package libzipperposition
Library for Zipperposition
Install
Dune Dependency
Authors
Maintainers
Sources
1.6.tar.gz
md5=97cdb2f90468e9e27c7bbe3b4fb160bb
sha512=fee73369f673a91dfa9e265fc69be08b32235e10a495f3af6477d404fcd01e3452a0d012b150f3d7f97c00af2f6045019ad039164bf698f70d771231cc4efe5d
doc/src/libzipperposition.calculi/booleans.ml.html
Source file booleans.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
(* This file is free software, part of Zipperposition. See file "license" for more details. *) (** {1 boolean subterms} *) open Logtk open Libzipperposition module T = Term type selection_setting = Any | Minimal | Large type reasoning_kind = BoolReasoningDisabled | BoolCasesInference | BoolCasesSimplification | BoolCasesKeepParent | BoolCasesEagerFar | BoolCasesEagerNear let section = Util.Section.make ~parent:Const.section "booleans" let k_bool_reasoning = Flex_state.create_key () let k_cased_term_selection = Flex_state.create_key () let k_quant_rename = Flex_state.create_key () let k_interpret_bool_funs = Flex_state.create_key () let k_cnf_non_simpl = Flex_state.create_key () let k_norm_bools = Flex_state.create_key () let k_solve_formulas = Flex_state.create_key () module type S = sig module Env : Env.S module C : module type of Env.C (** {6 Registration} *) val setup : unit -> unit (** Register rules in the environment *) end module Make(E : Env.S) : S with module Env = E = struct module Env = E module C = Env.C module Ctx = Env.Ctx module Fool = Fool.Make(Env) let (=~),(/~) = Literal.mk_eq, Literal.mk_neq let (@:) = T.app_builtin ~ty:Type.prop let no a = a =~ T.false_ let yes a = a =~ T.true_ let imply a b = Builtin.Imply @: [a;b] let const_true p = T.fun_ (List.hd @@ fst @@ Type.open_fun (T.ty p)) T.true_ let true_not_false = [T.true_ /~ T.false_] let true_or_false a = [yes a; a =~ T.false_] let imp_true1 a b = [yes a; yes(imply a b)] let imp_true2 a b = [no b; yes(imply a b)] let imp_false a b = [no(imply a b); no a; yes b] let all_true p = [p /~ const_true p; yes(Builtin.ForallConst@:[p])] let all_false p = [no(Builtin.ForallConst@:[p]); p =~ const_true p] let eq_true x y = [x/~y; yes(Builtin.Eq@:[x;y])] let eq_false x y = [no(Builtin.Eq@:[x;y]); x=~y] let and_ a b = [Builtin.And @: [a;b] =~ imply (imply a (imply b T.false_)) T.false_] let or_ a b = [Builtin.Or @: [a;b] =~ imply (imply a T.false_) b] let and_true a = [Builtin.And @: [T.true_; a] =~ a] let and_false a = [Builtin.And @: [T.false_; a] =~ T.false_] let exists t = let t2bool = Type.arrow [t] Type.prop in [T.app_builtin ~ty:(Type.arrow [t2bool] Type.prop) Builtin.ExistsConst [] =~ T.fun_ t2bool (Builtin.Not @:[Builtin.ForallConst @:[T.fun_ t (Builtin.Not @:[T.app (T.bvar t2bool 1) [T.bvar t 0]])]])] let as_clause c = Env.C.create ~penalty:1 ~trail:Trail.empty c Proof.Step.trivial let create_clauses () = let a = T.var (HVar.make ~ty:Type.prop 0) in [ [Builtin.And @:[T.true_; a] =~ a]; [Builtin.And @:[T.false_; a] =~ T.false_]; [Builtin.Or @:[T.true_; a] =~ T.true_]; [Builtin.Or @:[T.false_; a] =~ a]; [Builtin.Imply @:[T.true_; a] =~ a]; [Builtin.Imply @:[T.false_; a] =~ T.true_]; [Builtin.Not @:[T.true_] =~ T.false_]; [Builtin.Not @:[T.false_] =~ T.true_]; ] |> List.map as_clause |> Iter.of_list let bool_cases(c: C.t) : C.t list = let term_as_true = Term.Tbl.create 8 in let term_as_false = Term.Tbl.create 4 in let cased_term_selection = Env.flex_get k_cased_term_selection in let rec find_bools top t = let can_be_cased = Type.is_prop(T.ty t) && T.DB.is_closed t && (not top || (* It is useful to case top level equality like 𝘵𝘦𝘳𝘮𝘴 because these are simplified into 𝘭𝘪𝘵𝘦𝘳𝘢𝘭𝘴. *) match T.view t with AppBuiltin((Eq|Neq|Equiv|Xor),_) -> true | _ -> false) in let is_quant = match T.view t with | AppBuiltin(b,_) -> Builtin.equal b Builtin.ForallConst || Builtin.equal b Builtin.ExistsConst | _ -> false in (* Add only propositions. *) let add = if can_be_cased then Term.Tbl.add term_as_true else fun _ _ -> () in let yes = if can_be_cased then yes else fun _ -> yes T.true_ in (* Stop recursion in combination of certain settings. *) let inner f x = if is_quant || can_be_cased && cased_term_selection = Large then () else List.iter(f false) x in match T.view t with | DB _ | Var _ -> () | Const _ -> add t (yes t) | Fun(_,b) -> find_bools false b | App(f,ps) -> add t (yes t); inner find_bools (f::ps) | AppBuiltin(f,ps) -> inner find_bools ps; match f with | Builtin.True | Builtin.False -> () | Builtin.Eq | Builtin.Neq | Builtin.Equiv | Builtin.Xor -> begin match ps with | [x;y] when (cased_term_selection != Minimal || Type.is_prop(T.ty x)) -> if f = Builtin.Neq || f = Builtin.Xor then( if can_be_cased then Term.Tbl.add term_as_false t (x =~ y); add t (x /~ y)) else add t (x =~ y) | _ -> () end | Builtin.And | Builtin.Or | Builtin.Imply | Builtin.Not -> if cased_term_selection != Minimal then add t (yes t) else() | _ -> add t (yes t) in Literals.Seq.terms(C.lits c) |> Iter.iter(find_bools true); let case polarity b b_lit clauses = let proof = Proof.Step.inference[C.proof_parent c] ~rule:(Proof.Rule.mk"bool_cases") ~tags:[Proof.Tag.T_ho] in C.create ~trail:(C.trail c) ~penalty:(C.penalty c) (b_lit :: Array.to_list(C.lits c |> Literals.map(T.replace ~old:b ~by:polarity))) proof :: clauses in Term.Tbl.fold(case T.false_) term_as_true [] @ Term.Tbl.fold(case T.true_) term_as_false [] let bool_case_simp(c: C.t) : C.t list option = let term_to_equations = Term.Tbl.create 8 in let cased_term_selection = Env.flex_get k_cased_term_selection in let rec find_bools top t = let can_be_cased = Type.is_prop(T.ty t) && T.DB.is_closed t && (not top || (* It is useful to case top level equality like 𝘵𝘦𝘳𝘮𝘴 because these are simplified into 𝘭𝘪𝘵𝘦𝘳𝘢𝘭𝘴. *) match T.view t with AppBuiltin((Eq|Neq|Equiv|Xor),_) -> true | _ -> false) in let is_quant = match T.view t with | AppBuiltin(b,_) -> Builtin.equal b Builtin.ForallConst || Builtin.equal b Builtin.ExistsConst | _ -> false in (* Add only propositions. *) let add t x y = if can_be_cased then Term.Tbl.add term_to_equations t (x=~y, x/~y) in (* Stop recursion in combination of certain settings. *) let inner f x = if is_quant || (can_be_cased && cased_term_selection = Large) then () else List.iter(f false) x in match T.view t with | DB _ | Var _ -> () | Const _ -> add t t T.true_ | Fun(_,b) -> find_bools false b | App(f,ps) -> add t t T.true_; inner find_bools (f::ps) | AppBuiltin(f,ps) -> inner find_bools ps; match f with | Builtin.True | Builtin.False -> () | Builtin.Eq | Builtin.Neq | Builtin.Equiv | Builtin.Xor -> (match ps with | [_;x;y] | [x;y] when (cased_term_selection != Minimal || Type.is_prop(T.ty x)) -> add t x y; if (f = Builtin.Neq || f = Builtin.Xor) && can_be_cased then Term.Tbl.replace term_to_equations