Source file sail_lib.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
module Big_int = Nat_big_num
module type BitType = sig
type t
val b0 : t
val b1 : t
end
type 'a return = { return : 'b. 'a -> 'b }
type 'za zoption = ZNone of unit | ZSome of 'za
let zint_forwards i = string_of_int (Big_int.to_int i)
let opt_trace = ref false
let trace_depth = ref 0
let random = ref false
let opt_cycle_limit = ref 0
let cycle_count_var = ref 0
let get_cycle_count () = Big_int.of_int !cycle_count_var
let cycle_count () = incr cycle_count_var
let cycle_limit_reached () =
incr cycle_count_var;
!opt_cycle_limit != 0 && !cycle_count_var >= !opt_cycle_limit
let sail_call (type t) (f : _ -> t) =
let module M = struct
exception Return of t
end in
let return = { return = (fun x -> raise (M.Return x)) } in
try f return with M.Return x -> x
let trace str =
if !opt_trace then begin
if !trace_depth < 0 then trace_depth := 0 else ();
prerr_endline (String.make (!trace_depth * 2) ' ' ^ str)
end
else ()
let trace_write name str = trace ("Write: " ^ name ^ " " ^ str)
let trace_read name str = trace ("Read: " ^ name ^ " " ^ str)
let sail_trace_call (type t) (name : string) (in_string : string) (string_of_out : t -> string) (f : _ -> t) =
let module M = struct
exception Return of t
end in
let return = { return = (fun x -> raise (M.Return x)) } in
trace ("Call: " ^ name ^ " " ^ in_string);
incr trace_depth;
let result = try f return with M.Return x -> x in
decr trace_depth;
trace ("Return: " ^ string_of_out result);
result
let trace_call str =
trace str;
incr trace_depth
type bit = B0 | B1
let eq_anything (a, b) = a = b
let eq_bit (a, b) = a = b
let and_bit = function B1, B1 -> B1 | _, _ -> B0
let or_bit = function B0, B0 -> B0 | _, _ -> B1
let xor_bit = function B1, B0 -> B1 | B0, B1 -> B1 | _, _ -> B0
let and_vec (xs, ys) =
assert (List.length xs = List.length ys);
List.map2 (fun x y -> and_bit (x, y)) xs ys
let and_bool (b1, b2) = b1 && b2
let or_vec (xs, ys) =
assert (List.length xs = List.length ys);
List.map2 (fun x y -> or_bit (x, y)) xs ys
let or_bool (b1, b2) = b1 || b2
let xor_vec (xs, ys) =
assert (List.length xs = List.length ys);
List.map2 (fun x y -> xor_bit (x, y)) xs ys
let xor_bool (b1, b2) = (b1 || b2) && b1 != b2
let undefined_bit () = if !random then if Random.bool () then B0 else B1 else B0
let undefined_bool () = if !random then Random.bool () else false
let rec undefined_vector (len, item) =
if Big_int.equal len Big_int.zero then [] else item :: undefined_vector (Big_int.sub len (Big_int.of_int 1), item)
let undefined_list _ = []
let undefined_bitvector len =
if Big_int.equal len Big_int.zero then [] else B0 :: undefined_vector (Big_int.sub len (Big_int.of_int 1), B0)
let undefined_string () = ""
let undefined_unit () = ()
let undefined_int () = if !random then Big_int.of_int (Random.int 0xFFFF) else Big_int.zero
let undefined_nat () = Big_int.zero
let undefined_range (lo, _) = lo
let internal_pick list = if !random then List.nth list (Random.int (List.length list)) else List.nth list 0
let eq_int (n, m) = Big_int.equal n m
