package libzipperposition
Library for Zipperposition
Install
Dune Dependency
Authors
Maintainers
Sources
1.6.tar.gz
md5=97cdb2f90468e9e27c7bbe3b4fb160bb
sha512=fee73369f673a91dfa9e265fc69be08b32235e10a495f3af6477d404fcd01e3452a0d012b150f3d7f97c00af2f6045019ad039164bf698f70d771231cc4efe5d
doc/src/libzipperposition.calculi/Higher_order.ml.html
Source file Higher_order.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
(* This file is free software, part of Zipperposition. See file "license" for more details. *) (** {1 boolean subterms} *) open Logtk open Libzipperposition module BV = CCBV module T = Term module Lits = Literals module IntSet = Set.Make(CCInt) module IntMap = Util.Int_map let section = Util.Section.make ~parent:Const.section "ho" let stat_eq_res = Util.mk_stat "ho.eq_res.steps" let stat_eq_res_syntactic = Util.mk_stat "ho.eq_res_syntactic.steps" let stat_ext_neg_lit = Util.mk_stat "ho.extensionality-.steps" let stat_ext_pos = Util.mk_stat "ho.extensionality+.steps" let stat_complete_eq = Util.mk_stat "ho.complete_eq.steps" let stat_beta = Util.mk_stat "ho.beta_reduce.steps" let stat_eta_normalize = Util.mk_stat "ho.eta_normalize.steps" let stat_prim_enum = Util.mk_stat "ho.prim_enum.steps" let stat_elim_pred = Util.mk_stat "ho.elim_pred.steps" let stat_ho_unif = Util.mk_stat "ho.unif.calls" let stat_ho_unif_steps = Util.mk_stat "ho.unif.steps" let stat_neg_ext = Util.mk_stat "ho.neg_ext_success" let stat_neg_cong_fun = Util.mk_stat "ho.neg_cong_fun_success" let prof_eq_res = Util.mk_profiler "ho.eq_res" let prof_eq_res_syn = Util.mk_profiler "ho.eq_res_syntactic" let prof_ho_unif = Util.mk_profiler "ho.unif" let k_ext_pos = Flex_state.create_key () let k_ext_pos_all_lits = Flex_state.create_key () let k_ext_axiom = Flex_state.create_key () let k_choice_axiom = Flex_state.create_key () let k_elim_pred_var = Flex_state.create_key () let k_ext_neg_lit = Flex_state.create_key () let k_neg_ext = Flex_state.create_key () let k_neg_ext_as_simpl = Flex_state.create_key () let k_ext_axiom_penalty = Flex_state.create_key () let k_neg_cong_fun = Flex_state.create_key () let k_instantiate_choice_ax = Flex_state.create_key () let k_elim_leibniz_eq = Flex_state.create_key () let k_unif_max_depth = Flex_state.create_key () let k_prune_arg_fun = Flex_state.create_key () let k_prim_enum_terms = Flex_state.create_key () type prune_kind = [`NoPrune | `OldPrune | `PruneAllCovers | `PruneMaxCover] module type S = sig module Env : Env.S module C : module type of Env.C (** {6 Registration} *) val setup : unit -> unit (** Register rules in the environment *) end let k_some_ho : bool Flex_state.key = Flex_state.create_key() let k_enabled : bool Flex_state.key = Flex_state.create_key() let k_enable_def_unfold : bool Flex_state.key = Flex_state.create_key() let k_enable_ho_unif : bool Flex_state.key = Flex_state.create_key() let k_ho_prim_mode : [`Full | `Neg | `None | `Pragmatic | `TF ] Flex_state.key = Flex_state.create_key() let k_ho_prim_max_penalty : int Flex_state.key = Flex_state.create_key() module Make(E : Env.S) : S with module Env = E = struct module Env = E module C = Env.C module Ctx = Env.Ctx (* index for ext-neg, to ensure α-equivalent negative equations have the same skolems *) module FV_ext_neg_lit = FV_tree.Make(struct type t = Literal.t * T.t list (* lit -> skolems *) let compare = CCOrd.(pair Literal.compare (list T.compare)) let to_lits (l,_) = Iter.return (Literal.Conv.to_form l) let labels _ = Util.Int_set.empty end) let idx_ext_neg_lit_ : FV_ext_neg_lit.t ref = ref (FV_ext_neg_lit.empty()) (* retrieve skolems for this literal, if any *) let find_skolems_ (lit:Literal.t) : T.t list option = FV_ext_neg_lit.retrieve_alpha_equiv_c !idx_ext_neg_lit_ (lit, []) |> Iter.find_map (fun (lit',skolems) -> let subst = Literal.variant (lit',0) (lit,1) |> Iter.head in begin match subst with | Some (subst,_) -> let skolems = List.map (fun t -> Subst.FO.apply Subst.Renaming.none subst (t,0)) skolems in Some skolems | None -> None end) let rec declare_skolems = function | [] -> () | (sym,id) :: rest -> Ctx.declare sym id; declare_skolems rest (* negative extensionality rule: [f != g] where [f : a -> b] becomes [f k != g k] for a fresh parameter [k] *) let ext_neg_lit (lit:Literal.t) : _ option = match lit with | Literal.Equation (f, g, false) when Type.is_fun (T.ty f) && not (T.is_var f) && not (T.is_var g) && not (T.equal f g) -> let n_ty_params, ty_args, _ = Type.open_poly_fun (T.ty f) in assert (n_ty_params=0); let params = match find_skolems_ lit with | Some l -> l | None -> (* create new skolems, parametrized by free variables *) let vars = Literal.vars lit in let skolems = ref [] in let l = List.map (fun ty -> let sk, res = T.mk_fresh_skolem vars ty in skolems := sk :: !skolems; res) ty_args in (* save list *) declare_skolems !skolems; idx_ext_neg_lit_ := FV_ext_neg_lit.add !idx_ext_neg_lit_ (lit,l); l in let new_lit = Literal.mk_neq (T.app f params) (T.app g params) in Util.incr_stat stat_ext_neg_lit; Util.debugf ~section 4 "(@[ho_ext_neg_lit@ :old `%a`@ :new `%a`@])" (fun k->k Literal.pp lit Literal.pp new_lit); Some (new_lit,[],[Proof.Tag.T_ho; Proof.Tag.T_ext]) | _ -> None (* positive extensionality `m x = n x --> m = n` *) let ext_pos ?(only_unit=true) (c:C.t): C.t list = (* CCFormat.printf "EP: %b\n" only_unit; *) let is_eligible = C.Eligible.always in if not only_unit || C.lits c |> CCArray.length = 1 then C.lits c |> CCArray.mapi (fun i l -> let l = Literal.map (fun t -> Lambda.eta_reduce ~full:true t) l in match l with | Literal.Equation (t1,t2,true) when is_eligible i l -> let f1, l1 = T.as_app t1 in let f2, l2 = T.as_app t2 in begin match List.rev l1, List.rev l2 with | last1 :: l1, last2 :: l2 -> begin match T.view last1, T.view last2 with | T.Var x, T.Var y when HVar.equal Type.equal x y && not (Type.is_tType (HVar.ty x)) && Iter.of_list [Iter.doubleton f1 f2; Iter.of_list l1; Iter.of_list l2] |> Iter.flatten |> Iter.flat_map T.Seq.vars |> Iter.for_all (fun v' -> not (HVar.equal Type.equal v' x)) -> (* it works! *) let new_lit = Literal.mk_eq (T.app f1 (List.rev l1)) (T.app f2 (List.rev l2)) in let new_lits = C.lits c |> CCArray.to_list |> List.mapi (fun j l -> if i = j then new_lit else l) in let proof = Proof.Step.inference [C.proof_parent c] ~rule:(Proof.Rule.mk "ho_ext_pos") ~tags:[Proof.Tag.T_ho; Proof.Tag.T_ext] in let new_c = C.create new_lits proof ~penalty:(C.penalty c) ~trail:(C.trail c) in Format.printf "@[EP: @[%a@] => @[%a@]@].