t (Term.Tbl.find term_to_equations t |> CCPair.swap) | _ -> ()) | Builtin.And | Builtin.Or | Builtin.Imply | Builtin.Not -> if cased_term_selection != Minimal then add t t T.true_ else() | _ -> add t t T.true_ in if not @@ Iter.exists T.is_formula (C.Seq.terms c) then ( (* first clausify, then get bool subterms *) Literals.Seq.terms(C.lits c) |> Iter.iter(find_bools true)); let res = Term.Tbl.fold(fun b (b_true, b_false) clauses -> if cased_term_selection != Minimal || Term.Seq.subterms b |> Iter.for_all (fun st -> T.equal b st || not (Type.is_prop (T.ty st))) then ( let proof = Proof.Step.simp[C.proof_parent c] ~rule:(Proof.Rule.mk"bool_case_simp") ~tags:[Proof.Tag.T_ho] in C.create ~trail:(C.trail c) ~penalty:(C.penalty c) (b_true :: Array.to_list(C.lits c |> Literals.map(T.replace ~old:b ~by:T.false_))) proof :: C.create ~trail:(C.trail c) ~penalty:(C.penalty c) (b_false :: Array.to_list(C.lits c |> Literals.map(T.replace ~old:b ~by:T.true_))) proof :: clauses) else clauses) term_to_equations [] in if CCList.is_empty res then None else ( (* CCFormat.printf "bool case simp: %a.\n" C.pp c; *) (* CCList.iteri (fun i nc -> CCFormat.printf "@[%d: @[%a@]@].\n" i C.pp nc) res; *) Some res) let simpl_bool_subterms c = let new_lits = Literals.map T.simplify_bools (C.lits c) in if Literals.equal (C.lits c) new_lits then ( SimplM.return_same c ) else ( let proof = Proof.Step.simp [C.proof_parent c] ~rule:(Proof.Rule.mk "simplify boolean subterms") in let new_ = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) (Array.to_list new_lits) proof in SimplM.return_new new_ ) let normalize_bool_terms c = let new_lits = Literals.map T.normalize_bools (C.lits c) in if Literals.equal (C.lits c) new_lits then ( SimplM.return_same c ) else ( let proof = Proof.Step.simp [C.proof_parent c] ~rule:(Proof.Rule.mk "normalize subterms") in let new_ = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) (Array.to_list new_lits) proof in SimplM.return_new new_ ) let normalize_equalities c = let lits = Array.to_list (C.lits c) in let normalized = List.map Literal.normalize_eq lits in if List.exists CCOpt.is_some normalized then ( let new_lits = List.mapi (fun i l_opt -> CCOpt.get_or ~default:(Array.get (C.lits c) i) l_opt) normalized in let proof = Proof.Step.inference [C.proof_parent c] ~rule:(Proof.Rule.mk "simplify nested equalities") in let new_c = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) new_lits proof in SimplM.return_new new_c ) else ( SimplM.return_same c ) let cnf_otf c : C.t list option = let idx = CCArray.find_idx (fun l -> let eq = Literal.View.as_eqn l in match eq with | Some (l,r,sign) -> Type.is_prop (T.ty l) && ((not (T.equal r T.true_) && not (T.equal r T.false_)) || T.is_formula l || T.is_formula r) | None -> false ) (C.lits c) in let renaming_weight = 40 in let max_formula_weight = C.Seq.terms c |> Iter.filter T.is_formula |> Iter.map T.size |> Iter.max in let opts = match max_formula_weight with | None -> [Cnf.DisableRenaming] | Some m -> if m < renaming_weight then [Cnf.DisableRenaming] else [] in match idx with | Some _ -> let f = Literals.Conv.to_tst (C.lits c) in let proof = Proof.Step.simp ~rule:(Proof.Rule.mk "cnf_otf") ~tags:[Proof.Tag.T_ho] [C.proof_parent c] in let trail = C.trail c and penalty = C.penalty c in let stmt = Statement.assert_ ~proof f in let cnf_vec = Cnf.convert @@ CCVector.to_seq @@ Cnf.cnf_of ~opts ~ctx:(Ctx.sk_ctx ()) stmt in CCVector.iter (fun cl -> Statement.Seq.ty_decls cl |> Iter.iter (fun (id,ty) -> Ctx.declare id ty)) cnf_vec; let clauses = CCVector.map (C.of_statement ~convert_defs:true) cnf_vec |> CCVector.to_list |> CCList.flatten |> List.map (fun c -> C.create ~penalty ~trail (CCArray.to_list (C.lits c)) proof) in List.iteri (fun i new_c -> assert((C.proof_depth c) <= C.proof_depth new_c);) clauses; Some clauses | None -> None let cnf_infer cl = CCOpt.get_or ~default:[] (cnf_otf cl) let interpret_boolean_functions c = (* Collects boolean functions only at top level, and not the ones that are already a part of the quantifier *) let collect_tl_bool_funcs t k = let rec aux t = match T.view t with | Var _ | Const _ | DB _ -> () | Fun _ -> if Type.is_prop (Term.ty (snd @@ Term.open_fun t)) then k t | App (f, l) -> aux f; List.iter aux l | AppBuiltin (b,l) -> if not @@ Builtin.is_quantifier b then List.iter aux l in aux t in let interpret t i = let ty_args, body = T.open_fun t in assert(Type.is_prop (Term.ty body)); T.fun_l ty_args i in let negate_bool_fun bool_fun = let ty_args, body = T.open_fun bool_fun in assert(Type.is_prop (Term.ty body)); T.fun_l ty_args (T.Form.not_ body) in Iter.flat_map collect_tl_bool_funcs (C.Seq.terms c |> Iter.filter (fun t -> not @@ T.is_fun t)) |> Iter.sort_uniq ~cmp:Term.compare |> Iter.filter (fun t -> let cached_t = Subst.FO.canonize_all_vars t in not (Term.Set.mem cached_t !Higher_order.prim_enum_terms)) |> Iter.fold (fun res t -> assert(T.DB.is_closed t); let proof = Proof.Step.inference[C.proof_parent c] ~rule:(Proof.Rule.mk"interpret boolean function") ~tags:[Proof.Tag.T_ho] in let as_forall = Literal.mk_prop (T.Form.forall t) false in let as_neg_forall = Literal.mk_prop (T.Form.forall (negate_bool_fun t)) false in let forall_cl = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) (as_forall :: Array.to_list(C.lits c |> Literals.map(T.replace ~old:t ~by:(interpret t T.true_)))) proof in let forall_neg_cl = C.create ~trail:(C.trail c) ~penalty:(C.penalty c) (as_neg_forall :: Array.to_list(C.lits c |> Literals.map(T.replace ~old:t ~by:(interpret t T.false_)))) proof in Util.debugf ~section 1 "interpret bool: %a !!> %a.\n" (fun k -> k C.pp c C.pp forall_cl); Util.debugf ~section 1 "interpret bool: %a !!~> %a.\n" (fun k -> k C.pp c C.pp forall_neg_cl); forall_cl :: forall_neg_cl :: res ) [] let solve_bool_formulas cl = let module PUnif = PUnif.Make(struct let st = Env.flex_state () end) in let unifiers = CCList.flat_map (fun literal -> match literal with | Literal.Equation(lhs, rhs, false) when Type.is_prop (Term.ty lhs) -> PUnif.unify_scoped (lhs,0) (rhs,0) |> OSeq.filter_map CCFun.id |> OSeq.to_list | _ -> [] ) (CCArray.to_list (C.lits cl)) in if CCList.is_empty unifiers then None else Some (List.map (fun subst -> let subst = Unif_subst.subst subst in C.apply_subst (cl,0) subst) unifiers) let setup () = match Env.flex_get k_bool_reasoning with | BoolReasoningDisabled -> () | _ -> (* Env.ProofState.PassiveSet.add (create_clauses ()); *) Env.add_basic_simplify simpl_bool_subterms; Env.add_basic_simplify normalize_equalities; if Env.flex_get k_norm_bools then ( Env.add_basic_simplify normalize_bool_terms ); Env.add_multi_simpl_rule Fool.rw_bool_lits; if Env.flex_get k_cnf_non_simpl then ( Env.add_unary_inf "cnf otf inf" cnf_infer; ) else