let eq_bool ((x : bool), (y : bool)) : bool = x = y
let rec drop n xs = match (n, xs) with 0, xs -> xs | _, [] -> [] | n, _ :: xs -> drop (n - 1) xs
let rec take n xs = match (n, xs) with 0, _ -> [] | n, x :: xs -> x :: take (n - 1) xs | _, [] -> []
let count_leading_zeros xs =
let rec aux bs acc = match bs with B0 :: bs' -> aux bs' (acc + 1) | _ -> acc in
Big_int.of_int (aux xs 0)
let subrange (list, n, m) =
let n = Big_int.to_int n in
let m = Big_int.to_int m in
List.rev (take (n - (m - 1)) (drop m (List.rev list)))
let slice (list, n, m) =
let n = Big_int.to_int n in
let m = Big_int.to_int m in
List.rev (take m (drop n (List.rev list)))
let eq_list (xs, ys) = List.for_all2 (fun x y -> x = y) xs ys
let access (xs, n) = List.nth (List.rev xs) (Big_int.to_int n)
let append (xs, ys) = xs @ ys
let update (xs, n, x) =
let n = List.length xs - Big_int.to_int n - 1 in
take n xs @ [x] @ drop (n + 1) xs
let update_subrange (xs, n, _, ys) =
let rec aux xs o = function [] -> xs | y :: ys -> aux (update (xs, o, y)) (Big_int.sub o (Big_int.of_int 1)) ys in
aux xs n ys
let vector_truncate (xs, n) = List.rev (take (Big_int.to_int n) (List.rev xs))
let vector_truncateLSB (xs, n) = take (Big_int.to_int n) xs
let length xs = Big_int.of_int (List.length xs)
let big_int_of_bit = function B0 -> Big_int.zero | B1 -> Big_int.of_int 1
let uint xs =
let uint_bit x (n, pos) =
(Big_int.add n (Big_int.mul (Big_int.pow_int_positive 2 pos) (big_int_of_bit x)), pos + 1)
in
fst (List.fold_right uint_bit xs (Big_int.zero, 0))
let sint = function
| [] -> Big_int.zero
| [msb] -> Big_int.negate (big_int_of_bit msb)
| msb :: xs ->
let msb_pos = List.length xs in
let complement = Big_int.negate (Big_int.mul (Big_int.pow_int_positive 2 msb_pos) (big_int_of_bit msb)) in
Big_int.add complement (uint xs)
let add_int (x, y) = Big_int.add x y
let sub_int (x, y) = Big_int.sub x y
let sub_nat (x, y) =
let z = Big_int.sub x y in
if Big_int.less z Big_int.zero then Big_int.zero else z
let mult (x, y) = Big_int.mul x y
let quotient (x, y) = Big_int.div x y
let quot_round_zero (x, y) = Big_int.integerDiv_t x y
let rem_round_zero (x, y) = Big_int.integerRem_t x y
let modulus (x, y) = Big_int.modulus x y
let negate x = Big_int.negate x
let tdiv_int (x, y) = Big_int.integerDiv_t x y
let tmod_int (x, y) = Big_int.integerRem_t x y
let add_bit_with_carry (x, y, carry) =
match (x, y, carry) with
| B0, B0, B0 -> (B0, B0)
| B0, B1, B0 -> (B1, B0)
| B1, B0, B0 -> (B1, B0)
| B1, B1, B0 -> (B0, B1)
| B0, B0, B1 -> (B1, B0)
| B0, B1, B1 -> (B0, B1)
| B1, B0, B1 -> (B0, B1)
| B1, B1, B1 -> (B1, B1)
let sub_bit_with_carry (x, y, carry) =
match (x, y, carry) with
| B0, B0, B0 -> (B0, B0)
| B0, B1, B0 -> (B0, B1)
| B1, B0, B0 -> (B1, B0)
| B1, B1, B0 -> (B0, B0)
| B0, B0, B1 -> (B1, B0)
| B0, B1, B1 -> (B0, B0)
| B1, B0, B1 -> (B1, B1)
| B1, B1, B1 -> (B1, B0)
let not_bit = function B0 -> B1 | B1 -> B0
let not_vec xs = List.map not_bit xs
let add_vec_carry (xs, ys) =
assert (List.length xs = List.length ys);
let carry, result =
List.fold_right2
(fun x y (c, result) ->
let z, c = add_bit_with_carry (x, y, c) in
(c, z :: result)