\n" C.pp c C.pp new_c; Format.force_newline (); Util.incr_stat stat_ext_pos; Util.debugf ~section 4 "(@[ext_pos@ :clause %a@ :yields %a@])" (fun k->k C.pp c C.pp new_c); Some new_c | _,_ -> None end | _ -> None end | _ -> None) |> CCArray.filter_map (fun x -> x) |> CCArray.to_list else [] let ext_pos_general ?(all_lits = false) (c:C.t) : C.t list = let eligible = if all_lits then C.Eligible.always else C.Eligible.param c in (* Remove recursively variables at the end of the literal t = s if possible. e.g. ext_pos_lit (f X Y) (g X Y) other_lits = [f X = g X, f = g] if X and Y do not appear in other_lits *) let rec ext_pos_lit t s other_lits = let f, tt = T.as_app t in let g, ss = T.as_app s in begin match List.rev tt, List.rev ss with | last_t :: tl_rev_t, last_s :: tl_rev_s -> if T.equal last_t last_s && not (T.is_type last_t) then match T.as_var last_t with | Some v -> if not (T.var_occurs ~var:v f) && not (T.var_occurs ~var:v g) && not (List.exists (T.var_occurs ~var:v) tl_rev_t) && not (List.exists (T.var_occurs ~var:v) tl_rev_s) && not (List.exists (Literal.var_occurs v) other_lits) then ( let butlast = (fun l -> CCList.take (List.length l - 1) l) in let t' = T.app f (butlast tt) in let s' = T.app g (butlast ss) in Literal.mk_eq t' s' :: ext_pos_lit t' s' other_lits ) else [] | None -> [] else [] | _ -> [] end in let new_clauses = (* iterate over all literals eligible for paramodulation *) C.lits c |> Iter.of_array |> Util.seq_zipi |> Iter.filter (fun (idx,lit) -> eligible idx lit) |> Iter.flat_map_l (fun (lit_idx,lit) -> let lit = Literal.map (fun t -> Lambda.eta_reduce t) lit in match lit with | Literal.Equation (t, s, true) -> ext_pos_lit t s (CCArray.except_idx (C.lits c) lit_idx) |> Iter.of_list |> Iter.flat_map_l (fun new_lit -> (* create a clause with new_lit instead of lit *) let new_lits = new_lit :: CCArray.except_idx (C.lits c) lit_idx in let proof = Proof.Step.inference [C.proof_parent c] ~rule:(Proof.Rule.mk "ho_ext_pos_general") ~tags:[Proof.Tag.T_ho; Proof.Tag.T_ext] in let new_c = C.create new_lits proof ~penalty:(C.penalty c) ~trail:(C.trail c) in [new_c]) |> Iter.to_list | _ -> []) |> Iter.to_rev_list in if new_clauses<>[] then ( Util.debugf ~section 4 "(@[ext-pos-general-eq@ :clause %a@ :yields (@[<hv>%a@])@])" (fun k->k C.pp c (Util.pp_list ~sep:" " C.pp) new_clauses); ); new_clauses (* complete [f = g] into [f x1…xn = g x1…xn] for each [n ≥ 1] *) let complete_eq_args (c:C.t) : C.t list = let var_offset = C.Seq.vars c |> Type.Seq.max_var |> succ in let eligible = C.Eligible.param c in let aux lits lit_idx t u = let n_ty_args, ty_args, _ = Type.open_poly_fun (T.ty t) in assert (n_ty_args = 0); assert (ty_args <> []); let vars = List.mapi (fun i ty -> HVar.make ~ty (i+var_offset) |> T.var) ty_args in CCList.(1 -- List.length vars) |> List.map (fun prefix_len -> let vars_prefix = CCList.take prefix_len vars in let new_lit = Literal.mk_eq (T.app t vars_prefix) (T.app u vars_prefix) in let new_lits = new_lit :: CCArray.except_idx lits lit_idx in let proof = Proof.Step.inference [C.proof_parent c] ~rule:(Proof.Rule.mk "ho_complete_eq") ~tags:[Proof.Tag.T_ho] in let new_c = C.create new_lits proof ~penalty:(C.penalty c) ~trail:(C.trail c) in new_c) in let new_c = C.lits c |> Iter.of_array |> Util.seq_zipi |> Iter.filter (fun (idx,lit) -> eligible idx lit) |> Iter.flat_map_l (fun (lit_idx,lit) -> match lit with | Literal.Equation (t, u, true) when Type.is_fun (T.ty t) -> aux (C.lits c) lit_idx t u | Literal.Equation (t, u, true) when Type.is_var (T.ty t) -> (* A polymorphic variable might be functional on the ground level *) let var = Type.as_var_exn (T.ty t) in let funty = T.of_ty (Type.arrow [Type.var (HVar.fresh ~ty:Type.tType ())] (Type.var (HVar.fresh ~ty:Type.tType ()))) in let subst = Unif_subst.FO.singleton (var,0) (funty,0) in let renaming, subst = Subst.Renaming.none, Unif_subst.subst subst in let lits' = Lits.apply_subst renaming subst (C.lits c, 0) in let t' = Subst.FO.apply renaming subst (t, 0) in let u' = Subst.FO.apply renaming subst (u, 0) in aux lits' lit_idx t' u' | _ -> []) |> Iter.to_rev_list in if new_c<>[] then ( Util.add_stat stat_complete_eq (List.length new_c); Util.debugf ~section 4 "(@[complete-eq@ :clause %a@ :yields (@[<hv>%a@])@])" (fun k->k C.pp c (Util.pp_list ~sep:" " C.pp) new_c); ); new_c let neg_cong_fun (c:C.t) : C.t list = let find_diffs s t = let rec loop s t = let (hd_s, args_s), (hd_t, args_t) = T.as_app s , T.as_app t in if T.is_const hd_s && T.is_const hd_t then ( if T.equal hd_s hd_t then ( let zipped = CCList.combine args_s args_t in let zipped = List.filter (fun (a_s, a_t) -> not (T.equal a_s a_t)) zipped in if List.length zipped = 1 then ( let s,t = List.hd zipped in loop s t ) else zipped) else [(s,t)]) else [(s,t)] in let (hd_s,_), (hd_t,_) = T.as_app s, T.as_app t in if T.is_const hd_s && T.is_const hd_t && T.equal hd_s hd_t then ( let diffs = loop s t in if List.for_all (fun (s,t) -> Type.equal (T.ty s) (T.ty t)) diffs then diffs else [] (* because of polymorphism, it might be possible that terms will not be of the same type, and that will give rise to wrong term applications*) ) else [] in let is_eligible = C.Eligible.always in C.lits c |> CCArray.mapi (fun i l -> match l with | Literal.Equation (lhs,rhs,false) when is_eligible i l -> let subterms = find_diffs lhs rhs in assert(List.for_all (fun (s,t) -> Type.equal (T.ty s) (T.ty t)) subterms); if not (CCList.is_empty subterms) && List.exists (fun (l,_) -> Type.is_fun (T.ty l) || Type.is_prop (T.ty l)) subterms then let subterms_lit = CCList.map (fun (l,r) -> let free_vars = T.VarSet.union (T.vars l) (T.vars r) |> T.VarSet.to_list in let arg_types = Type.expected_args @@ T.ty l in if CCList.is_empty arg_types then Literal.mk_neq l r else ( let skolem_decls = ref [] in let skolems = List.map (fun ty -> let sk, res = T.mk_fresh_skolem free_vars ty in skolem_decls := sk :: !skolem_decls; res) arg_types in declare_skolems !skolem_decls; Literal.mk_neq (T.app l skolems) (T.app r skolems) ) ) subterms in let new_lits = CCList.flat_map (fun (j,x) -> if i!