx.add); Signal.on PS.SimplSet.on_remove_clause (_update_simpl UnitIdx.remove); () (** {6 Inference Rules} *) (* ---------------------------------------------------------------------- * Superposition rule * ---------------------------------------------------------------------- *) type supkind = | Classic | FluidSup | LambdaSup | DupSup let kind_to_str = function | Classic -> "sup" | FluidSup -> "fluidSup" | LambdaSup -> "lambdaSup" | DupSup -> "dupSup" (* all the information needed for a superposition inference *) module SupInfo = struct type t = { active : C.t; active_pos : Position.t; (* position of [s] *) scope_active : int; s : T.t; (* lhs of rule *) t : T.t; (* rhs of rule *) passive : C.t; passive_pos : Position.t; (* position of [u_p] *) passive_lit : Lit.t; scope_passive : int; u_p : T.t; (* rewritten subterm *) subst : US.t; sup_kind: supkind; } end exception ExitSuperposition of string (* Checks whether we must allow superposition at variables to be complete. *) let sup_at_var_condition info var replacement = let open SupInfo in let us = info.subst in let subst = US.subst us in let renaming = S.Renaming.create () in let replacement' = S.FO.apply renaming subst (replacement, info.scope_active) in let var' = S.FO.apply renaming subst (var, info.scope_passive) in if (not (Type.is_fun (Term.ty var')) || not (O.might_flip ord var' replacement')) then ( Util.debugf ~section 3 "Cannot flip: %a = %a" (fun k->k T.pp var' T.pp replacement'); false (* If the lhs vs rhs cannot flip, we don't need a sup at var *) ) else ( (* Check whether Cσ is >= C[var -> replacement]σ *) try let passive'_lits = Lits.apply_subst renaming subst (C.lits info.passive, info.scope_passive) in let subst_t = Unif.FO.bind_or_update subst (T.as_var_exn var, info.scope_passive) (replacement, info.scope_active) in let passive_t'_lits = Lits.apply_subst renaming subst_t (C.lits info.passive, info.scope_passive) in if Lits.compare_multiset ~ord passive'_lits passive_t'_lits = Comp.Gt then ( Util.debugf ~section 3 "Sup at var condition is not fulfilled because: %a >= %a" (fun k->k Lits.pp passive'_lits Lits.pp passive_t'_lits); false ) else true (* If Cσ is either <= or incomparable to C[var -> replacement]σ, we need sup at var.*) with Unif.Fail -> true (* occurs check failed, do the inference -- check with Alex.*) ) let dup_sup_apply_subst t sc_a sc_p subst renaming = let z, args = T.as_app t in assert(T.is_var z); assert(CCList.length args >= 2); let u_n, t' = CCList.take_drop (List.length args - 1) args in let in_passive = S.FO.apply renaming subst (T.app z u_n, sc_p) in let t' = S.FO.apply renaming subst (List.hd t', sc_a) in T.app in_passive [t'] (* Helper that does one or zero superposition inference, with all the given parameters. Clauses have a scope. *) let do_classic_superposition info = let open SupInfo in let module P = Position in Util.incr_stat stat_superposition_call; let sc_a = info.scope_active in let sc_p = info.scope_passive in assert (InnerTerm.DB.closed (info.s:>InnerTerm.t)); assert (info.sup_kind == LambdaSup || InnerTerm.DB.closed (info.u_p:T.t:>InnerTerm.t)); assert (not(T.is_var info.u_p) || T.is_ho_var info.u_p || info.sup_kind = FluidSup); assert (Env.flex_get k_sup_at_var_headed || info.sup_kind = FluidSup || info.sup_kind = DupSup || not (T.is_var (T.head_term info.u_p))); let active_idx = Lits.Pos.idx info.active_pos in let shift_vars = if info.sup_kind = LambdaSup then 0 else -1 in let passive_idx, passive_lit_pos = Lits.Pos.cut info.passive_pos in assert(Array.for_all Literal.no_prop_invariant (C.lits info.passive)); assert(Array.for_all Literal.no_prop_invariant (C.lits info.passive)); try Util.debugf ~section 3 "@[<2>sup, kind %s@ (@[<2>%a[%d]@ @[s=%a@]@ @[t=%a@]@])@ \ (@[<2>%a[%d]@ @[passive_lit=%a@]@ @[p=%a@]@])@ with subst=@[%a@]@].\n" (fun k -> k (kind_to_str info.sup_kind) C.pp info.active sc_a T.pp info.s T.pp info.t C.pp info.passive sc_p Lit.pp info.passive_lit Position.pp info.passive_pos US.pp info.subst); let renaming = S.Renaming.create () in let us = info.subst in let subst = US.subst us in let lambdasup_vars = if (info.sup_kind = LambdaSup) then ( Term.Seq.subterms info.u_p |> Iter.filter Term.is_var |> Term.Set.of_seq) else Term.Set.empty in let t' = if info.sup_kind != DupSup then S.FO.apply ~shift_vars renaming subst (info.t, sc_a) else dup_sup_apply_subst info.t sc_a sc_p subst renaming in Util.debugf ~section 1 "@[<2>sup, kind %s(%d)@ (@[<2>%a[%d]@ @[s=%a@]@ @[t=%a, t'=%a@]@])@ \ (@[<2>%a[%d]@ @[passive_lit=%a@]@ @[p=%a@]@])@ with subst=@[%a@]@]" (fun k->k (kind_to_str info.sup_kind) (Term.Set.cardinal lambdasup_vars) C.pp info.active sc_a T.pp info.s T.pp info.t T.pp t' C.pp info.passive sc_p Lit.pp info.passive_lit Position.pp info.passive_pos US.pp info.subst); if(info.sup_kind = LambdaSup && T.Set.exists (fun v -> not @@ T.DB.is_closed @@ Subst.FO.apply renaming subst (v,sc_p)) lambdasup_vars) then ( Util.debugf ~section 3 "LambdaSup -- an into free variable sneaks in bound variable" (fun k->k); raise @@ ExitSuperposition("LambdaSup -- an into free variable sneaks in bound variable"); ); begin match info.passive_lit, info.passive_pos with | Lit.Equation (_, v, true), P.Arg(_, P.Left P.Stop) | Lit.Equation (v, _, true), P.Arg(_, P.Right P.Stop) -> (* are we in the specific, but no that rare, case where we rewrite s=t using s=t (into a tautology t=t)? *) (* TODO: use Unif.FO.eq? *) let v' = S.FO.apply ~shift_vars:0 renaming subst (v, sc_p) in if T.equal t' v' then ( Util.debugf ~section 3 "will yield a tautology" (fun k->k); raise (ExitSuperposition "will yield a tautology");) | _ -> () end; if (info.sup_kind = LambdaSup) then ( let vars_a = CCArray.except_idx (C.lits info.active) active_idx |> CCArray.of_list |> Literals.vars |> T.VarSet.of_list in let vars_p = C.lits info.passive |> Literals.vars |> T.VarSet.of_list in let dbs = ref [] in let vars_bound_to_closed_terms var_set scope = T.VarSet.iter (fun v -> match Subst.FO.get_var subst ((v :> InnerTerm.t HVar.t),scope) with | Some (t,_) -> dbs := T.DB.unbound t @ !dbs (* hack *) | None -> ()) var_set in (* I am going crazy from different castings *) vars_bound_to_closed_terms vars_a sc_a; vars_bound_to_closed_terms vars_p sc_p; if Util.Int_set.cardinal (Util.Int_set.of_list !dbs) > Env.flex_get k_lambdasup then ( Util.debugf ~section 3 "Too many skolems will be introduced for LambdaSup." (fun k->k); raise (ExitSuperposition "Too many skolems will be introduced for LambdaSup."); ) ); let subst', new_sk = if info.sup_kind = LambdaSup then S.FO.unleak_variables subst else subst, [] in let passive_lit' = Lit.apply_subst_no_simp renaming subst' (info.passive_lit, sc_p) in let new_trail = C.trail_l [info.active; info.passive] in if Env.is_trivial_trail new_trail then raise (ExitSuperposition "trivial trail"); let s' = S.FO.apply ~shift_vars renaming subst (info.s, sc_a) in if ( O.compare ord s' t' = Comp.Lt || not (Lit.Pos.is_max_term ~ord passive_lit' passive_lit_pos) || not (BV.get (C.eligible_res (info.passive, sc_p) subst) passive_idx) || not (C.is_eligible_param (info.active, sc_a) subst ~idx:active_idx) ) then raise (ExitSuperposition "bad ordering conditions"); (* Check for superposition at a variable *) if info.sup_kind != FluidSup then if not @@ Env.flex_get k_sup_at_vars then assert (not (T.is_var info.u_p)) else if T.is_var info.u_p && not (sup_at_var_condition info info.u_p info.t) then ( Util.debugf ~section 3 "superposition at variable" (fun k->k); raise (ExitSuperposition "superposition at variable"); ); (* ordering constraints are ok *) let lits_a = CCArray.except_idx (C.lits info.active) active_idx in let lits_p = CCArray.except_idx (C.lits info.passive) passive_idx in (* replace s\sigma by t\sigma in u|_p\sigma *) let new_passive_lit = Lit.Pos.replace passive_lit' ~at:passive_lit_pos ~by:t' in let c_guard = Literal.of_unif_subst renaming us in (* apply substitution to other literals *) (* Util.debugf 1 "Before unleak: %a, after unleak: %a" (fun k -> k Subst.pp subst Subst.pp subst'); *) let new_lits = new_passive_lit :: c_guard @ Lit.apply_subst_list renaming subst' (lits_a, sc_a) @ Lit.apply_subst_list renaming subst' (lits_p, sc_p) in (* For some reason type comparison does not work. *) let pos_enclosing_up = Position.until_first_fun passive_lit_pos in let around_up = Subst.FO.apply renaming subst' (Lit.Pos.at info.passive_lit pos_enclosing_up, sc_p) in let vars = Iter.append (T.Seq.vars around_up) (T.Seq.vars t') |> Term.VarSet.of_seq |> Term.VarSet.to_list in let skolem_decls = ref [] in let sk_with_vars = List.fold_left (fun acc t -> let sk_decl, new_sk_vars = Term.mk_fresh_skolem vars (Term.ty t) in skolem_decls := sk_decl :: !skolem_decls; Term.Map.add t new_sk_vars acc) Term.Map.empty new_sk in let new_lits = List.mapi (fun i lit -> Lit.map (fun t -> Term.Map.fold (fun sk sk_v acc -> (* For polymorphism -- will apply type substitution. *) let scope = if i < (List.length c_guard + List.length lits_a) then sc_a else sc_p in let sk = S.FO.apply renaming subst (sk, scope) in Term.replace ~old:sk ~by:sk_v acc) sk_with_vars t ) lit) new_lits in if List.exists (fun lit -> Lit.Seq.terms lit |> Iter.exists (fun t -> not (Lambda.is_properly_encoded t))) new_lits then ( raise (ExitSuperposition "improperly formed quantified expressions."); ); let subst_has_lams = Subst.codomain subst |> Iter.exists (fun (t,_) -> Iter.exists T.is_fun (T.Seq.subterms (T.of_term_unsafe t))) in let rule = let r = kind_to_str info.sup_kind in let sign = if Lit.is_pos passive_lit' then "+" else "-" in Proof.Rule.mk (r ^ sign) in CCList.iter (fun (sym,ty) -> Ctx.declare sym ty) !skolem_decls; let = (if subst_has_lams then [Proof.Tag.T_ho] else []) @ Unif_subst.tags us in let proof = Proof.Step.inference ~rule ~tags [C.proof_parent_subst renaming (info.active,sc_a) subst'; C.proof_parent_subst renaming (info.passive,sc_p) subst'] and penalty = max (C.penalty info.active) (C.penalty info.passive) + (if T.is_var s' then 2 else 0) (* superposition from var = bad *) in let new_clause = C.create ~trail:new_trail ~penalty new_lits proof in (* Format.printf "LS: %a\n" C.pp new_clause; *) Util.debugf ~section 3 "@[... ok, conclusion@ @[%a@]@]" (fun k->k C.pp new_clause); assert (List.for_all (Lit.for_all Term.DB.is_closed) new_lits); assert(Array.for_all Literal.no_prop_invariant (C.lits new_clause)); Some new_clause with ExitSuperposition reason -> Util.debugf ~section 3 "... cancel, %s" (fun k->k reason); None (* simultaneous superposition: when rewriting D with C \lor s=t, replace s with t everywhere in D rather than at one place. *) let do_simultaneous_superposition info = let open SupInfo in let module P = Position in Util.incr_stat stat_superposition_call; let sc_a = info.scope_active in let sc_p = info.scope_passive in Util.debugf ~section 3 "@[<hv2>simultaneous sup@ \ @[<2>active@ %a[%d]@ s=@[%a@]@ t=@[%a@]@]@ \ @[<2>passive@ %a[%d]@ passive_lit=@[%a@]@ p=@[%a@]@]@ with subst=@[%a@]@]" (fun k->k C.pp info.active sc_a T.pp info.s T.pp info.t C.pp info.passive sc_p Lit.pp info.passive_lit Position.pp info.passive_pos US.pp info.subst); assert (InnerTerm.DB.closed (info.s:>InnerTerm.t)); assert (info.sup_kind == LambdaSup || InnerTerm.DB.closed (info.u_p:T.t:>InnerTerm.t)); assert (not(T.is_var info.u_p) || T.is_ho_var info.u_p || info.sup_kind = FluidSup); assert (Env.flex_get k_sup_at_var_headed || info.sup_kind = FluidSup || info.sup_kind = DupSup || not (T.is_var (T.head_term info.u_p))); let active_idx = Lits.Pos.idx info.active_pos in let passive_idx, passive_lit_pos = Lits.Pos.cut info.passive_pos in let shift_vars = if info.sup_kind = LambdaSup then 0 else -1 in try let renaming = S.Renaming.create () in let us = info.subst in let subst = US.subst us in let t' = S.FO.apply ~shift_vars renaming subst (info.t, sc_a) in begin match info.passive_lit, info.passive_pos with | Lit.Equation (_, v, true), P.Arg(_, P.Left P.Stop) | Lit.Equation (v, _, true), P.Arg(_, P.Right P.Stop) -> (* are we in the specific, but no that rare, case where we rewrite s=t using s=t (into a tautology t=t)? *) let v' = S.FO.apply ~shift_vars renaming subst (v, sc_p) in if T.equal t' v' then raise (ExitSuperposition "will yield a tautology"); | _ -> () end; let passive_lit' = Lit.apply_subst_no_simp