)
xs ys (B0, [])
in
(carry, result)
let add_vec (xs, ys) = snd (add_vec_carry (xs, ys))
let rec replicate_bits (bits, n) =
if Big_int.less_equal n Big_int.zero then [] else bits @ replicate_bits (bits, Big_int.sub n (Big_int.of_int 1))
let identity x = x
let rec get_slice_int' (n, m, o) =
if n <= 0 then []
else (
let bit = if Big_int.extract_num m (n + o - 1) 1 == Big_int.zero then B0 else B1 in
bit :: get_slice_int' (n - 1, m, o)
)
let get_slice_int (n, m, o) = get_slice_int' (Big_int.to_int n, m, Big_int.to_int o)
let to_bits' (len, n) = get_slice_int' (len, n, 0)
let to_bits (len, n) = get_slice_int' (Big_int.to_int len, n, 0)
let mult_vec (x, y) =
let xi = uint x in
let yi = uint y in
let len = List.length x in
let prod = Big_int.mul xi yi in
to_bits' (2 * len, prod)
let mults_vec (x, y) =
let xi = sint x in
let yi = sint y in
let len = List.length x in
let prod = Big_int.mul xi yi in
to_bits' (2 * len, prod)
let add_vec_int (v, n) =
let n_bits = to_bits' (List.length v, n) in
add_vec (v, n_bits)
let sub_vec (xs, ys) = add_vec (xs, add_vec_int (not_vec ys, Big_int.of_int 1))
let sub_vec_int (v, n) =
let n_bits = to_bits' (List.length v, n) in
sub_vec (v, n_bits)
let bin_char = function '0' -> B0 | '1' -> B1 | _ -> failwith "Invalid binary character"
let hex_char = function
| '0' -> [B0; B0; B0; B0]
| '1' -> [B0; B0; B0; B1]
| '2' -> [B0; B0; B1; B0]
| '3' -> [B0; B0; B1; B1]
| '4' -> [B0; B1; B0; B0]
| '5' -> [B0; B1; B0; B1]
| '6' -> [B0; B1; B1; B0]
| '7' -> [B0; B1; B1; B1]
| '8' -> [B1; B0; B0; B0]
| '9' -> [B1; B0; B0; B1]
| 'A' | 'a' -> [B1; B0; B1; B0]
| 'B' | 'b' -> [B1; B0; B1; B1]
| 'C' | 'c' -> [B1; B1; B0; B0]
| 'D' | 'd' -> [B1; B1; B0; B1]
| 'E' | 'e' -> [B1; B1; B1; B0]
| 'F' | 'f' -> [B1; B1; B1; B1]
| _ -> failwith "Invalid hex character"
let list_of_string s =
let rec aux i acc = if i < 0 then acc else aux (i - 1) (s.[i] :: acc) in
aux (String.length s - 1) []
let bits_of_string str = List.concat (List.map hex_char (list_of_string str))
let concat_str (str1, str2) = str1 ^ str2
let rec break n = function [] -> [] | _ :: _ as xs -> [take n xs] @ break n (drop n xs)
let string_of_bit = function B0 -> "0" | B1 -> "1"
let char_of_bit = function B0 -> '0' | B1 -> '1'
let int_of_bit = function B0 -> 0 | B1 -> 1
let bool_of_bit = function B0 -> false | B1 -> true
let bit_of_bool = function false -> B0 | true -> B1
let bigint_of_bit b = Big_int.of_int (int_of_bit b)
let string_of_hex = function
| [B0; B0; B0; B0] -> "0"
| [B0; B0; B0; B1] -> "1"
| [B0; B0; B1; B0] -> "2"
| [B0; B0; B1; B1] -> "3"
| [B0; B1; B0; B0] -> "4"
| [B0; B1; B0; B1] -> "5"
| [B0; B1; B1; B0] -> "6"
| [B0; B1; B1; B1] -> "7"
| [B1; B0; B0; B0] -> "8"
| [B1; B0; B0; B1] -> "9"
| [B1; B0; B1; B0] -> "A"
| [B1; B0; B1; B1] -> "B"
| [B1; B1; B0; B0] -> "C"
| [B1; B1; B0; B1] -> "D"
| [B1; B1; B1; B0] -> "E"
| [B1; B1; B1; B1] -> "F"
| _ -> failwith "Cannot convert binary sequence to hex"
let string_of_bits bits =
if List.length bits mod 4 == 0 then "0x" ^ String.concat "" (List.map string_of_hex (break 4 bits))
else "0b" ^ String.concat "" (List.map string_of_bit bits)