=j then [x] else subterms_lit) (C.lits c |> Array.mapi (fun j x -> (j,x)) |> Array.to_list) in let proof = Proof.Step.inference [C.proof_parent c] ~rule:(Proof.Rule.mk "neg_cong_fun") ~tags:[Proof.Tag.T_ho] in let new_c = C.create new_lits proof ~penalty:(C.penalty c) ~trail:(C.trail c) in Util.incr_stat stat_neg_cong_fun; Some new_c else None | _ -> None) |> CCArray.filter_map (fun x -> x) |> CCArray.to_list let neg_ext (c:C.t) : C.t list = let is_eligible = C.Eligible.res c in C.lits c |> CCArray.mapi (fun i l -> match l with | Literal.Equation (lhs,rhs,false) when is_eligible i l && Type.is_fun @@ T.ty lhs -> let arg_types = Type.expected_args @@ T.ty lhs in let free_vars = Literal.vars l in let skolem_decls = ref [] in let new_lits = CCList.map (fun (j,x) -> if i!=j then x else ( let skolems = List.map (fun ty -> let sk, res = T.mk_fresh_skolem free_vars ty in skolem_decls := sk :: !skolem_decls; res) arg_types in Literal.mk_neq (T.app lhs skolems) (T.app rhs skolems)) ) (C.lits c |> Array.mapi (fun j x -> (j,x)) |> Array.to_list) in declare_skolems !skolem_decls; let proof = Proof.Step.inference [C.proof_parent c] ~rule:(Proof.Rule.mk "neg_ext") ~tags:[Proof.Tag.T_ho; Proof.Tag.T_ext] in let new_c = C.create new_lits proof ~penalty:(C.penalty c) ~trail:(C.trail c) in Util.debugf 1 ~section "NegExt: @[%a@] => @[%a@].\n" (fun k -> k C.pp c C.pp new_c); Util.incr_stat stat_neg_ext; Some new_c | _ -> None) |> CCArray.filter_map (fun x -> x) |> CCArray.to_list let neg_ext_simpl (c:C.t) : C.t SimplM.t = let is_eligible = C.Eligible.res c in let applied_neg_ext = ref false in let new_lits = C.lits c |> CCArray.mapi (fun i l -> match l with | Literal.Equation (lhs,rhs,false) when is_eligible i l && Type.is_fun @@ T.ty lhs -> let arg_types = Type.expected_args @@ T.ty lhs in let free_vars = Literal.vars l |> T.VarSet.of_list |> T.VarSet.to_list in let skolem_decls = ref [] in let skolems = List.map (fun ty -> let sk, res = T.mk_fresh_skolem free_vars ty in skolem_decls := sk :: !skolem_decls; res) arg_types in applied_neg_ext := true; declare_skolems !skolem_decls; Literal.mk_neq (T.app lhs skolems) (T.app rhs skolems) | _ -> l) in if not !applied_neg_ext then SimplM.return_same c else ( let proof = Proof.Step.simp [C.proof_parent c] ~rule:(Proof.Rule.mk "neg_ext_simpl") ~tags:[Proof.Tag.T_ho; Proof.Tag.T_ext] in let c' = C.create_a ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof in (* CCFormat.printf "[NE_simpl]: @[%a@] => @[%a@].\n" C.pp c C.pp c'; *) SimplM.return_new c' ) (* try to eliminate a predicate variable in one fell swoop *) let elim_pred_variable (c:C.t) : C.t list = (* find unshielded predicate vars *) let find_vars(): _ HVar.t Iter.t = Literals.vars (C.lits c) |> CCList.to_seq |> Iter.filter (fun v -> (Type.is_prop @@ Type.returns @@ HVar.ty v) && not (Literals.is_shielded v (C.lits c))) (* find all constraints on [v], also returns the remaining literals. returns None if some constraints contains [v] itself. *) and gather_lits v : (Literal.t list * (T.t list * bool) list) option = try Array.fold_left (fun (others,set) lit -> begin match lit with | Literal.Equation (lhs, rhs, true) when T.equal rhs T.true_ || T.equal rhs T.false_ -> let f, args = T.as_app lhs in let sign = T.equal rhs T.true_ in begin match T.view f with | T.Var q when HVar.equal Type.equal v q -> (* found an occurrence *) if List.exists (T.var_occurs ~var:v) args then ( raise Exit; (* [P … t[v] …] is out of scope *) ); others, (args, sign) :: set | _ -> lit :: others, set end | _ -> lit :: others, set end) ([], []) (C.lits c) |> CCOpt.return with Exit -> None in (* try to eliminate [v], if it doesn't occur in its own arguments *) let try_elim_var v: _ option = (* gather constraints on [v] *) begin match gather_lits v with | None | Some (_, []) -> None | Some (other_lits, constr_l) -> (* gather positive/negative args *) let pos_args, neg_args = CCList.partition_map (fun (args,sign) -> if sign then `Left args else `Right args) constr_l in (* build substitution used for this inference *) let subst = let some_tup = match pos_args, neg_args with | tup :: _, _ | _, tup :: _ -> tup | [], [] -> assert false in let offset = C.Seq.vars c |> T.Seq.max_var |> succ in let vars = List.mapi (fun i t -> HVar.make ~ty:(T.ty t) (i+offset)) some_tup in let vars_t = List.map T.var vars in let body = neg_args |> List.map (fun tup -> assert (List.length tup = List.length vars); List.map2 T.Form.eq vars_t tup |> T.Form.and_l) |> T.Form.or_l in Util.debugf ~section 5 "(@[elim-pred-with@ (@[@<1>λ @[%a@].