renaming subst (info.passive_lit, sc_p) in let new_trail = C.trail_l [info.active; info.passive] in if Env.is_trivial_trail new_trail then raise (ExitSuperposition "trivial trail"); let s' = S.FO.apply ~shift_vars renaming subst (info.s, sc_a) in if ( O.compare ord s' t' = Comp.Lt || not (Lit.Pos.is_max_term ~ord passive_lit' passive_lit_pos) || not (BV.get (C.eligible_res (info.passive, sc_p) subst) passive_idx) || not (C.is_eligible_param (info.active, sc_a) subst ~idx:active_idx) ) then raise (ExitSuperposition "bad ordering conditions"); (* Check for superposition at a variable *) if info.sup_kind != FluidSup then if not @@ Env.flex_get k_sup_at_vars then assert (not (T.is_var info.u_p)) else if T.is_var info.u_p && not (sup_at_var_condition info info.u_p info.t) then raise (ExitSuperposition "superposition at variable"); (* ordering constraints are ok, build new active lits (excepted s=t) *) let lits_a = CCArray.except_idx (C.lits info.active) active_idx in let lits_a = Lit.apply_subst_list renaming subst (lits_a, sc_a) in (* build passive literals and replace u|p\sigma with t\sigma *) let u' = S.FO.apply ~shift_vars renaming subst (info.u_p, sc_p) in assert (Type.equal (T.ty u') (T.ty t')); let lits_p = Array.to_list (C.lits info.passive) in let lits_p = Lit.apply_subst_list renaming subst (lits_p, sc_p) in (* assert (T.equal (Lits.Pos.at (Array.of_list lits_p) info.passive_pos) u'); *) let lits_p = List.map (Lit.map (fun t-> T.replace t ~old:u' ~by:t')) lits_p in let c_guard = Literal.of_unif_subst renaming us in (* build clause *) let new_lits = c_guard @ lits_a @ lits_p in let rule = let r = kind_to_str info.sup_kind in let sign = if Lit.is_pos passive_lit' then "+" else "-" in Proof.Rule.mk ("s_" ^ r ^ sign) in let subst_has_lams = Subst.codomain subst |> Iter.exists (fun (t,_) -> Iter.exists T.is_fun (T.Seq.subterms (T.of_term_unsafe t))) in let = (if subst_has_lams then [Proof.Tag.T_ho] else []) @ Unif_subst.tags us in let proof = Proof.Step.inference ~rule ~tags [C.proof_parent_subst renaming (info.active,sc_a) subst; C.proof_parent_subst renaming (info.passive,sc_p) subst] and penalty = max (C.penalty info.active) (C.penalty info.passive) + (if T.is_var s' then 2 else 0) (* superposition from var = bad *) in let new_clause = C.create ~trail:new_trail ~penalty new_lits proof in Util.debugf ~section 3 "@[... ok, conclusion@ @[%a@]@]" (fun k->k C.pp new_clause); Some new_clause with ExitSuperposition reason -> Util.debugf ~section 3 "@[... cancel, %s@]" (fun k->k reason); None (* choose between regular and simultaneous superposition *) let do_superposition info = let open SupInfo in assert (info.sup_kind=DupSup || Type.equal (T.ty info.s) (T.ty info.t)); assert (info.sup_kind=DupSup || Unif.Ty.equal ~subst:(US.subst info.subst) (T.ty info.s, info.scope_active) (T.ty info.u_p, info.scope_passive)); let renaming = Subst.Renaming.create () in let s = Subst.FO.apply renaming (US.subst info.subst) (info.s, info.scope_active) in let u_p = Subst.FO.apply renaming (US.subst info.subst) (info.u_p, info.scope_passive) in assert(Term.equal (Lambda.eta_reduce @@ Lambda.snf @@ s) (Lambda.eta_reduce @@ Lambda.snf @@ u_p) || US.has_constr info.subst); if Env.flex_get k_use_simultaneous_sup && info.sup_kind != LambdaSup && info.sup_kind != DupSup then do_simultaneous_superposition info else do_classic_superposition info let infer_active_aux ~retrieve_from_index ~process_retrieved clause = Util.enter_prof prof_infer_active; (* no literal can be eligible for paramodulation if some are selected. This checks if inferences with i-th literal are needed? *) let eligible = C.Eligible.param clause in (* do the inferences where clause is active; for this, we try to rewrite conditionally other clauses using non-minimal sides of every positive literal *) let new_clauses = Lits.fold_eqn ~sign:true ~ord ~both:true ~eligible (C.lits clause) |> Iter.filter (fun (l,r,_,_) -> (Env.flex_get k_sup_w_pure_vars || not (Term.is_var l) || not (Term.is_var r)) && (Env.flex_get k_sup_true_false || not (Term.is_true_or_false l))) |> Iter.flat_map (fun (s, t, _, s_pos) -> let do_sup u_p with_pos subst = (* rewrite u_p with s *) if T.DB.is_closed u_p then let passive = with_pos.C.WithPos.clause in let passive_pos = with_pos.C.WithPos.pos in let passive_lit, _ = Lits.Pos.lit_at (C.lits passive) passive_pos in let info = SupInfo.( { s; t; active=clause; active_pos=s_pos; scope_active=0; u_p; passive; passive_lit; passive_pos; scope_passive=1; subst; sup_kind=Classic }) in do_superposition info else None in (* rewrite clauses using s *) retrieve_from_index (!_idx_sup_into, 1) (s, 0) |> Iter.filter_map (process_retrieved do_sup) ) |> Iter.to_rev_list in Util.exit_prof prof_infer_active; new_clauses let infer_passive_aux ~retrieve_from_index ~process_retrieved clause = Util.enter_prof prof_infer_passive; (* perform inference on this lit? *) let eligible = C.Eligible.(res clause) in (* do the inferences in which clause is passive (rewritten), so we consider both negative and positive literals *) let new_clauses = Lits.fold_terms ~vars:(Env.flex_get k_sup_at_vars) ~var_args:(Env.flex_get k_sup_in_var_args) ~fun_bodies:(Env.flex_get k_sup_under_lambdas) ~subterms:true ~ord ~which:`Max ~eligible ~ty_args:false (C.lits clause) |> Iter.filter (fun (u_p, _) -> not (T.is_var u_p) || T.is_ho_var u_p) |> Iter.filter (fun (u_p, _) -> T.DB.is_closed u_p) |> Iter.filter (fun (u_p, _) -> Env.flex_get k_sup_at_var_headed || not (T.is_var (T.head_term u_p))) |> Iter.flat_map (fun (u_p, passive_pos) -> let passive_lit, _ = Lits.Pos.lit_at (C.lits clause) passive_pos in let do_sup _ with_pos subst = let active = with_pos.C.WithPos.clause in let s_pos = with_pos.C.WithPos.pos in match Lits.View.get_eqn (C.lits active) s_pos with | Some (s, t, true) -> let info = SupInfo.({ s; t; active; active_pos=s_pos; scope_active=1; subst; u_p; passive=clause; passive_lit; passive_pos; scope_passive=0; sup_kind=Classic }) in do_superposition info | _ -> None in (* all terms that occur in an equation in the active_set and that are potentially unifiable with u_p (u at position p) *) retrieve_from_index (!_idx_sup_from, 1) (u_p,0) |> Iter.filter_map (process_retrieved do_sup) ) |> Iter.to_rev_list in Util.exit_prof prof_infer_passive; new_clauses let infer_active clause = infer_active_aux ~retrieve_from_index:I.retrieve_unifiables ~process_retrieved:(fun do_sup (u_p, with_pos, subst) -> do_sup u_p with_pos subst) clause let infer_lambdasup_from clause = (* no literal can be eligible for paramodulation if some are selected. This checks if inferences with i-th literal are needed? *) let eligible = C.Eligible.param clause in (* do the inferences where clause is active; for this, we try to rewrite conditionally other clauses using non-minimal sides of every positive literal *) Lits.fold_eqn ~sign:true ~ord ~both:true ~eligible (C.lits clause) |> Iter.flat_map (fun (s, t, _, s_pos) -> let do_lambdasup u_p with_pos subst = (* rewrite u_p with s *) let passive = with_pos.C.WithPos.clause in let passive_pos = with_pos.C.WithPos.pos in let passive_lit, _ = Lits.Pos.lit_at (C.lits passive) passive_pos in let info = SupInfo.( { s; t; active=clause; active_pos=s_pos; scope_active=0; u_p; passive; passive_lit; passive_pos; scope_passive=1; subst; sup_kind=LambdaSup }) in Util.debugf ~section 10 "[Trying lambdasup from %a into %a with term %a into term %a]" (fun k -> k C.pp clause C.pp passive T.pp s T.pp u_p); do_superposition info in I.retrieve_unifiables (!_idx_lambdasup_into, 1) (s, 0) |> Iter.filter_map (fun (u_p, with_pos, subst) -> do_lambdasup u_p with_pos subst)) |> Iter.to_rev_list let infer_passive clause = infer_passive_aux ~retrieve_from_index:I.retrieve_unifiables ~process_retrieved:(fun do_sup (u_p, with_pos, subst) -> do_sup u_p with_pos subst) clause let infer_lambdasup_into clause = (* perform inference on this lit? *) let eligible = C.Eligible.(res clause) in (* do the inferences in which clause is passive (rewritten), so we consider both negative and positive literals *) let new_clauses = Lits.fold_terms ~vars:(Env.flex_get k_sup_at_vars) ~var_args:(Env.flex_get k_sup_in_var_args) ~fun_bodies:true ~subterms:true ~ord ~which:`Max ~eligible ~ty_args:false (C.lits clause) |> Iter.filter_map (fun (u_p, p) -> (* we rewrite only under lambdas *) if not (T.is_fun u_p) then None else (let tyargs, body = T.open_fun u_p in let hd = T.head_term body in let new_pos = List.fold_left (fun p _ -> P.(append p (body stop)) ) p tyargs in (* we check normal superposition conditions *) if (not (T.is_var body) || T.is_ho_var body) && (not (T.is_const hd) || not (ID.is_skolem (T.as_const_exn hd))) && (Env.flex_get k_sup_at_var_headed || not (T.is_var (T.head_term body))) then Some (body, new_pos) else None) ) |> Iter.flat_map (fun (u_p, passive_pos) -> let passive_lit, _ = Lits.Pos.lit_at (C.lits clause) passive_pos in let do_sup _ with_pos subst = let active = with_pos.C.WithPos.clause in let s_pos = with_pos.C.WithPos.pos in match Lits.View.get_eqn (C.lits active) s_pos with | Some (s, t, true) -> let info = SupInfo.({ s; t; active; active_pos=s_pos; scope_active=1; subst; u_p; passive=clause; passive_lit; passive_pos; scope_passive=0; sup_kind=LambdaSup }) in Util.debugf ~section 10 "[Trying lambdasup from %a into %a with term %a into term %a]" (fun k -> k C.pp active C.pp clause T.pp s T.pp u_p); do_superposition info | _ -> None in (* all terms that occur in an equation in the active_set and that are potentially unifiable with u_p (u at position p) *) I.retrieve_unifiables (!_idx_sup_from, 1) (u_p,0) |> Iter.filter_map (fun (t,p,s) -> do_sup t p s)) |> Iter.to_rev_list in Util.exit_prof prof_infer_passive; new_clauses let infer_active_complete_ho clause = let inf_res = infer_active_aux ~retrieve_from_index:(I.retrieve_unifiables_complete ~unif_alg:(Env.flex_get k_unif_alg)) ~process_retrieved:(fun do_sup (u_p, with_pos, substs) -> let penalty = max (C.penalty clause) (C.penalty with_pos.C.WithPos.clause) in (* /!\ may differ from the actual penalty (by -2) *) Some (penalty, OSeq.map (CCOpt.flat_map (do_sup u_p with_pos)) substs)) clause in let stm_res = List.map (fun (p,s) -> Stm.make ~penalty:p s) inf_res in StmQ.add_lst _stmq.q stm_res; [] let infer_passive_complete_ho clause = let inf_res = infer_passive_aux ~retrieve_from_index:(I.retrieve_unifiables_complete ~unif_alg:(Env.flex_get k_unif_alg)) ~process_retrieved:(fun do_sup (u_p, with_pos, substs) -> let penalty = max (C.penalty clause) (C.penalty with_pos.C.WithPos.clause) in (* /!\ may differ from the actual penalty (by -2) *) Some (penalty, OSeq.map (CCOpt.flat_map (do_sup u_p with_pos)) substs)) clause in let stm_res = List.map (fun (p,s) -> Stm.make ~penalty:p s) inf_res in StmQ.add_lst _stmq.q stm_res; [] let infer_active_pragmatic_ho max_unifs clause = let inf_res = infer_active_aux ~retrieve_from_index:(I.retrieve_unifiables_complete ~unif_alg:(Env.flex_get k_unif_alg)) ~process_retrieved:(fun do_sup (u_p, with_pos, substs) -> let all_substs = OSeq.to_list @@ OSeq.take max_unifs @@ OSeq.filter_map CCFun.id substs in let res = List.map (fun subst -> do_sup u_p with_pos subst) all_substs in Some res ) clause in inf_res |> CCList.flatten |> List.filter CCOpt.is_some |> List.map CCOpt.get_exn let infer_passive_pragmatic_ho max_unifs clause = let inf_res = infer_passive_aux ~retrieve_from_index:(I.retrieve_unifiables_complete ~unif_alg:(Env.flex_get k_unif_alg)) ~process_retrieved:(fun do_sup (u_p, with_pos, substs) -> let all_substs = OSeq.to_list @@ OSeq.take max_unifs @@ OSeq.filter_map CCFun.id substs in let res = List.map (fun subst -> do_sup u_p with_pos subst) all_substs in Some res ) clause in inf_res |> CCList.flatten |> List.filter CCOpt.is_some |> List.map CCOpt.get_exn (* ---------------------------------------------------------------------- * FluidSup rule (Superposition at applied variables) * ---------------------------------------------------------------------- *) let infer_fluidsup_active clause = Util.enter_prof prof_infer_fluidsup_active; (* no literal can be eligible for paramodulation if some are selected. This checks if inferences with i-th literal are needed? *) let eligible = C.Eligible.param clause in (* do the inferences where clause is active; for this, we try to rewrite conditionally other clauses using non-minimal sides of every positive literal *) let new_clauses = if fluidsup_applicable clause then Lits.fold_eqn ~sign:true ~ord ~both:true ~eligible (C.lits clause) |> Iter.flat_map (fun (s, t, _, s_pos) -> I.fold !