Env.add_multi_simpl_rule cnf_otf; if Env.flex_get k_solve_formulas then ( Env.add_multi_simpl_rule solve_bool_formulas ); if (Env.flex_get k_interpret_bool_funs) then ( Env.add_unary_inf "interpret boolean functions" interpret_boolean_functions; ); if Env.flex_get k_bool_reasoning = BoolCasesInference then ( Env.add_unary_inf "bool_cases" bool_cases; ) else if Env.flex_get k_bool_reasoning = BoolCasesSimplification then ( Env.set_single_step_multi_simpl_rule bool_case_simp; ) else if Env.flex_get k_bool_reasoning = BoolCasesKeepParent then ( let keep_parent c = CCOpt.get_or ~default:[] (bool_case_simp c) in Env.add_unary_inf "bool_cases_keep_parent" keep_parent; ) end open CCFun open Builtin open Statement open TypedSTerm open CCList let if_changed proof (mk: ?attrs:Logtk.Statement.attrs -> 'r) s f p = let fp = f s p in if fp = [p] then [s] else map(fun x -> mk ~proof:(proof s) x) fp let map_propositions ~proof f = CCVector.flat_map_list(fun s -> match Statement.view s with | Assert p -> if_changed proof assert_ s f p | Lemma ps -> if_changed proof lemma s (map%f) ps | Goal p -> if_changed proof goal s f p | NegatedGoal(ts, ps) -> if_changed proof (neg_goal ~skolems:ts) s (map%f) ps | _ -> [s] ) let is_bool t = CCOpt.equal Ty.equal (Some prop) (ty t) let is_T_F t = match view t with AppBuiltin((True|False),[]) -> true | _ -> false (* Modify every subterm of t by f except those at the "top". Here top is true if subterm occures under a quantifier Æ in a context where it could participate to the clausification if the surrounding context of Æ was ignored. *) let rec replaceTST f top t = let re = replaceTST f in let ty = ty_exn t in let transformer = if top then id else f in transformer (match view t with | App(t,ts) -> app_whnf ~ty (re false t) (map (re false) ts) | Ite(c,x,y) -> ite (re false c) (re false x) (re false y) | Match(t, cases) -> match_ (re false t) (map (fun (c,vs,e) -> (c,vs, re false e)) cases) | Let(binds, expr) -> let_ (map(CCPair.map2 (re false)) binds) (re false expr) | Bind(b,x,t) -> let top = Binder.equal b Binder.Forall || Binder.equal b Binder.Exists in bind ~ty b x (re top t) | AppBuiltin(b,ts) -> let logical = for_all is_bool ts in app_builtin ~ty b (map (re(top && logical)) ts) | Multiset ts -> multiset ~ty (map (re false) ts) | _ -> t) let name_quantifiers stmts = let proof s = Proof.Step.esa [Proof.Parent.from(Statement.as_proof_i s)] ~rule:(Proof.Rule.mk "Quantifier naming") in let new_stmts = CCVector.create() in let changed = ref false in let if_changed (mk: ?attrs:Logtk.Statement.attrs -> 'r) s r = if !changed then (changed := false; mk ~proof:(proof s) r) else s in let if_changed_list (mk: ?attrs:Logtk.Statement.attrs -> 'l) s r = if !changed then (changed := false; mk ~proof:(proof s) r) else s in let name_prop_Qs s = replaceTST(fun t -> match TypedSTerm.view t with | Bind(Binder.Forall,_,_) | Bind(Binder.Exists, _, _) -> changed := true; let vars = Var.Set.of_seq (TypedSTerm.Seq.free_vars t) |> Var.Set.to_list in let qid = ID.gensym() in let ty = app_builtin ~ty:tType Arrow (prop :: map Var.ty vars) in let q = const ~ty qid in let q_vars = app ~ty:prop q (map var vars) in let proof = Proof.Step.define_internal qid [Proof.Parent.from(Statement.as_proof_i s)] in let q_typedecl = ty_decl ~proof qid ty in let definition = (* ∀ vars: q[vars] ⇔ t, where t is a quantifier