@ %a@])@])" (fun k->k (Util.pp_list ~sep:" " Type.pp_typed_var) vars T.pp body); Util.incr_stat stat_elim_pred; let t = T.fun_of_fvars vars body in Subst.FO.of_list [((v:>InnerTerm.t HVar.t),0), (t,0)] in (* build new clause *) let renaming = Subst.Renaming.create () in let new_lits = let l1 = Literal.apply_subst_list renaming subst (other_lits,0) in let l2 = CCList.product (fun args_pos args_neg -> let args_pos = Subst.FO.apply_l renaming subst (args_pos,0) in let args_neg = Subst.FO.apply_l renaming subst (args_neg,0) in List.map2 Literal.mk_eq args_pos args_neg) pos_args neg_args |> List.flatten in l1 @ l2 in let proof = Proof.Step.inference ~rule:(Proof.Rule.mk "ho_elim_pred") ~tags:[Proof.Tag.T_ho] [ C.proof_parent_subst renaming (c,0) subst ] in let new_c = C.create new_lits proof ~penalty:(C.penalty c) ~trail:(C.trail c) in Util.debugf ~section 3 "(@[<2>elim_pred_var %a@ :clause %a@ :yields %a@])" (fun k->k T.pp_var v C.pp c C.pp new_c); Some new_c end in begin find_vars() |> Iter.filter_map try_elim_var |> Iter.to_rev_list end (* maximum penalty on clauses to perform Primitive Enum on *) let max_penalty_prim_ = Env.flex_get k_ho_prim_max_penalty (* rule for primitive enumeration of predicates [P t1…tn] (using ¬ and ∧ and =) *) let prim_enum_ ~(mode) (c:C.t) : C.t list = let free_vars = Literals.vars (C.lits c) |> T.VarSet.of_list in (* set of variables to refine (only those occurring in "interesting" lits) *) let vars = Literals.fold_lits ~eligible:C.Eligible.always (C.lits c) |> Iter.map fst |> Iter.flat_map Literal.Seq.terms |> Iter.flat_map T.Seq.subterms |> Iter.filter (fun t -> Type.is_prop (T.ty t)) |> Iter.filter_map (fun t -> let hd = T.head_term t in begin match T.as_var hd, Type.arity (T.ty hd) with | Some v, Type.Arity (0, n) when n>0 && Type.returns_prop (T.ty hd) && T.VarSet.mem v free_vars -> Some v | _ -> None end) |> T.VarSet.of_seq (* unique *) in if not (T.VarSet.is_empty vars) then ( Util.debugf ~section 5 "(@[<hv2>ho.refine@ :clause %a@ :terms {@[%a@]}@])" (fun k->k C.pp c (Util.pp_seq T.pp_var) (T.VarSet.to_seq vars)); ); let sc_c = 0 in let offset = C.Seq.vars c |> T.Seq.max_var |> succ in begin vars |> T.VarSet.to_seq |> Iter.flat_map_l (fun v -> HO_unif.enum_prop ~enum_cache:(Env.flex_get k_prim_enum_terms) ~mode ~offset (v,sc_c)) |> Iter.map (fun (subst,penalty) -> let renaming = Subst.Renaming.create() in let lits = Literals.apply_subst renaming subst (C.lits c,sc_c) in let proof = Proof.Step.inference ~rule:(Proof.Rule.mk "ho.refine") ~tags:[Proof.Tag.T_ho] [C.proof_parent_subst renaming (c,sc_c) subst] in let new_c = C.create_a lits proof ~penalty:(C.penalty c + penalty) ~trail:(C.trail c) in (* CCFormat.printf "[Prim_enum:] @[%a@]\n=>\n@[%a@].\n" C.pp c C.pp new_c; *) Util.debugf ~section 3 "(@[<hv2>ho.refine@ :from %a@ :subst %a@ :yields %a@])" (fun k->k C.pp c Subst.pp subst C.pp new_c); Util.incr_stat stat_prim_enum; new_c) |> Iter.to_rev_list end let prim_enum ~(mode) c = if C.proof_depth c < max_penalty_prim_ then prim_enum_ ~mode c else [] let choice_ops = ref Term.Set.empty let new_choice_counter = ref 0 let insantiate_choice ?(inst_vars=true) ?(choice_ops=choice_ops) c = let max_var = C.Seq.vars c |> Iter.map HVar.id |> Iter.max |> CCOpt.get_or ~default: 0 in let is_choice_subterm t = match T.view t with | T.App(hd, [arg]) when T.is_var hd || Term.Set.mem hd !choice_ops -> let ty = T.ty arg in Type.is_fun ty && List.length (Type.expected_args ty) = 1 && Type.equal (Term.ty t) (List.hd (Type.expected_args ty)) && Type.returns_prop ty && T.DB.is_closed t | _ -> false in let neg_trigger t = assert(T.DB.is_closed t); let arg_ty = List.hd (Type.expected_args (T.ty t)) in let applied_to_0 = T.Form.not_ (Lambda.whnf (T.app t [T.bvar ~ty:arg_ty 0])) in let res = T.fun_ arg_ty applied_to_0 in assert(T.DB.is_closed res); res in let choice_inst_of_hd hd arg = let arg_ty = Term.ty arg in let ty = List.hd (Type.expected_args arg_ty) in let x = T.var_of_int ~ty (max_var+1) in let choice_x = Lambda.whnf (T.app arg [x]) in let choice_arg = Lambda.snf (T.app arg [T.app hd [arg]]) in let new_lits = [Literal.mk_prop choice_x false; Literal.mk_prop choice_arg true] in let arg_str = CCFormat.sprintf "%a" T.TPTP.pp arg in let proof = Proof.Step.inference ~rule:(Proof.Rule.mk ("inst_choice" ^ arg_str)) [] in C.create ~penalty:1 ~trail:Trail.empty new_lits proof in let new_choice_op ty = let choice_ty_name = "#_choice_" ^ CCInt.to_string (CCRef.get_then_incr new_choice_counter) in let new_ch_id = ID.make choice_ty_name in let new_ch_const = T.const new_ch_id ~ty in Ctx.add_signature (Signature.declare (C.Ctx.signature ()) new_ch_id ty); Util.debugf 1 "new choice for type %a: %a(%a).\n" (fun k -> k Type.pp ty T.pp new_ch_const Type.pp (T.ty new_ch_const)); choice_ops := Term.Set.add new_ch_const !choice_ops; new_ch_const in let build_choice_inst t = match T.view t with | T.App(hd, [arg]) -> if Term.is_var hd && inst_vars then ( let hd_ty = Term.ty hd in let choice_ops = Term.Set.filter (fun t -> Type.equal (Term.ty t) hd_ty) !choice_ops |> Term.Set.to_list |> (fun l -> if CCList.is_empty l then [new_choice_op hd_ty] else l) in CCList.flat_map (fun hd -> [choice_inst_of_hd hd arg; choice_inst_of_hd hd (neg_trigger arg)]) choice_ops ) else if Term.Set.mem hd !choice_ops then ( [choice_inst_of_hd hd arg; choice_inst_of_hd hd (neg_trigger arg)] ) else [] | _ -> assert (false) in C.Seq.terms c |> Iter.flat_map Term.Seq.subterms |> Iter.filter is_choice_subterm |> Iter.flat_map_l build_choice_inst |> Iter.to_list let recognize_choice_ops c = let extract_not_p_x l = match l with | Literal.Equation(lhs,rhs,true) when T.equal T.false_ rhs && T.is_app_var lhs -> begin match T.view lhs with | T.App(hd, [var]) when T.is_var var -> Some hd | _ -> None end | _ -> None in let extract_p_choice_p p l = match l with | Literal.Equation(lhs,rhs,true) when T.equal T.true_ rhs && T.is_app_var lhs -> begin match T.view lhs with | T.App(hd, [ch_p]) when T.equal hd p -> begin match T.view ch_p with | T.App(sym, [var]) when T.is_const sym && T.equal var p -> Some sym | _ -> None end | _ -> None end | _ -> None in if C.length c == 2 then ( let px = CCArray.find_map extract_not_p_x (C.lits c) in match px with | Some p -> let p_ch_p = CCArray.find_map (extract_p_choice_p p) (C.lits c) in begin match p_ch_p with | Some sym -> choice_ops := Term.Set.add sym !choice_ops; let new_cls = Env.get_active () |> Iter.flat_map_l (fun pas_cl -> if C.id pas_cl = C.id c then [] else ( insantiate_choice ~inst_vars:false ~choice_ops:(ref (Term.Set.singleton sym)) pas_cl )) in Env.add_passive new_cls; C.mark_redundant c; true | None -> false