_idx_fluidsup_into (fun acc u_p with_pos -> assert (is_fluid_or_deep with_pos.C.WithPos.clause u_p); assert (T.DB.is_closed u_p); (* Create prefix variable H and use H s = H t for superposition *) let var_h = T.var (HVar.fresh ~ty:(Type.arrow [T.ty s] (Type.var (HVar.fresh ~ty:Type.tType ()))) ()) in let hs = T.app var_h [s] in let ht = T.app var_h [t] in let res = Env.flex_get k_unif_alg (u_p,1) (hs,0) |> OSeq.map ( fun osubst -> osubst |> CCOpt.flat_map ( fun subst -> let passive = with_pos.C.WithPos.clause in let passive_pos = with_pos.C.WithPos.pos in let passive_lit, _ = Lits.Pos.lit_at (C.lits passive) passive_pos in let info = SupInfo.({ s=hs; t=ht; active=clause; active_pos=s_pos; scope_active=0; u_p; passive; passive_lit; passive_pos; scope_passive=1; subst; sup_kind=FluidSup }) in do_superposition info ) ) in let penalty = max (C.penalty clause) (C.penalty with_pos.C.WithPos.clause) + (Env.flex_get k_fluidsup_penalty) in (* /!\ may differ from the actual penalty (by -2) *) Iter.cons (penalty,res) acc ) Iter.empty ) |> Iter.to_rev_list else [] in let stm_res = List.map (fun (p,s) -> Stm.make ~penalty:p s) new_clauses in StmQ.add_lst _stmq.q stm_res; Util.exit_prof prof_infer_fluidsup_active; [] let infer_fluidsup_passive clause = Util.enter_prof prof_infer_fluidsup_passive; (* perform inference on this lit? *) let eligible = C.Eligible.(res clause) in (* do the inferences in which clause is passive (rewritten), so we consider both negative and positive literals *) let new_clauses = if fluidsup_applicable clause then Lits.fold_terms ~vars:true ~var_args:false ~fun_bodies:false ~subterms:true ~ord ~which:`Max ~eligible ~ty_args:false (C.lits clause) |> Iter.filter (fun (u_p, _) -> is_fluid_or_deep clause u_p) |> Iter.flat_map (fun (u_p, passive_pos) -> let passive_lit, _ = Lits.Pos.lit_at (C.lits clause) passive_pos in I.fold !_idx_sup_from (fun acc _ with_pos -> let active = with_pos.C.WithPos.clause in let s_pos = with_pos.C.WithPos.pos in let res = match Lits.View.get_eqn (C.lits active) s_pos with | Some (s, t, true) -> (* Create prefix variable H and use H s = H t for superposition *) let var_h = T.var (HVar.fresh ~ty:(Type.arrow [T.ty s] (Type.var (HVar.fresh ~ty:Type.tType ()))) ()) in let hs = T.app var_h [s] in let ht = T.app var_h [t] in Env.flex_get k_unif_alg (hs,1) (u_p,0) |> OSeq.map (fun osubst -> osubst |> CCOpt.flat_map (fun subst -> let info = SupInfo.({ s = hs; t = ht; active; active_pos=s_pos; scope_active=1; subst; u_p; passive=clause; passive_lit; passive_pos; scope_passive=0; sup_kind=FluidSup }) in do_superposition info ) ) | _ -> assert false in let penalty = max (C.penalty clause) (C.penalty with_pos.C.WithPos.clause) + Env.flex_get k_fluidsup_penalty in (* /!\ may differ from the actual penalty (by -2) *) Iter.cons (penalty,res) acc ) Iter.empty ) |> Iter.to_rev_list else [] in let stm_res = List.map (fun (p,s) -> Stm.make ~penalty:p s) new_clauses in StmQ.add_lst _stmq.q stm_res; Util.exit_prof prof_infer_fluidsup_passive; [] (* ---------------------------------------------------------------------- * DupSup rule (Lightweight superposition at applied variables) * ---------------------------------------------------------------------- *) let infer_dupsup_active clause = let eligible = C.Eligible.param clause in let new_clauses = Lits.fold_eqn ~sign:true ~ord ~both:true ~eligible (C.lits clause) |> Iter.flat_map (fun (s, t, _, s_pos) -> I.fold !_idx_dupsup_into (fun acc u_p with_pos -> assert (T.is_var (T.head_term u_p)); assert (T.DB.is_closed u_p); (* Create prefix variable H and use H s = H t for superposition *) if (T.Seq.vars s |> Iter.append (T.Seq.vars t) |> Iter.exists (fun v -> Type.is_tType (HVar.ty v))) then ( acc ) else ( let scope_passive, scope_active = 0, 1 in let hd_up, args_up = T.as_app u_p in let arg_types = List.map T.ty args_up in let n = List.length args_up in let var_up = T.as_var_exn hd_up in let var_w = HVar.fresh ~ty:(Type.arrow arg_types (T.ty t)) () in let var_z = HVar.fresh ~ty:(Type.arrow (List.append arg_types [T.ty t]) (T.ty u_p)) () in let db_args = List.mapi (fun i ty -> T.bvar ~ty (n-1-i)) arg_types in let term_w,term_z = T.var var_w, T.var var_z in let w_db = T.app term_w db_args in let z_db = T.app term_z (List.append db_args [w_db]) in let y_subst_val = T.fun_l arg_types z_db in assert (T.DB.is_closed y_subst_val); let subst_y = US.FO.bind (US.empty) (var_up, scope_passive) (y_subst_val, scope_passive) in let w_args = T.app term_w args_up in let w_args = Subst.FO.apply Subst.Renaming.none (US.subst subst_y) (w_args,scope_passive) in let z_args = T.app term_z (List.append args_up [t]) in let res = Env.flex_get k_unif_alg (s,scope_active) (w_args,scope_passive) |> OSeq.map ( fun osubst -> osubst |> CCOpt.flat_map ( fun subst -> let subst = US.merge subst subst_y in let passive = with_pos.C.WithPos.clause in let passive_pos = with_pos.C.WithPos.pos in let passive_lit, _ = Lits.Pos.lit_at (C.lits passive) passive_pos in let info = SupInfo.({ s; t=z_args; active=clause; active_pos=s_pos; scope_active; u_p=w_args; passive; passive_lit; passive_pos; scope_passive; subst; sup_kind=DupSup }) in do_superposition info ) ) in let penalty = max (C.penalty clause) (C.penalty with_pos.C.WithPos.clause) + Env.flex_get k_fluidsup_penalty in (* /!\ may differ from the actual penalty (by -2) *) Iter.cons (penalty,res) acc )) Iter.empty ) |> Iter.to_rev_list in let stm_res = List.map (fun (p,s) -> Stm.make ~penalty:p s) new_clauses in StmQ.add_lst _stmq.q stm_res; Util.exit_prof prof_infer_fluidsup_active; [] let infer_dupsup_passive clause = Util.enter_prof prof_infer_fluidsup_passive; (* perform inference on this lit? *) let eligible = C.Eligible.(res clause) in (* do the inferences in which clause is passive (rewritten), so we consider both negative and positive literals *) let new_clauses = Lits.fold_terms ~vars:false ~var_args:false ~fun_bodies:false ~subterms:true ~ord ~which:`Max ~eligible ~ty_args:false (C.lits clause) |> Iter.filter (fun (u_p, _) -> (T.is_var (T.head_term u_p) && not (CCList.is_empty @@ T.args u_p) && Type.is_ground (T.ty u_p))) |> Iter.flat_map (fun (u_p, passive_pos) -> let passive_lit, _ = Lits.Pos.lit_at (C.lits clause) passive_pos in I.fold !_idx_sup_from (fun acc _ with_pos -> let active = with_pos.C.WithPos.clause in let s_pos = with_pos.C.WithPos.pos in match Lits.View.get_eqn (C.lits active) s_pos with | Some (s, t, true) -> ( if (T.Seq.vars s |> Iter.append (T.Seq.vars t) |> Iter.exists (fun v -> Type.is_tType (HVar.ty v))) then ( acc ) else ( let scope_passive, scope_active = 0, 1 in let hd_up, args_up = T.as_app u_p in let arg_types = List.map T.ty args_up in let n = List.length args_up in let var_up = T.as_var_exn hd_up in let var_w = HVar.fresh ~ty:(Type.arrow arg_types (T.ty t)) () in let var_z = HVar.fresh ~ty:(Type.arrow (List.append arg_types [(T.ty t)]) (T.ty u_p)) () in let db_args = List.mapi (fun i ty -> T.bvar ~ty (n-1-i)) arg_types in let term_w,term_z = T.var var_w, T.var var_z in let w_db = T.app term_w db_args in let z_db = T.app term_z (List.append db_args [w_db]) in let y_subst_val = T.fun_l arg_types z_db in assert (T.DB.is_closed y_subst_val); let subst_y = US.FO.bind (US.empty) (var_up, scope_passive) (y_subst_val, scope_passive) in let w_args = T.app term_w args_up in let w_args = Subst.FO.apply Subst.Renaming.none (US.subst subst_y) (w_args,scope_passive) in let z_args = T.app term_z (List.append args_up [t]) in let res = Env.flex_get k_unif_alg (w_args,scope_passive) (s,scope_active) |> OSeq.map ( fun osubst -> osubst |> CCOpt.flat_map ( fun subst -> let subst = US.merge subst subst_y in let info = SupInfo.({ s; t=z_args; active; active_pos=s_pos; scope_active; u_p=w_args; passive=clause; passive_lit; passive_pos; scope_passive; subst; sup_kind=DupSup }) in do_superposition info )) in let penalty = max (C.penalty clause) (C.penalty with_pos.C.WithPos.clause) + Env.flex_get k_fluidsup_penalty in (* /!\ may differ from the actual penalty (by -2) *) Iter.cons (penalty,res) acc)) | _ -> acc) Iter.empty ) |> Iter.to_rev_list in let stm_res = List.map (fun (p,s) -> Stm.make ~penalty:p s) new_clauses in StmQ.add_lst _stmq.q stm_res; Util.exit_prof prof_infer_fluidsup_passive; [] (* ---------------------------------------------------------------------- * Equality Resolution rule * ---------------------------------------------------------------------- *) let infer_equality_resolution_aux ~unify ~iterate_substs clause = Util.enter_prof prof_infer_equality_resolution; let eligible = C.Eligible.always in (* iterate on those literals *) let new_clauses = Lits.fold_eqn ~sign:false ~ord ~both:false ~eligible (C.lits clause) |> Iter.filter_map (fun (l, r, _, l_pos) -> let do_eq_res us = let pos = Lits.Pos.idx l_pos in if BV.get (C.eligible_res_no_subst clause) pos (* subst(lit) is maximal, we can do the inference *) then ( Util.incr_stat stat_equality_resolution_call; let renaming = Subst.Renaming.create () in let subst = US.subst us in let rule = Proof.Rule.mk "eq_res" in let new_lits = CCArray.except_idx (C.lits clause) pos in let new_lits = Lit.apply_subst_list renaming subst (new_lits,0) in let c_guard = Literal.of_unif_subst renaming us in let subst_has_lams = Subst.codomain subst |> Iter.exists (fun (t,_) -> Iter.exists T.is_fun (T.Seq.subterms (T.of_term_unsafe t))) in let = (if subst_has_lams then [Proof.Tag.T_ho] else []) @ Unif_subst.tags us in let trail = C.trail clause and penalty = C.penalty clause in let proof = Proof.Step.inference ~rule ~tags [C.proof_parent_subst renaming (clause,0) subst] in let new_clause = C.create ~trail ~penalty (c_guard@new_lits) proof in Util.debugf ~section 1 "@[<hv2>equality resolution on@ @[%a@]@ yields @[%a@],\n subst @[%a@]@]" (fun k->k C.pp clause C.pp new_clause US.pp us); Some new_clause ) else None in let substs = unify (l, 0) (r, 0) in iterate_substs substs do_eq_res ) |> Iter.to_rev_list in Util.exit_prof prof_infer_equality_resolution; new_clauses let infer_equality_resolution = infer_equality_resolution_aux ~unify:(fun l r -> try Some (Unif.FO.unify_full l r) with Unif.Fail -> None) ~iterate_substs:(fun substs do_eq_res -> CCOpt.flat_map do_eq_res substs) let infer_equality_resolution_complete_ho clause = let inf_res = infer_equality_resolution_aux ~unify:(Env.flex_get k_unif_alg) ~iterate_substs:(fun substs do_eq_res -> Some (OSeq.map (CCOpt.flat_map do_eq_res) substs)) clause in let penalty = C.penalty clause in let stm_res = List.map (Stm.make ~penalty:penalty) inf_res in StmQ.add_lst _stmq.q stm_res; [] let infer_equality_resolution_pragmatic_ho max_unifs clause = let inf_res = infer_equality_resolution_aux ~unify:(Env.flex_get k_unif_alg) ~iterate_substs:(fun substs do_eq_res -> (* Some (OSeq.map (CCOpt.flat_map do_eq_res) substs) *) let all_substs = OSeq.to_list @@ OSeq.take max_unifs @@ OSeq.filter_map CCFun.id substs in let res = List.map (fun subst -> do_eq_res subst) all_substs in Some res) clause in inf_res |> CCList.flatten |> List.filter CCOpt.is_some |> List.map CCOpt.get_exn (* ---------------------------------------------------------------------- * Equality Factoring rule * ---------------------------------------------------------------------- *) module EqFactInfo = struct type t = { clause : C.t; active_idx : int; s : T.t; t : T.t; u : T.t; v : T.t; subst : US.t; scope : int; } end (* do the inference between given positions, if ordering conditions are respected *) let do_eq_factoring info = let open EqFactInfo in let s = info.s and t = info.t and v = info.v in let us = info.subst in (* check whether subst(lit) is maximal, and not (subst(s) < subst(t)) *) let renaming = S.Renaming.create () in let subst = US.subst us in if O.compare ord (S.FO.apply renaming subst (s, info.scope)) (S.FO.apply renaming subst (t, info.scope)) <> Comp.Lt && C.is_eligible_param (info.clause,info.scope) subst ~idx:info.active_idx then ( let subst_has_lams = Subst.codomain subst |> Iter.exists (fun (t,_) -> Iter.exists T.is_fun (T.Seq.subterms (T.of_term_unsafe t))) in let = (if subst_has_lams then [Proof.Tag.T_ho] else []) @ Unif_subst.tags us in Util.incr_stat stat_equality_factoring_call; let proof = Proof.Step.inference ~rule:(Proof.Rule.mk"eq_fact") ~tags [C.proof_parent_subst renaming (info.clause,0) subst] (* new_lits: literals of the new clause. remove active literal and replace it by a t!