formula and q is a new name for it. *) bind_list ~ty:prop Binder.Forall vars (app_builtin ~ty:prop Builtin.Equiv [q_vars; t]) in CCVector.push new_stmts q_typedecl; CCVector.push new_stmts (assert_ ~proof definition); q_vars | _ -> t) true in stmts |> CCVector.map(fun s -> match Statement.view s with | TyDecl(id,t) -> s | Data ts -> s | Def defs -> s | Rewrite _ -> s | Assert p -> if_changed assert_ s (name_prop_Qs s p) | Lemma ps -> if_changed_list lemma s (map (name_prop_Qs s) ps) | Goal p -> if_changed goal s (name_prop_Qs s p) | NegatedGoal(ts, ps) -> if_changed_list (neg_goal ~skolems:ts) s (map (name_prop_Qs s) ps) ) |> CCVector.append new_stmts; CCVector.freeze new_stmts let rec replace old by t = let r = replace old by in let ty = ty_exn t in if TypedSTerm.equal t old then by else match view t with | App(f,ps) -> app_whnf ~ty (r f) (map r ps) | AppBuiltin(f,ps) -> app_builtin ~ty f (map r ps) | Ite(c,x,y) -> ite (r c) (r x) (r y) | Let(bs,e) -> let_ (map (CCPair.map2 r) bs) (r e) | Bind(b,v,e) -> bind ~ty b v (r e) | _ -> t exception Return of TypedSTerm.t (* If f _ s = Some r for a subterm s of t, then r else t. *) let with_subterm_or_id t f = try (Seq.subterms_with_bound t (fun(s, var_ctx) -> match f var_ctx s with | None -> () | Some r -> raise(Return r))); t with Return r -> r (* If p is non-constant subproposition closed wrt variables vs, then (p ⇒ c[p:=⊤]) ∧ (p ∨ c[p:=⊥]) or else c unmodified. *) let case_bool vs c p = if is_bool p && not(is_T_F p) && p!=c && Var.Set.is_empty(Var.Set.diff (free_vars_set p) vs) then let ty = prop in app_builtin ~ty And [ app_builtin ~ty Imply [p; replace p Form.true_ c]; app_builtin ~ty Or [p; replace p Form.false_ c]; ] else c (* Apply repeatedly the transformation t[p] ↦ (p ⇒ t[⊤]) ∧ (¬p ⇒ t[⊥]) for each boolean parameter p≠⊤,⊥ that is closed in context where variables vs are bound. *) let rec case_bools_wrt vs t = with_subterm_or_id t (fun _ s -> match view s with | App(f,ps) -> let t' = fold_left (case_bool vs) t ps in if t==t' then None else Some(case_bools_wrt vs t') | _ -> None ) let eager_cases_far = let proof s = Proof.Step.esa [Proof.Parent.from(Statement.as_proof_i s)] ~rule:(Proof.Rule.mk "eager_cases_far") in map_propositions ~proof (fun _ t -> [with_subterm_or_id t (fun vs s -> match view s with | Bind((Forall|Exists) as q, v, b) -> let b' = case_bools_wrt (Var.Set.add vs v) b in if b==b' then None else Some(replace s (bind ~ty:prop q v b') t) | _ -> None) |> case_bools_wrt Var.Set.empty]) let eager_cases_near = let proof s = Proof.Step.esa [Proof.Parent.from(Statement.as_proof_i s)] ~rule:(Proof.Rule.mk "eager_cases_near") in let rec case_near t = with_subterm_or_id t (fun vs s -> match view s with | AppBuiltin((And|Or|Imply|Not|Equiv|Xor|ForallConst|ExistsConst),_) | Bind((Forall|Exists),_,_) -> None | AppBuiltin((Eq|Neq), [x;y]) when is_bool x -> None | _ when is_bool s -> let s' = case_bool vs s (with_subterm_or_id s (fun _ -> CCOpt.if_(fun x -> x!