end | None -> false ) else false let elim_leibniz_equality c = if C.proof_depth c < Env.flex_get k_elim_leibniz_eq then ( let ord = Env.ord () in let eligible = C.Eligible.always in let pos_pred_vars, neg_pred_vars, occurences = Lits.fold_eqn ~both:false ~ord ~eligible (C.lits c) |> Iter.fold (fun (pos_vs,neg_vs,occ) (lhs,rhs,sign,_) -> if Type.is_prop (Term.ty lhs) && Term.is_app_var lhs && sign && Term.is_true_or_false rhs then ( let var_hd = Term.as_var_exn (Term.head_term lhs) in if Term.equal T.true_ rhs then (Term.VarSet.add var_hd pos_vs, neg_vs, Term.Map.add lhs true occ) else (pos_vs, Term.VarSet.add var_hd neg_vs, Term.Map.add lhs false occ) ) else (pos_vs, neg_vs, occ) ) (Term.VarSet.empty,Term.VarSet.empty,Term.Map.empty) in let pos_neg_vars = Term.VarSet.inter pos_pred_vars neg_pred_vars in let res = if Term.VarSet.is_empty pos_neg_vars then [] else ( CCList.flat_map (fun (t,sign) -> let hd, args = T.as_app t in let var_hd = T.as_var_exn hd in if Term.VarSet.mem (Term.as_var_exn hd) pos_neg_vars then ( let tyargs, _ = Type.open_fun (Term.ty hd) in let n = List.length tyargs in CCList.filter_map (fun (i,arg) -> if T.var_occurs ~var:var_hd arg then None else ( let body = (if sign then T.Form.neq else T.Form.eq) arg (T.bvar ~ty:(T.ty arg) (n-i-1)) in let subs_term = T.fun_l tyargs body in (let cached_t = Subst.FO.canonize_all_vars subs_term in E.flex_add k_prim_enum_terms (ref (Term.Set.add cached_t !(Env.flex_get k_prim_enum_terms)))); let subst = Subst.FO.bind' (Subst.empty) (var_hd, 0) (subs_term, 0) in let rule = Proof.Rule.mk ("elim_leibniz_eq_" ^ (if sign then "+" else "-")) in let = [Proof.Tag.T_ho] in let proof = Some (Proof.Step.inference ~rule ~tags [C.proof_parent c]) in Some (C.apply_subst ~proof (c,0) subst)) ) (CCList.mapi (fun i arg -> (i, arg)) args) ) else [] ) (Term.Map.to_list occurences)) in (* CCFormat.printf "Elim Leibniz eq:@ @[%a@].\n" C.pp c; CCFormat.printf "Pos/neg vars:@ @[%a@].\n" (Term.VarSet.pp HVar.pp) pos_neg_vars; CCFormat.printf "Res:@ @[%a@].\n" (CCList.pp C.pp) res); *) res ) else [] let pp_pairs_ out = let open CCFormat in Format.fprintf out "(@[<hv>%a@])" (Util.pp_list ~sep:" " @@ hvbox @@ HO_unif.pp_pair) (* perform HO unif on [pairs]. invariant: [C.lits c = pairs @ other_lits] *) let ho_unif_real_ c pairs other_lits : C.t list = Util.debugf ~section 5 "(@[ho_unif.try@ :pairs (@[<hv>%a@])@ :other_lits %a@])" (fun k->k pp_pairs_ pairs (Util.pp_list~sep:" " Literal.pp) other_lits); Util.incr_stat stat_ho_unif; let offset = C.Seq.vars c |> T.Seq.max_var |> succ in begin HO_unif.unif_pairs ?fuel:None (pairs,0) ~offset |> List.map (fun (new_pairs, us, penalty, renaming) -> let subst = Unif_subst.subst us in let c_guard = Literal.of_unif_subst renaming us in let new_pairs = List.map (fun (env,t,u) -> assert (env == []); Literal.mk_constraint t u) new_pairs and other_lits = Literal.apply_subst_list renaming subst (other_lits,0) in let all_lits = c_guard @ new_pairs @ other_lits in let proof = Proof.Step.inference ~rule:(Proof.Rule.mk "ho_unif") ~tags:[Proof.Tag.T_ho] [C.proof_parent_subst renaming (c,0) subst] in let new_c = C.create all_lits proof ~trail:(C.trail c) ~penalty:(C.penalty c + penalty) in Util.debugf ~section 5 "(@[ho_unif.step@ :pairs (@[%a@])@ :subst %a@ :yields %a@])" (fun k->k pp_pairs_ pairs Subst.pp subst C.pp new_c); Util.incr_stat stat_ho_unif_steps; new_c ) end (* HO unification of constraints *) let ho_unif (c:C.t) : C.t list = if C.lits c |> CCArray.exists Literal.is_ho_constraint then ( (* separate constraints from the rest *) let pairs, others = C.lits c |> Array.to_list |> CCList.partition_map (function | Literal.Equation (t,u, false) as lit when Literal.is_ho_constraint lit -> `Left ([],t,u) | lit -> `Right lit) in assert (pairs <> []); Util.enter_prof prof_ho_unif; let r = ho_unif_real_ c pairs others in Util.exit_prof prof_ho_unif; r ) else [] (* rule for β-reduction *) let beta_reduce t = (* assert (T.DB.is_closed t); *) let t' = Lambda.snf t in if (T.equal t t') then ( Util.debugf ~section 50 "(@[beta_reduce `%a`@ failed `@])" (fun k->k T.pp t ); None) else ( Util.debugf ~section 50 "(@[beta_reduce `%a`@ :into `%a`@])" (fun k->k T.pp t T.pp t'); Util.incr_stat stat_beta; (* assert (T.DB.is_closed t'); *) Some t' ) (* rule for eta-expansion *) let eta_normalize t = (* assert (T.DB.is_closed t); *) let t' = Ctx.eta_normalize t in if (T.equal t t') then ( Util.debugf ~section 50 "(@[eta_normalize `%a`@ failed `@])" (fun k->k T.pp t ); None) else ( Util.debugf ~section 50 "(@[eta_normalize `%a`@ :into `%a`@])" (fun k->k T.pp t T.pp t'); Util.incr_stat stat_eta_normalize; (* assert (T.DB.is_closed t'); *) Some t' ) module TVar = struct type t = Type.t HVar.t let equal = HVar.equal Type.equal let hash = HVar.hash let compare = HVar.compare Type.compare end module VarTermMultiMap = CCMultiMap.Make (TVar) (Term) module VTbl = CCHashtbl.Make(TVar) let extensionality_clause = let diff_id = ID.make("zf_ext_diff") in ID.set_payload diff_id (ID.Attr_skolem ID.K_normal); (* make the arguments of diff mandatory *) let alpha_var = HVar.make ~ty:Type.tType 0 in let alpha = Type.var alpha_var in let beta_var = HVar.make ~ty:Type.tType 1 in let beta = Type.var beta_var in let alpha_to_beta = Type.arrow [alpha] beta in let diff_type = Type.forall_fvars [alpha_var;beta_var] (Type.arrow [alpha_to_beta; alpha_to_beta] alpha) in let diff = Term.const ~ty:diff_type diff_id in let x = Term.var (HVar.make ~ty:alpha_to_beta 2) in let y = Term.var (HVar.make ~ty:alpha_to_beta 3) in let x_diff = Term.app x [Term.app diff [T.of_ty alpha; T.of_ty beta; x; y]] in let y_diff = Term.app y [Term.app diff [T.of_ty alpha; T.of_ty beta; x; y]] in let lits = [Literal.mk_eq x y; Literal.mk_neq x_diff y_diff] in Env.C.create ~penalty:(Env.flex_get k_ext_axiom_penalty) ~trail:Trail.empty lits Proof.Step.trivial let choice_clause = let choice_id = ID.make("zf_choice") in let alpha_var = HVar.make ~ty:Type.tType 0 in let alpha = Type.var alpha_var in let alpha_to_prop = Type.arrow [alpha] Type.prop in let choice_type = Type.arrow [alpha_to_prop] alpha in let choice = Term.const ~ty:choice_type choice_id in let p = Term.var (HVar.make ~ty:alpha_to_prop 1) in let x = Term.var (HVar.make ~ty:alpha 2) in let px = Term.app p [x] in (* p x *) let p_choice = Term.app p [Term.app choice [p]] (* p (choice p) *) in (* ~ (p x) | p (choice p) *) let lits = [Literal.mk_prop px false; Literal.mk_prop p_choice true] in Env.C.create ~penalty:1 ~trail:Trail.empty lits Proof.Step.trivial type fixed_arg_status = | Always of T.t (* This argument is always the given term in all occurences *) | Varies (* This argument contains different terms in differen occurrences *) type dupl_arg_status = | AlwaysSameAs of int (* This argument is always the same as some other argument across occurences (links to the next arg with this property) *) | Unique (* This argument is not always the same as some other argument across occurences *) (** Removal of fixed/duplicate arguments of variables. - If within a clause, there exists a variable F that's always applied to at least i arguments and the ith argument is always the same DB-free term, we can systematically remove the argument (and repair F's type). - If within a clause, there exist a variable F, and indices i < j such that all occurrences of F are applied to at least j arguments and the ith argument is syntactically same as the jth argument, we can systematically remove the ith argument (and repair F's type accordingly). *) let prune_arg_old c = let status : (fixed_arg_status * dupl_arg_status) list VTbl.t = VTbl.create 8 in C.lits c |> Literals.fold_terms ~vars:true ~ty_args:false ~which:`All ~ord:Ordering.none ~subterms:true ~eligible:(fun _ _ -> true) |> Iter.iter (fun (t,_) -> let head, args = T.as_app t in match T.as_var head with | Some var -> begin match VTbl.get status var with | Some var_status -> (* We have seen this var before *) let update_fas fas arg = match fas with | Always u -> if T.equal u arg then Always u else Varies | Varies -> Varies in let rec update_das das arg = match das with | AlwaysSameAs j -> begin try if T.equal (List.nth args j) arg then AlwaysSameAs j else update_das (snd (List.nth var_status j)) (List.nth args j) with Failure _ -> Unique end | Unique -> Unique in (* Shorten the lists to have equal lengths. Arguments positions are only interesting if they appear behind every occurrence of a var.*) let minlen = min (List.length var_status) (List.length args) in let args = CCList.take minlen args in let var_status = CCList.take minlen var_status in VTbl.replace status var (CCList.map (fun ((fas, das), arg) -> update_fas fas arg, update_das das arg) (List.combine var_status args)) | None -> (* First time to encounter this var *) let rec create_var_status ?(i=0) args : (fixed_arg_status * dupl_arg_status) list = match args with | [] -> [] | arg :: args' -> let fas = if T.DB.is_closed arg then Always arg else Varies in (* Find next identical argument *) let das = match CCList.find_idx ((Term.equal) arg) args' with | Some (j, _) -> AlwaysSameAs (i + j + 1) | None -> Unique in (fas, das) :: create_var_status ~i:(i+1) args' in VTbl.add status var (create_var_status args) end | None -> () ; () ); let subst = VTbl.to_list status |> CCList.filter_map ( fun (var, var_status) -> assert (not (Type.is_tType (HVar.ty var))); let ty_args, ty_return = Type.open_fun (HVar.ty var) in let keep = var_status |> CCList.map (fun (fas, das) -> (* Keep argument if this is true: *) fas == Varies && das == Unique ) in if CCList.for_all ((=) true) keep then None else ( (* Keep argument if var_status list is not long enough (This happens when the argument does not appear for some occurrence of var): *) let keep = CCList.(append keep (replicate (length ty_args - length keep) true)) in (* Create substitution: *) let ty_args' = ty_args |> CCList.combine keep |> CCList.filter fst |> CCList.map snd in let var' = HVar.cast var ~ty:(Type.arrow ty_args' ty_return) in let bvars = CCList.combine keep ty_args |> List.mapi (fun i (k, ty) -> k, T.bvar ~ty (List.length ty_args - i - 1)) |> CCList.filter fst |> CCList.map snd in let replacement = T.fun_l ty_args (T.app (T.var var') bvars) in Some ((var,0), (replacement,1)) ) ) |> Subst.FO.of_list' in if Subst.is_empty subst then SimplM.return_same c else ( let renaming = Subst.Renaming.none in let new_lits = Lits.apply_subst renaming subst (C.lits c, 0) in let proof = Proof.Step.simp ~rule:(Proof.Rule.mk "prune_arg") ~tags:[Proof.Tag.T_ho] [C.proof_parent_subst renaming (c,0) subst] in let c' = C.create_a ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof in Util.debugf ~section 3 "@[<>@[%a@]@ @[<2>prune_arg into@ @[%a@]@]@ with @[%a@]@]" (fun k->k C.pp c C.pp c' Subst.pp subst); SimplM.return_new c' ) (* TODO: Simplified flag like in first-order? Profiler?*) let prune_arg ~all_covers c = let get_covers ?(current_sets=[]) head args = let ty_args, _ = Type.open_fun (T.ty head) in let missing = CCList.replicate (List.length ty_args - List.length args) None in let args_opt = List.mapi (fun i a_i -> assert(Term.DB.is_closed a_i); assert(CCList.is_empty current_sets || List.length current_sets = (List.length args + List.length missing)); if CCList.is_empty current_sets || not (Term.Set.is_empty (List.nth current_sets i)) then (Some (List.mapi (fun j a_j -> if i = j then None else Some a_j) args)) else None (* ignoring onself *)) args @ missing in let res = List.mapi (fun i arg_opt -> if i < List.length args then ( let t = List.nth args i in begin match arg_opt with | Some arg_l -> let res_l = if all_covers then T.cover_with_terms t arg_l else [t; T.max_cover t arg_l] in T.Set.of_list res_l | None -> Term.Set.empty end) else Term.Set.empty) args_opt in res in let status = VTbl.create 8 in let free_vars = Literals.vars (C.lits c) |> T.VarSet.of_list in C.lits c |> Literals.map (fun t -> Lambda.eta_expand t) (* to make sure that DB indices are everywhere the same *) |> Literals.fold_terms ~vars:true ~ty_args:false ~which:`All ~ord:Ordering.none ~subterms:true ~eligible:(fun _ _ -> true) |> Iter.iter (fun (t,_) -> let head, _ = T.as_app t in match T.as_var head with | Some var when T.VarSet.mem var free_vars -> begin match VTbl.get status var with | Some (current_sets, created_sk) -> let t, new_sk = T.DB.skolemize_loosely_bound t in let new_skolems = T.IntMap.bindings new_sk |> List.map snd |> Term.Set.of_list in let covers = get_covers ~current_sets head (T.args t) in assert(List.length current_sets = List.length covers); let paired = CCList.combine current_sets covers in let res = List.map (fun (o,n) -> Term.Set.inter o n) paired in VTbl.replace status var (res, Term.Set.union created_sk new_skolems); | None -> let t', created_sk = T.DB.skolemize_loosely_bound t in let created_sk = T.IntMap.bindings created_sk |> List.map snd |> Term.Set.of_list in VTbl.add status var (get_covers head (T.args t'), created_sk); end | _ -> (); () ); let subst = VTbl.to_list status |> CCList.filter_map (fun (var, (args, skolems)) -> let removed = ref IntSet.empty in let n = List.length args in let keep = List.mapi (fun i arg_set -> let arg_l = Term.Set.to_list arg_set in let arg_l = List.filter (fun t -> List.for_all (fun idx -> not @@ IntSet.mem idx !removed) (T.DB.unbound t) && T.Seq.subterms t |> Iter.for_all (fun subt -> not @@ Term.Set.mem subt skolems)) arg_l in let res = CCList.is_empty arg_l in if not res then removed := IntSet.add (n-i-1) !removed; res) args in if CCList.for_all ((=) true) keep then None else ( let ty_args, ty_return = Type.open_fun (HVar.ty var) in let ty_args' = CCList.combine keep ty_args |> CCList.filter fst |> CCList.map snd in let var' = HVar.cast var ~ty:(Type.arrow ty_args' ty_return) in let bvars = CCList.combine keep ty_args |> List.mapi (fun i (k, ty) -> k, T.bvar ~ty (List.length ty_args - i - 1)) |> CCList.filter fst|> CCList.map snd in let replacement = T.fun_l ty_args (T.app (T.var var') bvars) in Some ((var,0), (replacement,1)))) |> Subst.FO.of_list' in if Subst.is_empty subst then SimplM.return_same c else ( let renaming = Subst.Renaming.none in let new_lits = Lits.apply_subst renaming subst (C.lits c, 0) in let proof = Proof.Step.simp ~rule:(Proof.Rule.mk "prune_arg_fun") ~tags:[Proof.Tag.T_ho] [C.proof_parent_subst renaming (c,0) subst] in let c' = C.create_a ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof in Util.debugf ~section 3 "@[<>@[%a@]@ @[<2>prune_arg_fun into@ @[%a@]@]@ with @[%a@]@]" (fun k->k C.pp c C.pp c' Subst.pp subst); SimplM.return_new c' ) (* TODO: Simplified flag like in first-order? Profiler?*) let setup () = if not (Env.flex_get k_enabled) then ( Util.debug ~section 1 "HO rules disabled"; ) else ( Util.debug ~section 1 "setup HO rules"; Env.Ctx.lost_completeness(); Env.add_unary_inf "ho_complete_eq" complete_eq_args; if Env.flex_get k_elim_pred_var then Env.add_unary_inf "ho_elim_pred_var" elim_pred_variable; if Env.flex_get k_ext_neg_lit then Env.add_lit_rule "ho_ext_neg_lit" ext_neg_lit; if Env.flex_get k_elim_leibniz_eq > 0 then ( Env.add_unary_inf "ho_elim_leibniz_eq" elim_leibniz_equality ); if Env.flex_get k_instantiate_choice_ax then ( Env.add_redundant recognize_choice_ops; Env.add_unary_inf "inst_choice" insantiate_choice; ); if Env.flex_get k_ext_pos then ( Env.add_unary_inf "ho_ext_pos" (ext_pos_general ~all_lits:(Env.flex_get k_ext_pos_all_lits)); ); (* removing unfolded clauses *) if Env.flex_get k_enable_def_unfold then ( Env.add_clause_conversion ( fun c -> match Statement.get_rw_rule c with | Some _ -> E.CR_drop | None -> E.CR_skip )); begin match Env.flex_get k_prune_arg_fun with | `PruneMaxCover -> Env.add_unary_simplify (prune_arg ~all_covers:false); | `PruneAllCovers -> Env.add_unary_simplify (prune_arg ~all_covers:true); | `OldPrune -> Env.add_unary_simplify prune_arg_old; | `NoPrune -> (); end; let ho_norm = (fun t -> t |> beta_reduce |> ( fun opt -> match opt with None -> eta_normalize t | Some t' -> match eta_normalize t' with None -> Some t' | Some tt -> Some tt)) in Env.set_ho_normalization_rule ho_norm; Ordering.normalize := (fun t -> CCOpt.get_or ~default:t (ho_norm t)); if(Env.flex_get k_neg_cong_fun) then ( Env.add_unary_inf "neg_cong_fun" neg_cong_fun ); if(Env.flex_get k_neg_ext) then ( Env.add_unary_inf "neg_ext" neg_ext ) else if(Env.flex_get k_neg_ext_as_simpl) then ( Env.add_unary_simplify neg_ext_simpl; ); if Env.flex_get k_enable_ho_unif then ( Env.add_unary_inf "ho_unif" ho_unif; ); begin match Env.flex_get k_ho_prim_mode with | `None -> () | mode -> Env.add_unary_inf "ho_prim_enum" (prim_enum ~mode); end; if Env.flex_get k_ext_axiom then Env.ProofState.PassiveSet.add (Iter.singleton extensionality_clause); if Env.flex_get k_choice_axiom then Env.ProofState.PassiveSet.add (Iter.singleton choice_clause); ); () end let enabled_ = ref true let def_unfold_enabled_ = ref false let force_enabled_ = ref false let enable_unif_ = ref false (* this unification seems very buggy, had to turn it off *) let prim_mode_ = ref `Neg let prim_max_penalty = ref 1 (* FUDGE *) let set_prim_mode_ = let l = [ "neg", `Neg; "full", `Full; "pragmatic", `Pragmatic; "tf", `TF; "none", `None; ] in let set_ s = prim_mode_ := List.assoc s l in Arg.Symbol (List.map fst l, set_) let st_contains_ho (st:(_,_,_) Statement.t): bool = let is_non_atomic_ty ty = let n_ty_vars, args, _ = Type.open_poly_fun ty in n_ty_vars > 0 || args<>[] in (* is there a HO variable? *) let has_ho_var () = Statement.Seq.terms st |> Iter.flat_map T.Seq.vars |> Iter.exists (fun v -> is_non_atomic_ty (HVar.ty v)) (* is there a HO symbol? *) and has_ho_sym () = Statement.Seq.ty_decls st |> Iter.exists (fun (_,ty) -> Type.order ty > 1) and has_ho_eq() = Statement.Seq.forms st |> Iter.exists (fun c -> c |> List.exists (function | SLiteral.Eq (t,u) | SLiteral.Neq (t,u) -> T.is_ho_at_root t || T.is_ho_at_root u || is_non_atomic_ty (T.ty t) | _ -> false)) in has_ho_sym () || has_ho_var () || has_ho_eq() let _ext_pos = ref true let _ext_pos_all_lits = ref false let _ext_axiom = ref false let _choice_axiom = ref false let _elim_pred_var = ref true let _ext_neg_lit = ref false let _neg_ext = ref true let _neg_ext_as_simpl = ref false let _ext_axiom_penalty = ref 5 let _huet_style = ref false let _cons_elim = ref true let _imit_first = ref false let _compose_subs = ref false let _var_solve = ref false let _neg_cong_fun = ref false let _instantiate_choice_ax = ref false let _elim_leibniz_eq = ref (-1) let _unif_max_depth = ref 11 let _prune_arg_fun = ref `NoPrune let prim_enum_terms = ref Term.Set.empty let extension = let register env = let module E = (val env : Env.S) in E.flex_add k_ext_pos !