=v one, and apply subst *) and new_lits = CCArray.except_idx (C.lits info.clause) info.active_idx in let new_lits = Lit.apply_subst_list renaming subst (new_lits,info.scope) in let c_guard = Literal.of_unif_subst renaming us in let lit' = Lit.mk_neq (S.FO.apply renaming subst (t, info.scope)) (S.FO.apply renaming subst (v, info.scope)) in let new_lits = lit' :: c_guard @ new_lits in let new_clause = C.create ~trail:(C.trail info.clause) ~penalty:(C.penalty info.clause) new_lits proof in Util.debugf ~section 3 "@[<hv2>equality factoring on@ @[%a@]@ yields @[%a@]@]" (fun k->k C.pp info.clause C.pp new_clause); Some new_clause ) else None let ext_eqfact_decompose_aux cl = let try_ext_eq_fact (s,t) (u,v) idx = let (s_hd, s_args), (u_hd, u_args) = CCPair.map_same T.as_app (s,u) in if not (T.equal s_hd u_hd) && Type.equal (T.ty s) (T.ty u) && List.length s_args = List.length u_args && List.for_all (fun (s, t) -> Term.equal s t) (CCList.combine s_args u_args) then ( let new_lits = Lit.mk_neq s_hd u_hd :: Lit.mk_neq t v :: CCArray.except_idx (C.lits cl) idx in let proof = Proof.Step.inference [C.proof_parent cl] ~rule:(Proof.Rule.mk "ext_eqfact_decompose") in let new_c = C.create ~trail:(C.trail cl) ~penalty:(C.penalty cl) new_lits proof in [new_c] ) else [] in let aux_eq_rest (s,t) i lits = List.mapi (fun j lit -> if i < j then ( match lit with | Lit.Equation(u,v,true) -> try_ext_eq_fact (s,t) (u,v) i @ try_ext_eq_fact (s,t) (v,u) i | _ -> [] ) else []) lits |> CCList.flatten in let lits = CCArray.to_list (C.lits cl) in List.mapi (fun i lit -> match lit with | Lit.Equation (s,t,true) -> aux_eq_rest (s,t) i lits | _ -> []) lits |> CCList.flatten let pred_var_instantiation c trigger_set = let p_vars = pred_vars c in let substs = CCList.flat_map (fun v -> let res = ref [] in (* no really efficient way without turning set to list *) Term.Set.iter (fun t -> let var_ty = HVar.ty v and t_ty = Term.ty t in if Type.is_ground var_ty && Type.is_ground t_ty && Type.equal var_ty t_ty then ( let subst = Subst.FO.bind' Subst.empty (v,0) (t,1) in res := subst :: !res; )) trigger_set; !res ) p_vars in Iter.of_list substs |> Iter.map (fun sub -> let renaming = Subst.Renaming.create() in let new_lits = Lits.apply_subst renaming sub (C.lits c, 0) in let trail = C.trail c in let penalty = C.penalty c in let rule = Proof.Rule.mk "instantiate_w_trigger" in let = [Proof.Tag.T_ho] in let proof = Proof.Step.inference ~tags ~rule [C.proof_parent_subst renaming (c, 0) sub] in let new_clause = C.create ~trail ~penalty (CCArray.to_list new_lits) proof in (* CCFormat.printf "[BOOL_INST: %a, %a => %a].\n" C.pp c Subst.pp sub C.pp new_clause; *) assert (C.Seq.terms c |> Iter.for_all T.DB.is_closed); assert (C.Seq.terms new_clause |> Iter.for_all T.DB.is_closed); new_clause) |> Iter.to_list let instantiate_with_triggers c = if C.proof_depth c < Env.flex_get k_trigger_bool_inst then ( pred_var_instantiation c !_trigger_bools) else [] let trigger_insantiation c = if C.proof_depth c < Env.flex_get k_trigger_bool_inst then ( let triggers = Term.Set.of_seq @@ get_triggers c in let res = ref [] in C.ClauseSet.iter (fun old_c -> res := pred_var_instantiation old_c triggers @ !res ) !_cls_w_pred_vars; !res) else [] let ext_eqfact_decompose given = if Proof.Step.inferences_performed (C.proof_step given) < Env.flex_get k_max_lits_ext_dec then Util.with_prof prof_ext_dec ext_eqfact_decompose_aux given else [] let infer_equality_factoring_aux ~unify ~iterate_substs clause = Util.enter_prof prof_infer_equality_factoring; let eligible = C.Eligible.(filter Lit.is_pos) in (* find root terms that are unifiable with s and are not in the literal at s_pos. Calls [k] with a position and substitution *) let find_unifiable_lits ~var_pred_status idx s _s_pos k = let is_pred_var, pred_var_sign = var_pred_status in Array.iteri (fun i lit -> match lit with | _ when i = idx -> () (* same index *) | Lit.Equation (u, v, true) -> (* positive equation *) if T.equal v T.false_ && not is_pred_var then () else ( if is_pred_var && T.is_true_or_false v then ( assert(T.is_true_or_false pred_var_sign); if T.equal v pred_var_sign then ( k (u, v, unify (s,0) (u,0)) ) else ( let u = T.Form.not_ u in k (u, pred_var_sign, unify (s,0) (u,0)) ) ) else ( k (u, v, unify (s,0) (u,0)); k (v, u, unify (s,0) (v,0)) ); ) | _ -> () (* ignore other literals *) ) (C.lits clause) in (* try to do inferences with each positive literal *) let new_clauses = Lits.fold_eqn ~sign:true ~ord ~both:true ~eligible (C.lits clause) |> Iter.flat_map (fun (s, t, _, s_pos) -> (* try with s=t *) let active_idx = Lits.Pos.idx s_pos in let is_var_pred = T.is_var (T.head_term s) && Type.is_prop (T.ty s) && T.is_true_or_false t in if not @@ Env.flex_get k_sup_true_false && T.is_true_or_false s then Iter.empty (* disable factoring from false*) else if T.equal t T.false_ && not is_var_pred then Iter.empty else ( let var_pred_status = (is_var_pred, t) in find_unifiable_lits ~var_pred_status active_idx s s_pos) |> Iter.filter_map (fun (u,v,substs) -> iterate_substs substs (fun subst -> let info = EqFactInfo.({ clause; s; t; u; v; active_idx; subst; scope=0; }) in do_eq_factoring info))) |> Iter.to_rev_list in Util.exit_prof prof_infer_equality_factoring; new_clauses let infer_equality_factoring = infer_equality_factoring_aux ~unify:(fun s t -> try Some (Unif.FO.unify_full s t) with Unif.Fail -> None) ~iterate_substs:(fun subst do_eq_fact -> CCOpt.flat_map do_eq_fact subst) let infer_equality_factoring_complete_ho clause = let inf_res = infer_equality_factoring_aux ~unify:(Env.flex_get k_unif_alg) ~iterate_substs:(fun substs do_eq_fact -> Some (OSeq.map (CCOpt.flat_map do_eq_fact) substs)) clause in let penalty = C.penalty clause in let stm_res = List.map (Stm.make ~penalty:penalty) inf_res in StmQ.add_lst _stmq.q stm_res; [] let infer_equality_factoring_pragmatic_ho max_unifs clause = let inf_res = infer_equality_factoring_aux ~unify:(Env.flex_get k_unif_alg) ~iterate_substs:(fun substs do_eq_fact -> (* Some (OSeq.map (CCOpt.flat_map do_eq_fact) substs) *) let all_substs = OSeq.to_list @@ OSeq.take max_unifs @@ OSeq.filter_map CCFun.id substs in let res = List.map (fun subst -> do_eq_fact subst) all_substs in Some res) clause in inf_res |> CCList.flatten |> List.filter CCOpt.is_some |> List.map CCOpt.get_exn (* ---------------------------------------------------------------------- * extraction of a clause from the stream queue (HO feature) * ---------------------------------------------------------------------- *) let extract_from_stream_queue ~full () = let cl = if full then [StmQ.take_first_anyway _stmq.q] else StmQ.take_stm_nb _stmq.q in let opt_res = CCOpt.sequence_l (List.filter CCOpt.is_some cl) in match opt_res with | None -> [] | Some l -> l let extract_from_stream_queue_fix_stm ~full () = let cl = if full then [StmQ.take_first_anyway _stmq.q] else StmQ.take_stm_nb_fix_stm _stmq.q in let opt_res = CCOpt.sequence_l (List.filter CCOpt.is_some cl) in match opt_res with | None -> [] | Some l -> l (* ---------------------------------------------------------------------- * simplifications * ---------------------------------------------------------------------- *) (* TODO: put forward pointers in simpl_set, to make some rewriting steps faster? (invalidate when updated, also allows to reclaim memory) *) (* TODO: use a record with - head - args - subst so as not to rebuild intermediate terms, and also to avoid mixing the head normal form and the substitution for (evaluated) arguments. Might even convert rules into De Bruijn, because: - special restriction (vars rhs ⊆ vars lhs) - indexing on first symbol might be sufficient if matching is fast - must rewrite matching to work on the record anyway *) let lazy_false = Lazy.from_val false type demod_state = { mutable demod_clauses: (C.t * Subst.t * Scoped.scope) list; (* rules used *) mutable demod_sc: Scoped.scope; (* current scope *) } (** Compute normal form of term w.r.t active set. Clauses used to rewrite are added to the clauses hashset. restrict is an option for restricting demodulation in positive maximal terms *) let demod_nf ?(restrict=lazy_false) (st:demod_state) c t : T.t = (* compute normal form of subterm. If restrict is true, substitutions that are variable renamings are forbidden (since we are at root of a max term) *) let rec reduce_at_root ~restrict t k = (* find equations l=r that match subterm *) let cur_sc = st.demod_sc in assert (cur_sc > 0); let step = UnitIdx.retrieve ~sign:true (!_idx_simpl, cur_sc) (t, 0) |> Iter.find_map (fun (l, r, (_,_,sign,unit_clause), subst) -> let rename = Subst.Renaming.create () in (* r is the term subterm is going to be rewritten into *) assert (C.is_unit_clause unit_clause); if sign && not (C.equal unit_clause c) && (not (Lazy.force restrict) || not (S.is_renaming subst)) && C.trail_subsumes unit_clause c && (O.compare ord (S.FO.apply rename subst (l,cur_sc)) (S.FO.apply rename subst (r,cur_sc)) = Comp.Gt) (* subst(l) > subst(r) and restriction does not apply, we can rewrite *) then ( Util.debugf ~section 3 "@[<hv2>demod:@ @[<hv>t=%a[%d],@ l=%a[%d],@ r=%a[%d]@],@ subst=@[%a@]@]" (fun k->k T.pp t 0 T.pp l cur_sc T.pp r cur_sc S.pp subst); let t' = Lambda.eta_reduce @@ Lambda.snf t in let l' = Lambda.eta_reduce @@ Lambda.snf @@ Subst.FO.apply Subst.Renaming.none subst (l,cur_sc) in (* sanity checks *) assert (Type.equal (T.ty l) (T.ty r)); assert (T.equal l' t'); st.demod_clauses <- (unit_clause,subst,cur_sc) :: st.demod_clauses; st.demod_sc <- 1 + st.demod_sc; (* allocate new scope *) Util.incr_stat stat_demodulate_step; Some (r, subst, cur_sc) ) else None) in begin match step with | None -> k t (* not found any match, normal form found *) | Some (rhs,subst,cur_sc) -> (* reduce [rhs] in current scope [cur_sc] *) assert (cur_sc < st.demod_sc); Util.debugf ~section 3 "@[<2>demod:@ rewrite `@[%a@]`@ into `@[%a@]`@ using %a[%d]@]" (fun k->k T.pp t T.pp rhs Subst.pp subst cur_sc); (* NOTE: we retraverse the term several times, but this is simpler *) let rhs = Subst.FO.apply Subst.Renaming.none subst (rhs,cur_sc) in normal_form ~restrict rhs k (* done one rewriting step, continue *) end (* rewrite innermost-leftmost of [subst(t,scope)]. The initial scope is 0, but then we normal_form terms in which variables are really the variables of the RHS of a previously applied rule (in context !sc); all those variables are bound to terms in context 0 *) and normal_form ~restrict t k = match T.view t with | T.Const _ -> reduce_at_root ~restrict t k | T.App (hd, l) -> (* rewrite subterms in call by value. *) let rewrite_args = Env.flex_get k_demod_in_var_args || not (T.is_var hd) in if rewrite_args then normal_form_l l (fun l' -> let t' = if T.same_l l l' then t else T.app hd l' in (* rewrite term at root *) reduce_at_root ~restrict t' k) else reduce_at_root ~restrict t k | T.Fun (ty_arg, body) -> (* reduce under lambdas *) if Env.flex_get k_lambda_demod then normal_form ~restrict:lazy_false body (fun body' -> let u = if T.equal body body' then t else T.fun_ ty_arg body' in reduce_at_root ~restrict u k) else reduce_at_root ~restrict t k (* TODO: DemodExt *) | T.Var _ | T.DB _ -> k t | T.AppBuiltin (b, l) -> normal_form_l l (fun l' -> let u = if T.same_l l l' then t else T.app_builtin ~ty:(T.ty t) b l' in reduce_at_root ~restrict u k) and normal_form_l l k = match l with | [] -> k [] | t :: tail -> normal_form ~restrict:lazy_false t (fun t' -> normal_form_l tail (fun l' -> k (t' :: l'))) in normal_form ~restrict t (fun t->t) let[@inline] eq_c_subst (c1,s1,sc1)(c2,s2,sc2) = C.equal c1 c2 && sc1=sc2 && Subst.equal s1 s2 (* Demodulate the clause, with restrictions on which terms to rewrite *) let demodulate_ c = Util.incr_stat stat_demodulate_call; (* state for storing proofs and scope *) let st = { demod_clauses=[]; demod_sc=1; } in (* literals that are eligible for paramodulation. *) let eligible_param = lazy (C.eligible_param (c,0) S.empty) in (* demodulate literals *) let demod_lit i lit = (* strictly maximal terms might be blocked *) let strictly_max = lazy ( begin match lit with | Lit.Equation (t1,t2,true) -> begin match O.compare ord t1 t2 with | Comp.Gt -> [t1] | Comp.Lt -> [t2] | _ -> [] end | _ -> [] end ) in (* shall we restrict a subterm? only for max terms in positive equations that are eligible for paramodulation. NOTE: E's paper mentions that restrictions should occur for literals eligible for {b resolution}, not paramodulation, but it seems it might be a typo *) let restrict_term t = lazy ( Lit.is_pos lit && BV.get (Lazy.force eligible_param) i && (* restrict max terms in positive literals eligible for resolution *) CCList.mem ~eq:T.equal t (Lazy.force strictly_max) ) in Lit.map (fun t -> demod_nf ~restrict:(restrict_term t) st c t) lit in (* demodulate every literal *) let lits = Array.mapi demod_lit (C.lits c) in if CCList.is_empty st.demod_clauses then ( (* no rewriting performed *) SimplM.return_same c ) else ( assert (not (Lits.equal_com lits (C.lits c))); (* construct new clause *) st.demod_clauses <- CCList.uniq ~eq:eq_c_subst st.demod_clauses; let proof = Proof.Step.simp ~rule:(Proof.Rule.mk "demod") (C.proof_parent c :: List.rev_map (fun (c,subst,sc) -> C.proof_parent_subst Subst.Renaming.none (c,sc) subst) st.demod_clauses) in let trail = C.trail c in (* we know that demodulating rules have smaller trail *) let new_c = C.create_a ~trail ~penalty:(C.penalty c) lits proof in Util.debugf ~section 3 "@[<hv2>demodulate@ @[%a@]@ into @[%a@]@ using {@[<hv>%a@]}@]" (fun k-> let pp_c_s out (c,s,sc) = Format.fprintf out "(@[%a@ :subst %a[%d]@])" C.pp c Subst.pp s sc in k C.pp c C.pp new_c (Util.pp_list pp_c_s) st.demod_clauses); (* Assertion against variable clashes *) (* Not sure if this assertion is in place -- maybe Zip renames the vars afterwards TODO: INVESTIGATE!!! *) (* Lits.vars (C.lits new_c) |> CCList.map (fun v -> (HVar.id v)) |> (fun vars -> assert (CCList.length (CCList.uniq ~eq:CCInt.equal vars) == CCList.length vars)); *) (* return simplified clause *) SimplM.return_new new_c ) let demodulate c = assert (Term.VarSet.for_all (fun v -> HVar.id v >= 0) (Literals.vars (C.lits c) |> Term.VarSet.of_list)); Util.with_prof prof_demodulate demodulate_ c let canonize_variables c = let all_vars = Literals.vars (C.lits c) |> (fun v -> InnerTerm.VarSet.of_list (v:>InnerTerm.t HVar.t list)) in let neg_vars_renaming = Subst.FO.canonize_neg_vars ~var_set:all_vars in if Subst.is_empty neg_vars_renaming then SimplM.return_same c else ( let new_lits = Literals.apply_subst Subst.Renaming.none neg_vars_renaming (C.lits c, 0) |> CCArray.to_list in let proof = Proof.Step.inference [C.proof_parent c] ~rule:(Proof.Rule.mk "cannonize vars") in let new_c = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof in SimplM.return_new new_c) let do_ext_dec from_c from_p from_t into_c into_p into_t = let sc_f, sc_i = 0, 1 in let renaming = Subst.Renaming.create () in let (hd_f, args_f), (hd_i,args_i) = Term.as_app from_t, Term.as_app into_t in if Type.equal (Term.ty from_t) (Term.ty into_t) && List.length args_f = List.length args_i && not (C.id from_c = C.id into_c && Position.equal from_p into_p) then ( (* Renaming variables apart *) let args_f = List.map (fun t -> Subst.FO.apply renaming Subst.empty (t,sc_f)) args_f in let args_i = List.map (fun t -> Subst.FO.apply renaming Subst.empty (t,sc_i)) args_i in let combined = CCList.combine args_f args_i in if T.equal hd_f hd_i && T.is_const hd_f && List.for_all (fun (s,t) -> Type.equal (T.ty s) (T.ty t)) combined then ( if List.exists (fun (s,t) -> (* otherwise they would be unifyible *) not (T.is_var (T.head_term s)) && not (T.is_var (T.head_term t))) combined then ( let lits_f = Lits.apply_subst renaming Subst.empty (C.lits from_c, sc_f) in let lits_i = Lits.apply_subst renaming Subst.empty (C.lits into_c, sc_i) in let new_neq_lits = List.map (fun (arg_f, arg_i) -> Lit.mk_neq arg_f arg_i) combined in let (i, pos_f) = Lits.Pos.cut from_p in let from_s = Lits.Pos.at lits_f (Position.arg i (Position.opp pos_f)) in Lits.Pos.replace lits_i ~at:into_p ~by:from_s; let new_lits = new_neq_lits @ CCArray.except_idx lits_f i @ CCArray.to_list lits_i in let trail = C.trail_l [from_c; into_c] in let penalty = max (C.penalty from_c) (C.penalty into_c) in let = [Proof.Tag.T_ho] in let proof = Proof.Step.inference [C.proof_parent_subst renaming (from_c, sc_f) Subst.empty; C.proof_parent_subst renaming (into_c, sc_i) Subst.empty] ~rule:(Proof.Rule.mk "ext_decompose") ~tags in let new_c = C.create ~trail ~penalty new_lits proof in Some new_c ) else None ) else None ) else None (* Given a "from"-clause C \/ f t1 ... tn = s and "into"-clause D \/ f u1 .. un (~)= v, where some of the t_i (and consequently u_i) are of functional type, construct a clause C \/ D \/ t1 ~= u1 \/ ... tn ~= un \/ s (~)= v. Intuitively, we are waiting for efficient extensionality rules to kick in and fix the problem of not being able to paramodulate with this equation. Currently with no restrictions or indexing. After initial evaluation, will find ways to restrict it somehow. *) let retrieve_from_extdec_idx idx id = let cl_map = ID.Map.find_opt id idx in match cl_map with | None -> Iter.empty | Some cl_map -> C.Tbl.to_seq cl_map |> Iter.flat_map (fun (c, l) -> Iter.of_list l |> Iter.map (fun (t,p) -> (c,t,p))) let ext_decompose_act given = if C.length given <= Env.flex_get k_max_lits_ext_dec then ( let eligible = if Env.flex_get k_ext_dec_lits = `OnlyMax then C.Eligible.param given else C.Eligible.always in Lits.fold_eqn ~ord ~both:true ~sign:true ~eligible (C.lits given) |> Iter.flat_map (fun (l,_,sign,pos) -> let hd,args = T.as_app l in if T.is_const hd && T.has_ho_subterm l then ( let inf_partners = retrieve_from_extdec_idx !_ext_dec_into_idx (T.as_const_exn hd) in Iter.map (fun (into_c,into_t, into_p) -> do_ext_dec given pos l into_c into_p into_t) inf_partners) else Iter.empty) |> Iter.filter_map CCFun.id |> Iter.to_list) else [] let ext_decompose_pas given = if C.length given <= Env.flex_get k_max_lits_ext_dec then ( let which, eligible = if Env.flex_get k_ext_dec_lits = `OnlyMax then `Max, C.Eligible.res given else `All, C.Eligible.always in Lits.fold_terms ~vars:false ~var_args:false ~fun_bodies:false ~ty_args:false ~ord ~which ~subterms:true ~eligible (C.lits given) |> Iter.flat_map (fun (t,p) -> let hd, args = T.as_app t in if T.is_const hd && T.has_ho_subterm t then ( let inf_partners = retrieve_from_extdec_idx !_ext_dec_from_idx (T.as_const_exn hd) in Iter.map (fun (from_c,from_t, from_p) -> do_ext_dec from_c from_p from_t given p t) inf_partners) else Iter.empty)) |> Iter.filter_map CCFun.id |> Iter.to_list else [] let ext_eqres_decompose_aux c = let eligible = C.Eligible.neg in if C.proof_depth c < Env.flex_get k_max_lits_ext_dec then ( let res = Literals.fold_eqn (C.lits c) ~eligible ~ord ~both:false ~sign:false |> Iter.to_list |> CCList.filter_map (fun (lhs,rhs,sign,pos) -> assert(sign = false); let (l_hd, l_args), (r_hd, r_args) = CCPair.map_same T.as_app (lhs,rhs) in if not (T.equal l_hd r_hd) && List.length l_args = List.length r_args && List.for_all (fun (s, t) -> Type.equal (Term.ty s) (Term.ty t)) (CCList.combine l_args r_args) && (List.for_all (fun (s, t) -> Term.equal s t) (CCList.combine l_args r_args)) then ( let new_neq_lits = ((l_hd,r_hd) :: CCList.combine l_args r_args) |> CCList.filter_map (fun (arg_f, arg_i) -> if not (T.equal arg_f arg_i) then Some (Lit.mk_neq arg_f arg_i) else None) in let i, _ = Literals.Pos.cut pos in let new_lits = new_neq_lits @ CCArray.except_idx (C.lits c) i in let proof = Proof.Step.inference [C.proof_parent c] ~rule:(Proof.Rule.mk "ext_eqres_decompose") in let new_c = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof in Some new_c) else None) in Util.incr_stat stat_ext_dec; res ) else [] let ext_eqres_decompose given = Util.with_prof prof_ext_dec ext_eqres_decompose_aux given (** Find clauses that [given] may demodulate, add them to set *) let backward_demodulate set given = Util.enter_prof prof_back_demodulate; let renaming = Subst.Renaming.create () in (* find clauses that might be rewritten by l -> r *) let recurse ~oriented set l r = I.retrieve_specializations (!_idx_back_demod,1) (l,0) |> Iter.fold (fun set (_t',with_pos,subst) -> let c = with_pos.C.WithPos.clause in (* subst(l) matches t' and is > subst(r), very likely to rewrite! *) if ((oriented || O.compare ord (S.FO.apply renaming subst (l,0)) (S.FO.apply renaming subst (r,0)) = Comp.Gt ) && C.trail_subsumes c given ) then (* add the clause to the set, it may be rewritten by l -> r *) C.ClauseSet.add c set else set) set in let set' = match C.lits given with | [|Lit.Equation (l,r,true) |] -> begin match Ordering.compare ord l r with | Comp.Gt -> recurse ~oriented:true set l r | Comp.Lt -> recurse ~oriented:true set r l | _ -> let set' = recurse ~oriented:false set l r in recurse ~oriented:false set' r l (* both sides can rewrite, but we need to check ordering *) end | _ -> set in Util.exit_prof prof_back_demodulate; set' let is_tautology c = let is_tauto = Lits.is_trivial (C.lits c) || Trail.is_trivial (C.trail c) in if is_tauto then Util.debugf ~section 3 "@[@[%a@]@ is a tautology@]" (fun k->k C.pp c); is_tauto (* semantic tautology deletion, using a congruence closure algorithm to see if negative literals imply some positive literal *) let is_semantic_tautology_real (c:C.t) : bool = (* create the congruence closure of all negative equations of [c] *) let cc = Congruence.FO.create ~size:8 () in let cc = Array.fold_left (fun cc lit -> match lit with | Lit.Equation (l, r, false) -> Congruence.FO.mk_eq cc l r (* registering equations of the form ~ P as negative equations P = true *) | Lit.Equation (p, t, true) when T.equal t T.false_ -> Congruence.FO.mk_eq cc p T.true_ | _ -> cc) cc (C.lits c) in let res = CCArray.exists (function (* making sure we do not catch equations of the form P = false that are interpreted as negative equations P = true *) | Lit.Equation (l, r, true) when not (T.equal r T.false_) -> (* if l=r is implied by the congruence, then the clause is redundant *) Congruence.FO.is_eq cc l r | _ -> false) (C.lits c) in if res then ( Util.incr_stat stat_semantic_tautology; Util.debugf ~section 2 "@[@[%a@]@ is a semantic tautology@]" (fun k->k C.pp c); ); res let is_semantic_tautology_ c = if Array.length (C.lits c) >= 2 && CCArray.exists Lit.is_neg (C.lits c) && CCArray.exists Lit.is_pos (C.lits c) then is_semantic_tautology_real c else false let is_semantic_tautology c = Util.with_prof prof_semantic_tautology is_semantic_tautology_ c let var_in_subst_ us v sc = S.mem (US.subst us) ((v:T.var:>InnerTerm.t HVar.t),sc) let basic_simplify c = if C.get_flag flag_simplified c then SimplM.return_same c else ( Util.enter_prof prof_basic_simplify; Util.incr_stat stat_basic_simplify_calls; let lits = C.lits c in let has_changed = ref false in let = ref [] in (* bv: literals to keep *) let bv = BV.create ~size:(Array.length lits) true in (* eliminate absurd lits *) Array.iteri (fun i lit -> if Lit.is_absurd lit then ( has_changed := true; tags := Lit.is_absurd_tags lit @ !tags; BV.reset bv i )) lits; (* eliminate inequations x != t *) let us = ref US.empty in let try_unif i t1 sc1 t2 sc2 = try let subst' = Unif.FO.unify_full ~subst:!us (t1,sc1) (t2,sc2) in has_changed := true; BV.reset bv i; us := subst'; with Unif.Fail -> () in Array.iteri (fun i lit -> let can_destr_eq_var v = not (var_in_subst_ !us v 0) && not (Type.is_fun (HVar.ty v)) in if BV.get bv i then match lit with | Lit.Equation (l, r, false) -> begin match T.view l, T.view r with | T.Var v, _ when can_destr_eq_var v -> (* eligible for destructive Equality Resolution, try to update [subst]. Careful: in the case [X!=a | X!