=s && is_bool x && not(is_T_F x)))) in if s==s' then None else Some(case_near(replace s s' t)) | _ -> None) in map_propositions ~proof (fun _ p -> [case_near p]) open Term let post_eager_cases = let proof s = Proof.Step.esa [Proof.Parent.from(Statement.as_proof_c s)] ~rule:(Proof.Rule.mk "post_eager_cases") in map_propositions ~proof (fun _ c -> let cased = ref Set.empty in fold_left(SLiteral.fold(fun res -> (* Loop over subterms of terms of literals of a clause. *) Seq.subterms_depth %> Iter.fold(fun res (s,d) -> if d = 0 || not(Type.is_prop(ty s)) || is_true_or_false s || is_var s || Set.mem s !cased then res else( cased := Set.add s !cased; let replace_s_by by = map(SLiteral.map ~f:(replace ~old:s ~by)) in flatten(map(fun c -> [ SLiteral.atom_true s :: replace_s_by false_ c; SLiteral.atom_false s :: replace_s_by true_ c ]) res)) ) res )) [c] c) let _bool_reasoning = ref BoolReasoningDisabled let _quant_rename = ref false (* These two options run before CNF, so (for now it is impossible to move them to Env since it is not even made at the moment) *) let preprocess_booleans stmts = (match !_bool_reasoning with | BoolCasesEagerFar -> eager_cases_far | BoolCasesEagerNear -> eager_cases_near | _ -> id ) (if !_quant_rename then name_quantifiers stmts else stmts) let preprocess_cnf_booleans stmts = match !_bool_reasoning with | BoolCasesEagerFar | BoolCasesEagerNear -> post_eager_cases stmts | _ -> stmts let _cased_term_selection = ref Large let _interpret_bool_funs = ref false let _cnf_non_simpl = ref false let _norm_bools = ref false let _solve_formulas = ref false let extension = let register env = let module E = (val env : Env.S) in let module ET = Make(E) in E.flex_add k_bool_reasoning !_bool_reasoning; E.flex_add k_cased_term_selection !_cased_term_selection; E.flex_add k_quant_rename !_quant_rename; E.flex_add k_interpret_bool_funs !_interpret_bool_funs; E.flex_add k_cnf_non_simpl !_cnf_non_simpl; E.flex_add k_norm_bools !_norm_bools; E.flex_add k_solve_formulas !_solve_formulas; ET.setup () in { Extensions.default with Extensions.name = "bool"; env_actions=[register]; } let () = Options.add_opts [ "--boolean-reasoning", Arg.Symbol (["off"; "cases-inf"; "cases-simpl"; "cases-simpl-kp"; "cases-eager"; "cases-eager-near"], fun s -> _bool_reasoning := match s with | "off" -> BoolReasoningDisabled | "cases-inf" -> BoolCasesInference | "cases-simpl" -> BoolCasesSimplification | "cases-simpl-kp" -> BoolCasesKeepParent | "cases-eager" -> BoolCasesEagerFar | "cases-eager-near" -> BoolCasesEagerNear | _ -> assert false), " enable/disable boolean axioms"; "--bool-subterm-selection", Arg.Symbol(["A"; "M"; "L"], (fun opt -> _cased_term_selection := match opt with "A"->Any | "M"->Minimal | "L"->Large | _ -> assert false)), " select boolean subterm selection criterion: A for any, M for minimal and L for large"; "--quantifier-renaming" , Arg.Bool (fun v -> _quant_rename := v) , " turn the quantifier renaming on or off"; "--disable-simplifying-cnf", Arg.Set _cnf_non_simpl, "implement cnf on-the-fly as an inference rule"; "--interpret-bool-funs" , Arg.Bool (fun v -> _interpret_bool_funs := v) , " turn interpretation of boolean functions as forall or negation of forall on or off"; "--normalize-bool-terms", Arg.Bool((fun v -> _norm_bools := v)), " normalize boolean subterms using their weight."; "--solve-formulas" , Arg.Bool (fun v -> _solve_formulas := v) , " solve phi != psi eagerly using unification, where phi and psi are formulas" ]; Params.add_to_mode "ho-complete-basic" (fun () -> _bool_reasoning := BoolReasoningDisabled ); Params.add_to_mode "fo-complete-basic" (fun () -> _bool_reasoning := BoolReasoningDisabled ); Extensions.register extension
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>