_ext_pos; E.flex_add k_ext_pos_all_lits !_ext_pos_all_lits; E.flex_add k_ext_axiom !_ext_axiom; E.flex_add k_choice_axiom !_choice_axiom; E.flex_add k_elim_pred_var !_elim_pred_var; E.flex_add k_ext_neg_lit !_ext_neg_lit; E.flex_add k_neg_ext !_neg_ext; E.flex_add k_neg_ext_as_simpl !_neg_ext_as_simpl; E.flex_add k_ext_axiom_penalty !_ext_axiom_penalty; E.flex_add k_neg_cong_fun !_neg_cong_fun; E.flex_add k_instantiate_choice_ax !_instantiate_choice_ax; E.flex_add k_elim_leibniz_eq !_elim_leibniz_eq; E.flex_add k_unif_max_depth !_unif_max_depth; E.flex_add k_prune_arg_fun !_prune_arg_fun; E.flex_add k_prim_enum_terms prim_enum_terms; if E.flex_get k_some_ho || !force_enabled_ then ( let module ET = Make(E) in ET.setup () ) (* check if there are HO variables *) and check_ho vec state = let is_ho = CCVector.to_seq vec |> Iter.exists st_contains_ho in if is_ho then ( Util.debug ~section 2 "problem is HO" ); if !def_unfold_enabled_ then ( (* let new_vec = *) CCVector.iter (fun c -> match Statement.get_rw_rule c with Some (sym, r) -> Util.debugf ~section 1 "@[<2> Adding constant def rule: `@[%a@]`@]" (fun k->k Rewrite.Rule.pp r); Rewrite.Defined_cst.declare_or_add sym r; | _ -> ()) vec (*vec in*) ); state |> Flex_state.add k_some_ho is_ho |> Flex_state.add k_enabled !enabled_ |> Flex_state.add k_enable_def_unfold !def_unfold_enabled_ |> Flex_state.add k_enable_ho_unif (!enabled_ && !enable_unif_) |> Flex_state.add k_ho_prim_mode (if !enabled_ then !prim_mode_ else `None) |> Flex_state.add k_ho_prim_max_penalty !prim_max_penalty in { Extensions.default with Extensions.name = "ho"; post_cnf_actions=[check_ho]; env_actions=[register]; } let () = Options.add_opts [ "--ho", Arg.Bool (fun b -> enabled_ := b), " enable/disable HO reasoning"; "--force-ho", Arg.Bool (fun b -> force_enabled_ := b), " enable/disable HO reasoning even if the problem is first-order"; "--ho-unif", Arg.Bool (fun v -> enable_unif_ := v), " enable full HO unification"; "--ho-neg-cong-fun", Arg.Bool (fun v -> _neg_cong_fun := v), "enable NegCongFun"; "--ho-elim-pred-var", Arg.Bool (fun b -> _elim_pred_var := b), " disable predicate variable elimination"; "--ho-prim-enum", set_prim_mode_, " set HO primitive enum mode"; "--ho-prim-max", Arg.Set_int prim_max_penalty, " max penalty for HO primitive enum"; "--ho-ext-axiom", Arg.Bool (fun v -> _ext_axiom := v), " enable/disable extensionality axiom"; "--ho-choice-axiom", Arg.Bool (fun v -> _choice_axiom := v), " enable choice axiom"; "--ho-ext-pos", Arg.Bool (fun v -> _ext_pos := v), " enable/disable positive extensionality rule"; "--ho-neg-ext", Arg.Bool (fun v -> _neg_ext := v), " turn NegExt on or off"; "--ho-neg-ext-simpl", Arg.Bool (fun v -> _neg_ext_as_simpl := v), " turn NegExt as simplification rule on or off"; "--ho-ext-pos-all-lits", Arg.Bool (fun v -> _ext_pos_all_lits := v), " turn ExtPos on for all or only eligible literals"; "--ho-prune-arg", Arg.Symbol (["all-covers"; "max-covers"; "old-prune"; "off"], (fun s -> if s = "all-covers" then _prune_arg_fun := `PruneAllCovers else if s = "max-covers" then _prune_arg_fun := `PruneMaxCover else if s = "old-prune" then _prune_arg_fun := `OldPrune else _prune_arg_fun := `NoPrune)), " choose arg prune mode"; "--ho-ext-neg-lit", Arg.Bool (fun v -> _ext_neg_lit := v), " enable/disable negative extensionality rule on literal level [?]"; "--ho-elim-leibniz", Arg.Int (fun v -> _elim_leibniz_eq := v), " enable/disable treatment of Leibniz equality"; "--ho-def-unfold", Arg.Bool (fun v -> def_unfold_enabled_ := v), " enable ho definition unfolding"; "--ho-choice-inst", Arg.Bool (fun v -> _instantiate_choice_ax := v), " enable ho definition unfolding"; "--ho-ext-axiom-penalty", Arg.Int (fun p -> _ext_axiom_penalty := p), " penalty for extensionality axiom"; ]; Params.add_to_mode "ho-complete-basic" (fun () -> enabled_ := true; def_unfold_enabled_ := false; force_enabled_ := true; _ext_axiom := true; _ext_neg_lit := false; _neg_ext := false; _neg_ext_as_simpl := false; _ext_pos := true; _ext_pos_all_lits := false; prim_mode_ := `None; _elim_pred_var := false; _neg_cong_fun := false; enable_unif_ := false; _prune_arg_fun := `PruneMaxCover; ); Params.add_to_mode "ho-pragmatic" (fun () -> enabled_ := true; def_unfold_enabled_ := false; force_enabled_ := true; _ext_axiom := false; _ext_neg_lit := false; _neg_ext := true; _neg_ext_as_simpl := false; _ext_pos := true; _ext_pos_all_lits := true; prim_mode_ := `None; _elim_pred_var := true; _neg_cong_fun := false; enable_unif_ := false; _prune_arg_fun := `PruneMaxCover; ); Params.add_to_mode "ho-competitive" (fun () -> enabled_ := true; def_unfold_enabled_ := true; force_enabled_ := true; _ext_axiom := false; _ext_neg_lit := false; _neg_ext := true; _neg_ext_as_simpl := false; _ext_pos := true; _ext_pos_all_lits := true; prim_mode_ := `None; _elim_pred_var := true; _neg_cong_fun := false; enable_unif_ := false; _prune_arg_fun := `PruneMaxCover; ); Params.add_to_mode "fo-complete-basic" (fun () -> enabled_ := false; ); Extensions.register extension;
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>