=b | C] we must bind X only to [a] or [b], not unify [a] with [b]. NOTE: this also works for HO constraints for unshielded vars *) try_unif i l 0 r 0 | _, T.Var v when can_destr_eq_var v -> try_unif i r 0 l 0 | _ -> () end | Lit.Equation (l, r, true) when Type.is_prop (T.ty l) -> begin match T.view l, T.view r with | ( T.AppBuiltin (Builtin.True, []), T.Var x | T.Var x, T.AppBuiltin (Builtin.True, [])) when not (var_in_subst_ !us x 0) -> (* [C or x=true ---> C[x:=false]] *) begin try let subst' = US.FO.bind !us (x,0) (T.false_,0) in has_changed := true; BV.reset bv i; us := subst'; with Unif.Fail -> () end | _ -> () end | _ -> ()) lits; let new_lits = BV.select bv lits in let new_lits = if US.is_empty !us then new_lits else ( assert !has_changed; let subst = US.subst !us in let tgs = US.tags !us in tags := tgs @ !tags; let c_guard = Literal.of_unif_subst Subst.Renaming.none !us in c_guard @ Lit.apply_subst_list Subst.Renaming.none subst (new_lits,0) ) in let new_lits = CCList.uniq ~eq:Lit.equal_com new_lits in if not !has_changed && List.length new_lits = Array.length lits then ( Util.exit_prof prof_basic_simplify; C.set_flag flag_simplified c true; SimplM.return_same c (* no simplification *) ) else ( let parent = if Subst.is_empty (US.subst !us) then C.proof_parent c else C.proof_parent_subst Subst.Renaming.none (c,0) (US.subst !us) in let proof = Proof.Step.simp [parent] ~tags:!tags ~rule:(Proof.Rule.mk "simplify") in let new_lits = if List.exists Lit.is_trivial new_lits then [Lit.mk_tauto] else new_lits in let new_clause = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof in Util.debugf ~section 3 "@[<>@[%a@]@ @[<2>basic_simplifies into@ @[%a@]@]@ with @[%a@]@]" (fun k->k C.pp c C.pp new_clause US.pp !us); Util.incr_stat stat_basic_simplify; Util.exit_prof prof_basic_simplify; SimplM.return_new new_clause ) ) let handle_distinct_constants lit = match lit with | Lit.Equation (l, r, sign) when T.is_const l && T.is_const r -> let s1 = T.head_exn l and s2 = T.head_exn r in if ID.is_distinct_object s1 && ID.is_distinct_object s2 then if sign = (ID.equal s1 s2) then Some (Lit.mk_tauto,[],[Proof.Tag.T_distinct]) (* "a" = "a", or "a" != "b" *) else Some (Lit.mk_absurd,[],[Proof.Tag.T_distinct]) (* "a" = "b" or "a" != "a" *) else None | _ -> None exception FoundMatch of T.t * C.t * S.t let positive_simplify_reflect c = Util.enter_prof prof_pos_simplify_reflect; (* iterate through literals and try to resolve negative ones *) let rec iterate_lits acc lits clauses = match lits with | [] -> List.rev acc, clauses | (Lit.Equation (s, t, false) as lit)::lits' -> begin match equatable_terms clauses s t with | None -> (* keep literal *) iterate_lits (lit::acc) lits' clauses | Some new_clauses -> (* drop literal, remember clauses *) iterate_lits acc lits' new_clauses end | lit::lits' -> iterate_lits (lit::acc) lits' clauses (* try to make the terms equal using some positive unit clauses from active_set *) and equatable_terms clauses t1 t2 = match T.Classic.view t1, T.Classic.view t2 with | _ when T.equal t1 t2 -> Some clauses (* trivial *) | T.Classic.App (f, ss), T.Classic.App (g, ts) when ID.equal f g && List.length ss = List.length ts -> (* try to make the terms equal directly *) begin match equate_root clauses t1 t2 with | None -> (* otherwise try to make subterms pairwise equal *) let ok, clauses = List.fold_left2 (fun (ok, clauses) t1' t2' -> if ok then match equatable_terms clauses t1' t2' with | None -> false, [] | Some clauses -> true, clauses else false, []) (true, clauses) ss ts in if ok then Some clauses else None | Some clauses -> Some clauses end | _ -> equate_root clauses t1 t2 (* try to solve it with a unit equality *) (* try to equate terms with a positive unit clause that match them *) and equate_root clauses t1 t2 = try UnitIdx.retrieve ~sign:true (!_idx_simpl,1)(t1,0) |> Iter.iter (fun (l,r,(_,_,_,c'),subst) -> assert (Unif.FO.equal ~subst (l,1)(t1,0)); if Unif.FO.equal ~subst (r,1)(t2,0) && C.trail_subsumes c' c then begin (* t1!=t2 is refuted by l\sigma = r\sigma *) Util.debugf ~section 4 "@[<2>equate @[%a@]@ and @[%a@]@ using @[%a@]@]" (fun k->k T.pp t1 T.pp t2 C.pp c'); raise (FoundMatch (r, c', subst)) (* success *) end ); None (* no match *) with FoundMatch (_r, c', subst) -> Some (C.proof_parent_subst Subst.Renaming.none (c',1) subst :: clauses) (* success *) in (* fold over literals *) let lits, premises = iterate_lits [] (C.lits c |> Array.to_list) [] in if List.length lits = Array.length (C.lits c) then ( (* no literal removed, keep c *) Util.exit_prof prof_pos_simplify_reflect; SimplM.return_same c ) else ( let proof = Proof.Step.simp ~rule:(Proof.Rule.mk "simplify_reflect+") (C.proof_parent c::premises) in let trail = C.trail c and penalty = C.penalty c in let new_c = C.create ~trail ~penalty lits proof in Util.debugf ~section 3 "@[@[%a@]@ pos_simplify_reflect into @[%a@]@]" (fun k->k C.pp c C.pp new_c); Util.exit_prof prof_pos_simplify_reflect; SimplM.return_new new_c ) let negative_simplify_reflect c = Util.enter_prof prof_neg_simplify_reflect; (* iterate through literals and try to resolve positive ones *) let rec iterate_lits acc lits clauses = match lits with | [] -> List.rev acc, clauses | (Lit.Equation (s, t, true) as lit)::lits' -> begin match can_refute s t, can_refute t s with | None, None -> (* keep literal *) iterate_lits (lit::acc) lits' clauses | Some new_clause, _ | _, Some new_clause -> (* drop literal, remember clause *) iterate_lits acc lits' (new_clause :: clauses) end | lit::lits' -> iterate_lits (lit::acc) lits' clauses (* try to remove the literal using a negative unit clause *) and can_refute s t = try UnitIdx.retrieve ~sign:false (!_idx_simpl,1) (s,0) |> Iter.iter (fun (l, r, (_,_,_,c'), subst) -> assert (Unif.FO.equal ~subst (l, 1) (s, 0)); Util.debugf ~section 3 "@[neg_reflect trying to eliminate@ @[%a=%a@]@ with @[%a@]@]" (fun k->k T.pp s T.pp t C.pp c'); if Unif.FO.equal ~subst (r, 1) (t, 0) && C.trail_subsumes c' c then begin (* TODO: useless? *) let subst = Unif.FO.matching ~subst ~pattern:(r, 1) (t, 0) in Util.debugf ~section 3 "@[neg_reflect eliminates@ @[%a=%a@]@ with @[%a@]@]" (fun k->k T.pp s T.pp t C.pp c'); raise (FoundMatch (r, c', subst)) (* success *) end ); None (* no match *) with FoundMatch (_r, c', subst) -> Some (C.proof_parent_subst Subst.Renaming.none (c',1) subst) (* success *) in (* fold over literals *) let lits, premises = iterate_lits [] (C.lits c |> Array.to_list) [] in if List.length lits = Array.length (C.lits c) then ( (* no literal removed *) Util.exit_prof prof_neg_simplify_reflect; Util.debug ~section 3 "@[neg_reflect did not simplify the clause @]"; SimplM.return_same c ) else ( let proof = Proof.Step.simp ~rule:(Proof.Rule.mk "simplify_reflect-") (C.proof_parent c :: premises) in let new_c = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) lits proof in Util.debugf ~section 3 "@[@[%a@]@ neg_simplify_reflect into @[%a@]@]" (fun k->k C.pp c C.pp new_c); Util.exit_prof prof_neg_simplify_reflect; SimplM.return_new new_c ) (* ---------------------------------------------------------------------- * subsumption * ---------------------------------------------------------------------- *) (** raised when a subsuming substitution is found *) exception SubsumptionFound of S.t (** check that every literal in a matches at least one literal in b *) let all_lits_match a sc_a b sc_b = CCArray.for_all (fun lita -> CCArray.exists (fun litb -> not (Iter.is_empty (Lit.subsumes (lita, sc_a) (litb, sc_b)))) b) a (** Compare literals by subsumption difficulty (see "towards efficient subsumption", Tammet). We sort by increasing order, so non-ground, deep, heavy literals are smaller (thus tested early) *) let compare_literals_subsumption lita litb = CCOrd.( (* ground literal is bigger *) bool (Lit.is_ground lita) (Lit.is_ground litb) (* deep literal is smaller *) <?> (map Lit.depth (opp int), lita, litb) (* heavy literal is smaller *) <?> (map Lit.weight (opp int), lita, litb) ) (* replace the bitvector system by some backtracking scheme? XXX: maybe not a good idea. the algorithm is actually quite subtle and needs tight control over the traversal (lookahead of free variables in next literals, see [check_vars]...) *) (** Check whether [a] subsumes [b], and if it does, return the corresponding substitution *) let subsumes_with_ (a,sc_a) (b,sc_b) : _ option = (* a must not have more literals, and it must be possible to bind all its vars during subsumption *) if Array.length a > Array.length b || not (all_lits_match a sc_a b sc_b) then None else ( (* sort a copy of [a] by decreasing difficulty *) let a = Array.copy a in let = ref [] in (* try to subsumes literals of b whose index are not in bv, with [subst] *) let rec try_permutations i subst bv = if i = Array.length a then raise (SubsumptionFound subst) else let lita = a.(i) in find_matched lita i subst bv 0 (* find literals of b that are not bv and that are matched by lita *) and find_matched lita i subst bv j = if j = Array.length b then () (* if litb is already matched, continue *) else if BV.get bv j then find_matched lita i subst bv (j+1) else ( let litb = b.(j) in BV.set bv j; (* match lita and litb, then flag litb as used, and try with next literal of a *) let n_subst = ref 0 in Lit.subsumes ~subst (lita, sc_a) (litb, sc_b) (fun (subst',tgs) -> incr n_subst; tags := tgs @ !tags; try_permutations (i+1) subst' bv); BV.reset bv j; (* some variable of lita occur in a[j+1...], try another literal of b *) if !n_subst > 0 && not (check_vars lita (i+1)) then () (* no backtracking for litb *) else find_matched lita i subst bv (j+1) ) (* does some literal in a[j...] contain a variable in l or r? *) and check_vars lit j = let vars = Lit.vars lit in if vars = [] then false else try for k = j to Array.length a - 1 do if List.exists (fun v -> Lit.var_occurs v a.(k)) vars then raise Exit done; false with Exit -> true in try Array.sort compare_literals_subsumption a; let bv = BV.empty () in try_permutations 0 S.empty bv; None with (SubsumptionFound subst) -> Util.debugf ~section 2 "(@[<hv>subsumes@ :c1 @[%a@]@ :c2 @[%a@]@ :subst %a%a@]" (fun k->k Lits.pp a Lits.pp b Subst.pp subst Proof.pp_tags !tags); Some (subst, !tags) ) let subsumes_with a b = Util.enter_prof prof_subsumption; Util.incr_stat stat_subsumption_call; let (c_a, _), (c_b, _) = a,b in let w_a = CCArray.fold (fun acc l -> acc + Lit.weight l) 0 c_a in let w_b = CCArray.fold (fun acc l -> acc + Lit.weight l) 0 c_b in if w_a = w_b && Literals.equal_com c_a c_b then Some (Subst.empty, []) else ( let res = if w_a <= w_b then subsumes_with_ a b else None in Util.exit_prof prof_subsumption; res ) let subsumes a b = match subsumes_with (a,0) (b,1) with | None -> false | Some _ -> true (* anti-unification of the two terms with at most one disagreement point *) let anti_unify (t:T.t)(u:T.t): (T.t * T.t) option = match Unif.FO.anti_unify ~cut:1 t u with | Some [pair] -> Some pair | _ -> None let eq_subsumes_with (a,sc_a) (b,sc_b) = (* subsume a literal using a = b *) let rec equate_lit_with a b lit = match lit with | Lit.Equation (u, v, true) when not (T.equal u v) -> equate_terms a b u v | _ -> None (* make u=v using a=b once *) and equate_terms a b u v = begin match anti_unify u v with | None -> None | Some (u', v') -> equate_root a b u' v' end (* check whether a\sigma = u and b\sigma = v, for some sigma; or the commutation thereof *) and equate_root a b u v: Subst.t option = let check_ a b u v = try if Term.size a > Term.size u || Term.size b > Term.size v then raise Unif.Fail; let subst = Unif.FO.matching ~pattern:(a, sc_a) (u, sc_b) in let subst = Unif.FO.matching ~subst ~pattern:(b, sc_a) (v, sc_b) in Some subst with Unif.Fail -> None in begin match check_ a b u v with | Some _ as s -> s | None -> check_ b a u v end in (* check for each literal *) Util.enter_prof prof_eq_subsumption; Util.incr_stat stat_eq_subsumption_call; let res = match a with | [|Lit.Equation (s, t, true)|] -> let res = CCArray.find (equate_lit_with s t) b in begin match res with | None -> None | Some subst -> Util.debugf ~section 3 "@[<2>@[%a@]@ eq-subsumes @[%a@]@ :subst %a@]" (fun k->k Lits.pp a Lits.pp b Subst.pp subst); Util.incr_stat stat_eq_subsumption_success; Some subst end | _ -> None (* only a positive unit clause unit-subsumes a clause *) in Util.exit_prof prof_eq_subsumption; res let eq_subsumes a b = CCOpt.is_some (eq_subsumes_with (a,1) (b,0)) let subsumed_by_active_set c = Util.enter_prof prof_subsumption_set; Util.incr_stat stat_subsumed_by_active_set_call; (* if there is an equation in c, try equality subsumption *) let try_eq_subsumption = CCArray.exists Lit.is_eqn (C.lits c) in (* use feature vector indexing *) let c = if Env.flex_get k_ground_subs_check > 0 then C.ground_clause c else c in let subsumes a b = if not @@ Env.flex_get k_solid_subsumption then subsumes a b else ( try SS.subsumes a b with SolidSubsumption.UnsupportedLiteralKind -> subsumes a b ) in let res = SubsumIdx.retrieve_subsuming_c !