let decimal_string_of_bits bits =
let place_values =
List.mapi (fun i b -> Big_int.mul (bigint_of_bit b) (Big_int.pow_int_positive 2 i)) (List.rev bits)
in
let sum = List.fold_left Big_int.add Big_int.zero place_values in
Big_int.to_string sum
let hex_slice (str, n, m) =
let bits = List.concat (List.map hex_char (list_of_string (String.sub str 2 (String.length str - 2)))) in
let padding = replicate_bits ([B0], n) in
let bits = padding @ bits in
let slice = List.rev (take (Big_int.to_int n) (drop (Big_int.to_int m) (List.rev bits))) in
slice
let putchar n =
print_char (char_of_int (Big_int.to_int n));
flush stdout
let rec bits_of_int bit n =
if bit <> 0 then begin
if n / bit > 0 then B1 :: bits_of_int (bit / 2) (n - bit) else B0 :: bits_of_int (bit / 2) n
end
else []
let rec bits_of_big_int pow n =
if pow < 1 then []
else begin
let bit = Big_int.pow_int_positive 2 (pow - 1) in
if Big_int.greater (Big_int.div n bit) Big_int.zero then B1 :: bits_of_big_int (pow - 1) (Big_int.sub n bit)
else B0 :: bits_of_big_int (pow - 1) n
end
let byte_of_int n = bits_of_int 128 n
module Mem = struct
include Map.Make (struct
type t = Big_int.num
let compare = Big_int.compare
end)
end
let mem_pages = (ref Mem.empty : Bytes.t Mem.t ref)
let page_shift_bits = 20
let page_size_bytes = 1 lsl page_shift_bits
let page_no_of_addr a = Big_int.shift_right a page_shift_bits
let bottom_addr_of_page p = Big_int.shift_left p page_shift_bits
let top_addr_of_page p = Big_int.shift_left (Big_int.succ p) page_shift_bits
let get_mem_page p =
try Mem.find p !mem_pages
with Not_found ->
let new_page = Bytes.make page_size_bytes '\000' in
mem_pages := Mem.add p new_page !mem_pages;
new_page
let rec add_mem_bytes addr buf off len =
let page_no = page_no_of_addr addr in
let page_bot = bottom_addr_of_page page_no in
let page_top = top_addr_of_page page_no in
let page_off = Big_int.to_int (Big_int.sub addr page_bot) in
let page = get_mem_page page_no in
let bytes_left_in_page = Big_int.sub page_top addr in
let to_copy = min (Big_int.to_int bytes_left_in_page) len in
Bytes.blit buf off page page_off to_copy;
if to_copy < len then add_mem_bytes page_top buf (off + to_copy) (len - to_copy)
let rec read_mem_bytes addr len =
let page_no = page_no_of_addr addr in
let page_bot = bottom_addr_of_page page_no in
let page_top = top_addr_of_page page_no in
let page_off = Big_int.to_int (Big_int.sub addr page_bot) in
let page = get_mem_page page_no in
let bytes_left_in_page = Big_int.sub page_top addr in
let to_get = min (Big_int.to_int bytes_left_in_page) len in
let bytes = Bytes.sub page page_off to_get in
if to_get >= len then bytes else Bytes.cat bytes (read_mem_bytes page_top (len - to_get))
let write_ram' (data_size, addr, data) =
let len = Big_int.to_int data_size in
let bytes = Bytes.create len in
begin
List.iteri (fun i byte -> Bytes.set bytes (len - i - 1) (char_of_int (Big_int.to_int (uint byte)))) (break 8 data);
add_mem_bytes addr bytes 0 len
end
let write_ram (_addr_size, data_size, _hex_ram, addr, data) =
write_ram' (data_size, uint addr, data);
true
let wram addr byte =