_idx_fv c |> Iter.exists (fun c' -> C.trail_subsumes c' c && ( (try_eq_subsumption && eq_subsumes (C.lits c') (C.lits c)) || subsumes (C.lits c') (C.lits c) )) in Util.exit_prof prof_subsumption_set; if res then ( Util.debugf ~section 1 "@[<2>@[%a@]@ subsumed by active set@]" (fun k->k C.pp c); Util.incr_stat stat_clauses_subsumed; ); res let subsumed_in_active_set acc c = Util.enter_prof prof_subsumption_in_set; Util.incr_stat stat_subsumed_in_active_set_call; (* if c is a single unit clause *) let try_eq_subsumption = C.is_unit_clause c && Lit.is_pos (C.lits c).(0) in (* use feature vector indexing *) let subsumes a b = if not @@ Env.flex_get k_solid_subsumption then subsumes a b else ( try SS.subsumes a b with SolidSubsumption.UnsupportedLiteralKind -> subsumes a b ) in let res = SubsumIdx.retrieve_subsumed_c !_idx_fv c |> Iter.fold (fun res c' -> if C.trail_subsumes c c' then let c' = if Env.flex_get k_ground_subs_check > 1 then C.ground_clause c' else c' in let redundant = (try_eq_subsumption && eq_subsumes (C.lits c) (C.lits c')) || subsumes (C.lits c) (C.lits c') in if redundant then ( Util.incr_stat stat_clauses_subsumed; C.ClauseSet.add c' res ) else res else res) acc in Util.exit_prof prof_subsumption_in_set; res (* Number of equational lits. Used as an estimation for the difficulty of the subsumption check for this clause. *) let num_equational lits = Array.fold_left (fun acc lit -> match lit with | Lit.Equation _ -> acc+1 | _ -> acc ) 0 lits (* ---------------------------------------------------------------------- * contextual literal cutting * ---------------------------------------------------------------------- *) (* Performs successive contextual literal cuttings *) let rec contextual_literal_cutting_rec c = let open SimplM.Infix in if Array.length (C.lits c) <= 1 || num_equational (C.lits c) > 3 || Array.length (C.lits c) > 8 then SimplM.return_same c else ( (* do we need to try to use equality subsumption? *) let try_eq_subsumption = CCArray.exists Lit.is_eqn (C.lits c) in (* try to remove one literal from the literal array *) let remove_one_lit lits = Iter.of_array_i lits |> Iter.filter (fun (_,lit) -> not (Lit.is_constraint lit)) |> Iter.find_map (fun (i,old_lit) -> (* negate literal *) lits.(i) <- Lit.negate old_lit; (* test for subsumption *) SubsumIdx.retrieve_subsuming !_idx_fv (Lits.Seq.to_form lits) (C.trail c |> Trail.labels) |> Iter.filter (fun c' -> C.trail_subsumes c' c) |> Iter.find_map (fun c' -> let subst = match if try_eq_subsumption then eq_subsumes_with (C.lits c',1) (lits,0) else None with | Some s -> Some (s, []) | None -> subsumes_with (C.lits c',1) (lits,0) in subst |> CCOpt.map (fun (subst,) -> (* remove the literal and recurse *) CCArray.except_idx lits i, i, c', subst, tags)) |> CCFun.tap (fun _ -> (* restore literal *) lits.(i) <- old_lit)) in begin match remove_one_lit (Array.copy (C.lits c)) with | None -> SimplM.return_same c (* no literal removed *) | Some (new_lits, _, c',subst,) -> (* hc' allowed us to cut a literal *) assert (List.length new_lits + 1 = Array.length (C.lits c)); let proof = Proof.Step.inference ~rule:(Proof.Rule.mk "clc") ~tags [C.proof_parent c; C.proof_parent_subst Subst.Renaming.none (c',1) subst] in let new_c = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof in Util.debugf ~section 3 "@[<2>contextual literal cutting@ in @[%a@]@ using @[%a@]@ gives @[%a@]@]" (fun k->k C.pp c C.pp c' C.pp new_c); Util.incr_stat stat_clc; (* try to cut another literal *) SimplM.return_new new_c >>= contextual_literal_cutting_rec end ) let contextual_literal_cutting c = Util.enter_prof prof_clc; let res = contextual_literal_cutting_rec c in Util.exit_prof prof_clc; res (* ---------------------------------------------------------------------- * contraction (condensation) * ---------------------------------------------------------------------- *) exception CondensedInto of Lit.t array * S.t * Subst.Renaming.t * Proof.tag list (** performs condensation on the clause. It looks for two literals l1 and l2 of same sign such that l1\sigma = l2, and hc\sigma \ {l2} subsumes hc. Then hc is simplified into hc\sigma \ {l2}. If there are too many equational literals, the simplification is disabled to avoid pathologically expensive subsumption checks. TODO remove this limitation after an efficient subsumption check is implemented. *) let rec condensation_rec c = let open SimplM.Infix in if Array.length (C.lits c) <= 1 || num_equational (C.lits c) > 3 || Array.length (C.lits c) > 8 then SimplM.return_same c else (* scope is used to rename literals for subsumption *) let lits = C.lits c in let n = Array.length lits in try for i = 0 to n - 1 do let lit = lits.(i) in for j = i+1 to n - 1 do let lit' = lits.(j) in (* see whether [lit |= lit'], and if removing [lit] gives a clause that subsumes c. Also try to swap [lit] and [lit']. *) let subst_remove_lit = Lit.subsumes (lit, 0) (lit', 0) |> Iter.map (fun s -> s, i) and subst_remove_lit' = Lit.subsumes (lit', 0) (lit, 0) |> Iter.map (fun s -> s, j) in (* potential condensing substitutions *) let substs = Iter.append subst_remove_lit subst_remove_lit' in Iter.iter (fun ((subst,),idx_to_remove) -> let new_lits = Array.sub lits 0 (n - 1) in if idx_to_remove <> n-1 then new_lits.(idx_to_remove) <- lits.(n-1); (* remove lit *) let renaming = Subst.Renaming.create () in let new_lits = Lits.apply_subst renaming subst (new_lits,0) in (* check subsumption *) if subsumes new_lits lits then ( raise (CondensedInto (new_lits, subst, renaming, tags)) )) substs done; done; SimplM.return_same c with CondensedInto (new_lits, subst, renaming, ) -> (* clause is simplified *) let proof = Proof.Step.simp ~rule:(Proof.Rule.mk "condensation") ~tags [C.proof_parent_subst renaming (c,0) subst] in let c' = C.create_a ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof in Util.debugf ~section 3 "@[<2>condensation@ of @[%a@] (with @[%a@])@ gives @[%a@]@]" (fun k->k C.pp c S.pp subst C.pp c'); (* try to condense further *) Util.incr_stat stat_condensation; SimplM.return_new c' >>= condensation_rec let condensation c = Util.with_prof prof_condensation condensation_rec c let recognize_injectivity c = if C.length c == 2 then ( let pos_lit = CCArray.find_idx Lit.is_pos (C.lits c) in let neg_lit = CCArray.find_idx Lit.is_neg (C.lits c) in try let _,pos_lit = CCOpt.get_exn pos_lit in let _,neg_lit = CCOpt.get_exn neg_lit in match pos_lit with | Equation(x, y, true) -> if Term.is_var x && Term.is_var y && not (Term.equal x y) then ( match neg_lit with | Equation(l,r,false) -> let hd_l,hd_r = CCPair.map_same Term.head_term (l,r) in if Term.is_const hd_l && Term.is_const hd_r && Term.equal hd_l hd_r then ( let covered_l = Term.max_cover l [Some x] in let covered_r = Term.max_cover r [Some y] in if Term.equal covered_l covered_r then ( let ty = Type.arrow [Term.ty l] (Term.ty x) in let sk_vars = Term.vars covered_l |> Term.VarSet.to_list in let (sk_id, sk_ty), sk_term = Term.mk_fresh_skolem sk_vars ty in let inverse_x = Term.app sk_term [l] in let inverse_lit = [Lit.mk_eq inverse_x x] in let proof = Proof.Step.inference ~rule:(Proof.Rule.mk "inverse recognition") [C.proof_parent c] in Ctx.declare sk_id sk_ty; let new_clause = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) inverse_lit proof in Util.debugf ~section 1 "Injectivity recognized: %a |---| %a" (fun k -> k C.pp c C.pp new_clause); (* Format.printf "Injectivity recognized: %a |---| %a" C.pp c C.pp new_clause; *) [new_clause] ) else [] ) else [] | _ -> [] (* predicate *) ) else [] | _ -> assert false with Invalid_argument _ -> [] ) else [] (** {2 Registration} *) (* print index into file *) let _print_idx ~f file idx = CCIO.with_out file (fun oc -> let out = Format.formatter_of_out_channel oc in Format.fprintf out "@[%a@]@." f idx; flush oc) let setup_dot_printers () = let pp_leaf _ _ = () in CCOpt.iter (fun file -> Signal.once Signals.on_dot_output (fun () -> _print_idx ~f:(TermIndex.to_dot pp_leaf) file !_idx_sup_into)) @@ Env.flex_get k_dot_sup_into; CCOpt.iter (fun file -> Signal.once Signals.on_dot_output (fun () -> _print_idx ~f:(TermIndex.to_dot pp_leaf) file !_idx_sup_from)) @@ Env.flex_get k_dot_sup_from; CCOpt.iter (fun file -> Signal.once Signals.on_dot_output (fun () -> _print_idx ~f:UnitIdx.to_dot file !_idx_simpl)) @@ Env.flex_get k_dot_simpl; CCOpt.iter (fun file -> Signal.once Signals.on_dot_output (fun () -> _print_idx ~f:(TermIndex.to_dot pp_leaf) file !_idx_back_demod)) @@ Env.flex_get k_dot_demod_into; () let register () = let open SimplM.Infix in let rw_simplify c = canonize_variables c >>= demodulate >>= basic_simplify >>= positive_simplify_reflect >>= negative_simplify_reflect and active_simplify c = condensation c >>= contextual_literal_cutting and backward_simplify c = let set = C.ClauseSet.empty in backward_demodulate set c and redundant = subsumed_by_active_set and backward_redundant = subsumed_in_active_set and is_trivial = is_tautology in if not @@ Env.flex_get k_sup_w_pure_vars then ( Env.Ctx.lost_completeness () ); if Env.flex_get k_recognize_injectivity then ( Env.add_unary_inf "recognize injectivity" recognize_injectivity; ); if Env.flex_get k_max_lits_ext_dec != 0 then ( Env.add_binary_inf "ext_dec_act" ext_decompose_act; Env.add_binary_inf "ext_dec_pas" ext_decompose_pas; Env.add_unary_inf "ext_eqres_dec" ext_eqres_decompose; Env.add_unary_inf "ext_eqfact_dec" ext_eqfact_decompose; ); if Env.flex_get k_complete_ho_unification then ( if (Env.flex_get k_max_infs) = -1 then ( Env.add_binary_inf "superposition_passive" infer_passive_complete_ho; Env.add_binary_inf "superposition_active" infer_active_complete_ho; Env.add_unary_inf "equality_factoring" infer_equality_factoring_complete_ho; Env.add_unary_inf "equality_resolution" infer_equality_resolution_complete_ho; ) else ( assert((Env.flex_get k_max_infs) > 0); Env.add_binary_inf "superposition_passive" (infer_passive_pragmatic_ho (Env.flex_get k_max_infs)); Env.add_binary_inf "superposition_active" (infer_active_pragmatic_ho (Env.flex_get k_max_infs)); Env.add_unary_inf "equality_factoring" (infer_equality_factoring_pragmatic_ho (Env.flex_get k_max_infs)); Env.add_unary_inf "equality_resolution" (infer_equality_resolution_pragmatic_ho (Env.flex_get k_max_infs)); ); if Env.flex_get k_fluidsup then ( Env.add_binary_inf "fluidsup_passive" infer_fluidsup_passive; Env.add_binary_inf "fluidsup_active" infer_fluidsup_active; ); if Env.flex_get k_dupsup then ( Env.add_binary_inf "dupsup_passive(into)" infer_dupsup_passive; Env.add_binary_inf "dupsup_active(from)" infer_dupsup_active; ); if Env.flex_get k_lambdasup != -1 then ( Env.add_binary_inf "lambdasup_active(from)" infer_lambdasup_from; Env.add_binary_inf "lambdasup_passive(into)" infer_lambdasup_into; ); if Env.flex_get k_trigger_bool_inst > 0 then ( Env.add_unary_inf "trigger_pred_var active" trigger_insantiation; Env.add_unary_inf "trigger_pred_var passive" instantiate_with_triggers; ); if (List.exists CCFun.id [Env.flex_get k_fluidsup; Env.flex_get k_dupsup; Env.flex_get k_lambdasup != -1; Env.flex_get k_max_infs = -1]) then ( if Env.flex_get k_switch_stream_extraction then Env.add_generate "stream_queue_extraction" extract_from_stream_queue_fix_stm else Env.add_generate "stream_queue_extraction" extract_from_stream_queue; ) ) else ( Env.add_binary_inf "superposition_passive" infer_passive; Env.add_binary_inf "superposition_active" infer_active; Env.add_unary_inf "equality_factoring" infer_equality_factoring; Env.add_unary_inf "equality_resolution" infer_equality_resolution; ); if not (Env.flex_get k_dont_simplify) then ( Env.add_rw_simplify rw_simplify; Env.add_basic_simplify canonize_variables; Env.add_basic_simplify basic_simplify; Env.add_active_simplify active_simplify; Env.add_backward_simplify backward_simplify ); Env.add_redundant redundant; Env.add_backward_redundant backward_redundant; if Env.flex_get k_use_semantic_tauto then Env.add_is_trivial is_semantic_tautology; Env.add_is_trivial is_trivial; Env.add_lit_rule "distinct_symbol" handle_distinct_constants; setup_dot_printers (); () end let _use_semantic_tauto = ref true let _use_simultaneous_sup = ref true let _dot_sup_into = ref None let _dot_sup_from = ref None let _dot_simpl = ref None let _dont_simplify = ref false let _sup_at_vars = ref false let _sup_at_var_headed = ref true let _sup_in_var_args = ref true let _sup_under_lambdas = ref true let _lambda_demod = ref false let _demod_in_var_args = ref true let _dot_demod_into = ref None let _complete_ho_unification = ref false let _switch_stream_extraction = ref false let _ord_in_normal_form = ref false let _fluidsup_penalty = ref 0 let _fluidsup = ref true let _dupsup = ref true let _trigger_bool_inst = ref (-1) let _recognize_injectivity = ref false let _sup_with_pure_vars = ref true let _restrict_fluidsup = ref false let _lambdasup = ref (-1) let _max_infs = ref (-1) let max_lits_ext_dec = ref 0 let _ext_dec_lits = ref `OnlyMax let _unif_alg = ref `NewJPFull let _unif_level = ref `Full let _ground_subs_check = ref 0 let _sup_t_f = ref true let _solid_subsumption = ref false let _skip_multiplier = ref 35.0 let _imit_first = ref false let _max_depth = ref 3 let _max_rigid_imitations = ref 3 let _max_app_projections = ref 1 let _max_elims = ref 1 let _max_identifications = ref 1 let _pattern_decider = ref true let _fixpoint_decider = ref false let _solid_decider = ref false let _solidification_limit = ref 5 let _max_unifs_solid_ff = ref 20 let _use_weight_for_solid_subsumption = ref false let key = Flex_state.create_key () let unif_params_to_def () = _max_depth := 2; _max_app_projections := 1; _max_rigid_imitations := 1; _max_identifications := 1; _max_elims := 1; _max_infs := -1 let register ~sup = let module Sup = (val sup : S) in let module E = Sup.Env in E.update_flex_state (Flex_state.add key sup); E.flex_add k_trigger_bool_inst !_trigger_bool_inst; E.flex_add k_sup_at_vars !_sup_at_vars; E.flex_add k_sup_in_var_args !_sup_in_var_args; E.flex_add k_sup_under_lambdas !_sup_under_lambdas; E.flex_add k_sup_true_false !_sup_t_f; E.flex_add k_sup_at_var_headed !_sup_at_var_headed; E.flex_add k_fluidsup !_fluidsup; E.flex_add k_dupsup !_dupsup; E.flex_add k_lambdasup !_lambdasup; E.flex_add k_sup_w_pure_vars !_sup_with_pure_vars; E.flex_add k_restrict_fluidsup !_restrict_fluidsup; E.flex_add k_demod_in_var_args !_demod_in_var_args; E.flex_add k_lambda_demod !_lambda_demod; E.flex_add k_ext_dec_lits !_ext_dec_lits; E.flex_add k_max_lits_ext_dec !max_lits_ext_dec; E.flex_add k_use_simultaneous_sup !_use_simultaneous_sup; E.flex_add k_fluidsup_penalty !_fluidsup_penalty; E.flex_add k_ground_subs_check !_ground_subs_check; E.flex_add k_solid_subsumption !_solid_subsumption; E.flex_add k_dot_sup_into !_dot_sup_into; E.flex_add k_dot_sup_from !_dot_sup_from; E.flex_add k_dot_simpl !_dot_simpl; E.flex_add k_dot_demod_into !_dot_demod_into; E.flex_add k_recognize_injectivity !_recognize_injectivity; E.flex_add k_complete_ho_unification !_complete_ho_unification; E.flex_add k_max_infs !_max_infs; E.flex_add k_switch_stream_extraction !_switch_stream_extraction; E.flex_add k_dont_simplify !_dont_simplify; E.flex_add k_use_semantic_tauto !_use_semantic_tauto; E.flex_add PragUnifParams.k_max_inferences !_max_infs; E.flex_add PragUnifParams.k_skip_multiplier !_skip_multiplier; E.flex_add PragUnifParams.k_imit_first !_imit_first; E.flex_add PragUnifParams.k_max_depth !_max_depth; E.flex_add PragUnifParams.k_max_rigid_imitations !_max_rigid_imitations; E.flex_add PragUnifParams.k_max_app_projections !_max_app_projections; E.flex_add PragUnifParams.k_max_elims !_max_elims; E.flex_add PragUnifParams.k_max_identifications !_max_identifications; E.flex_add PragUnifParams.k_pattern_decider !_pattern_decider; E.flex_add PragUnifParams.k_fixpoint_decider !_fixpoint_decider; E.flex_add PragUnifParams.k_solid_decider !_solid_decider; E.flex_add PragUnifParams.k_solidification_limit !_solidification_limit; E.flex_add PragUnifParams.k_max_unifs_solid_ff !_max_unifs_solid_ff; E.flex_add PragUnifParams.k_use_weight_for_solid_subsumption !_use_weight_for_solid_subsumption; let module JPF = JPFull.Make(struct let st = E.flex_state () end) in let module JPP = PUnif.Make(struct let st = E.flex_state () end) in begin match !_unif_alg with | `OldJP -> E.flex_add k_unif_alg JP_unif.unify_scoped | `NewJPFull -> E.flex_add k_unif_alg JPF.unify_scoped | `NewJPPragmatic -> E.flex_add k_unif_alg JPP.unify_scoped end (* TODO: move DOT index printing into the extension *) let extension = let action env = let module E = (val env : Env.S) in let module Sup = Make(E) in register ~sup:(module Sup : S); Sup.register(); in { Extensions.default with Extensions. name="superposition"; env_actions = [action]; } let () = Params.add_opts [ "--semantic-tauto", Arg.Bool (fun v -> _use_semantic_tauto := v), " enable/disable semantic tautology check"; "--dot-sup-into", Arg.String (fun s -> _dot_sup_into := Some s), " print superposition-into index into file"; "--dot-sup-from", Arg.String (fun s -> _dot_sup_from := Some s), " print superposition-from index into file"; "--dot-demod", Arg.String (fun s -> _dot_simpl := Some s), " print forward rewriting index into file"; "--dot-demod-into", Arg.String (fun s -> _dot_demod_into := Some s), " print backward rewriting index into file"; "--simultaneous-sup", Arg.Bool (fun b -> _use_simultaneous_sup := b), " enable/disable simultaneous superposition"; "--dont-simplify", Arg.Set _dont_simplify, " disable simplification rules"; "--sup-at-vars", Arg.Bool (fun v -> _sup_at_vars := v), " enable/disable superposition at variables under certain ordering conditions"; "--sup-at-var-headed", Arg.Bool (fun b -> _sup_at_var_headed := b), " enable/disable superposition at variable headed terms"; "--sup-in-var-args", Arg.Bool (fun b -> _sup_in_var_args := b), " enable/disable superposition in arguments of applied variables"; "--sup-under-lambdas", Arg.Bool (fun b -> _sup_under_lambdas := b), " enable/disable superposition in bodies of lambda-expressions"; "--lambda-demod", Arg.Bool (fun b -> _lambda_demod := b), " enable/disable demodulation in bodies of lambda-expressions"; "--demod-in-var-args", Arg.Bool (fun b -> _demod_in_var_args := b), " enable demodulation in arguments of variables"; "--complete-ho-unif", Arg.Bool (fun b -> _complete_ho_unification := b), " enable complete higher-order unification algorithm (Jensen-Pietrzykowski)"; "--switch-stream-extract", Arg.Bool (fun b -> _switch_stream_extraction := b), " in ho mode, switches heuristic of clause extraction from the stream queue"; "--ord-in-normal-form", Arg.Bool (fun v -> _ord_in_normal_form := v), " compare intermediate terms in calculus rules in beta-normal-eta-long form"; "--ext-decompose", Arg.Set_int max_lits_ext_dec, " Sets the maximal number of literals clause can have for ExtDec inference."; "--ext-decompose-lits", Arg.Symbol (["all";"max"], (fun str -> _ext_dec_lits := if String.equal str "all" then `All else `OnlyMax)) , " Sets the maximal number of literals clause can have for ExtDec inference."; "--fluidsup-penalty", Arg.Int (fun p -> _fluidsup_penalty := p), " penalty for FluidSup inferences"; "--fluidsup", Arg.Bool (fun b -> _fluidsup :=b), " enable/disable FluidSup inferences (only effective when complete higher-order unification is enabled)"; "--lambdasup", Arg.Int (fun l -> if l < 0 then raise (Util.Error ("argument parsing", "lambdaSup argument should be non-negative")); _lambdasup := l), " enable LambdaSup -- argument is the maximum number of skolems introduced in an inference"; "--dupsup", Arg.Bool (fun v -> _dupsup := v), " enable/disable DupSup inferences"; "--ground-before-subs", Arg.Set_int _ground_subs_check, " set the level of grounding before substitution. 0 - no grounding. 1 - only active. 2 - both."; "--solid-subsumption", Arg.Bool (fun v -> _solid_subsumption := v), " set solid subsumption on or off"; "--recognize-injectivity", Arg.Bool (fun v -> _recognize_injectivity := v), " recognize injectivity axiom and axiomatize corresponding inverse"; "--sup-with-pure-vars" , Arg.Bool (fun v -> _sup_with_pure_vars := v), " enable/disable superposition to and from pure variable equations"; "--restrict-fluidsup" , Arg.Bool (fun v -> _restrict_fluidsup := v), " enable/disable restriction of fluidSup to up to two literal or inital clauses"; "--sup-with-true-false", Arg.Bool (fun v ->( _sup_t_f := v)), " enable/disable superposition, eq-res and eq-fact with true/false"; "--use-weight-for-solid-subsumption", Arg.Bool (fun v -> _use_weight_for_solid_subsumption := v), " enable/disable superposition to and from pure variable equations"; "--trigger-bool-inst", Arg.Set_int _trigger_bool_inst , " instantiate predicate variables with boolean terms already in the proof state. Argument is the maximal proof depth of predicate variable"; "--ho-unif-level", Arg.Symbol (["full-framework";"full"; "pragmatic-framework";], (fun str -> _unif_alg := if (String.equal "full" str) then `OldJP else if (String.equal "full-framework" str) then ( unif_params_to_def (); `NewJPFull) else if (String.equal "pragmatic-framework" str) then `NewJPPragmatic else invalid_arg "unknown argument")), "set the level of HO unification"; "--ho-imitation-first",Arg.Bool (fun v -> _imit_first:=v), " Use imitation rule before projection rule"; "--ho-unif-max-depth", Arg.Set_int _max_depth, " set pragmatic unification max depth"; "--ho-max-app-projections", Arg.Set_int _max_app_projections, " set maximal number of functional type projections"; "--ho-max-elims", Arg.Set_int _max_elims, " set maximal number of eliminations"; "--ho-max-identifications", Arg.Set_int _max_identifications, " set maximal number of flex-flex identifications"; "--ho-skip-multiplier", Arg.Set_float _skip_multiplier, " set maximal number of flex-flex identifications"; "--ho-max-rigid-imitations", Arg.Set_int _max_rigid_imitations, " set maximal number of rigid imitations"; "--ho-max-solidification", Arg.Set_int _solidification_limit, " set maximal number of rigid imitations"; "--ho-max-unifs-solid-flex-flex", Arg.Set_int _max_unifs_solid_ff, " set maximal number of found unifiers for solid flex-flex pairs. -1 stands for finding the MGU"; "--ho-pattern-decider", Arg.Bool (fun b -> _pattern_decider := b), "turn pattern decider on or off"; "--ho-solid-decider", Arg.Bool (fun b -> _solid_decider := b), "turn solid decider on or off"; "--ho-fixpoint-decider", Arg.Bool (fun b -> _fixpoint_decider := b), "turn fixpoint decider on or off"; "--max-inferences", Arg.Int (fun p -> _max_infs := p), " set maximal number of inferences"]; Params.add_to_mode "ho-complete-basic" (fun () -> _use_simultaneous_sup := false; _sup_at_vars := true; _sup_in_var_args := false; _sup_under_lambdas := false; _lambda_demod := false; _demod_in_var_args := false; _complete_ho_unification := true; _ord_in_normal_form := true; _sup_at_var_headed := false; _unif_alg := `NewJPFull; _lambdasup := -1; _dupsup := false; ); Params.add_to_mode "ho-pragmatic" (fun () -> _use_simultaneous_sup := false; _sup_at_vars := true; _sup_in_var_args := false; _sup_under_lambdas := false; _lambda_demod := false; _demod_in_var_args := false; _complete_ho_unification := true; _unif_alg := `NewJPPragmatic; _ord_in_normal_form := true; _sup_at_var_headed := true; _lambdasup := -1; _dupsup := false; _max_infs := 5; _max_depth := 3; _max_app_projections := 0; _max_identifications := 1; _max_elims := 1; _fluidsup := false; ); Params.add_to_mode "ho-competitive" (fun () -> _use_simultaneous_sup := false; _sup_at_vars := true; _sup_in_var_args := false; _sup_under_lambdas := false; _lambda_demod := false; _demod_in_var_args := false; _complete_ho_unification := true; _unif_alg := `NewJPFull; _ord_in_normal_form := true; _sup_at_var_headed := true; _lambdasup := -1; _dupsup := false; _max_infs := 10; _max_depth := 6; _max_app_projections := 1; _max_identifications := 1; _max_elims := 1; _fluidsup := false; ); Params.add_to_mode "fo-complete-basic" (fun () -> _use_simultaneous_sup := false; )
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>