let bytes = Bytes.make 1 (char_of_int byte) in
add_mem_bytes addr bytes 0 1
let read_ram (_addr_size, data_size, _hex_ram, addr) =
let addr = uint addr in
let bytes = read_mem_bytes addr (Big_int.to_int data_size) in
let vector = ref [] in
Bytes.iter (fun byte -> vector := byte_of_int (int_of_char byte) @ !vector) bytes;
!vector
let fast_read_ram (data_size, addr) =
let addr = uint addr in
let bytes = read_mem_bytes addr (Big_int.to_int data_size) in
let vector = ref [] in
Bytes.iter (fun byte -> vector := byte_of_int (int_of_char byte) @ !vector) bytes;
!vector
let tag_ram = (ref Mem.empty : bool Mem.t ref)
let write_tag_bool (addr, tag) =
let addri = uint addr in
tag_ram := Mem.add addri tag !tag_ram
let read_tag_bool addr =
let addri = uint addr in
try Mem.find addri !tag_ram with Not_found -> false
let rec reverse_endianness bits = if List.length bits <= 8 then bits else reverse_endianness (drop 8 bits) @ take 8 bits
let zcast_unit_vec x = [x]
let shl_int (n, m) = Big_int.shift_left n (Big_int.to_int m)
let shr_int (n, m) = Big_int.shift_right n (Big_int.to_int m)
let lor_int (n, m) = Big_int.bitwise_or n m
let land_int (n, m) = Big_int.bitwise_and n m
let lxor_int (n, m) = Big_int.bitwise_xor n m
let debug (str1, n, str2, v) = prerr_endline (str1 ^ Big_int.to_string n ^ str2 ^ string_of_bits v)
let eq_string (str1, str2) = String.compare str1 str2 == 0
let string_startswith (str1, str2) =
String.length str1 >= String.length str2 && String.compare (String.sub str1 0 (String.length str2)) str2 == 0
let string_drop (str, n) =
if Big_int.less_equal (Big_int.of_int (String.length str)) n then ""
else (
let n = Big_int.to_int n in
String.sub str n (String.length str - n)
)
let string_take (str, n) =
let n = Big_int.to_int n in
if String.length str <= n then str else String.sub str 0 n
let string_length str = Big_int.of_int (String.length str)
let string_append (s1, s2) = s1 ^ s2
let int_of_string_opt s = try Some (Big_int.of_string s) with Invalid_argument _ -> None
let rec maybe_int_of_prefix = function
| "" -> ZNone ()
| str -> (
let len = String.length str in
match int_of_string_opt str with
| Some n -> ZSome (n, Big_int.of_int len)
| None -> maybe_int_of_prefix (String.sub str 0 (len - 1))
)
let maybe_int_of_string str = match int_of_string_opt str with None -> ZNone () | Some n -> ZSome n
let lt_int (x, y) = Big_int.less x y
let set_slice (out_len, _slice_len, out, n, slice) =
let out = update_subrange (out, Big_int.add n (Big_int.of_int (List.length slice - 1)), n, slice) in
assert (List.length out = Big_int.to_int out_len);
out
let set_slice_int (slice_len, m, n, slice) =
assert (Big_int.to_int slice_len == List.length slice);
let shifted_slice = Big_int.shift_left (uint slice) (Big_int.to_int n) in
let mask = uint (replicate_bits ([B1], slice_len) @ replicate_bits ([B0], n)) in
Big_int.bitwise_or (Big_int.bitwise_xor (Big_int.bitwise_or mask m) mask) shifted_slice
let eq_real (x, y) = Rational.equal x y
let lt_real (x, y) = Rational.lt x y
let gt_real (x, y) = Rational.gt x y
let lteq_real (x, y) = Rational.leq x y
let gteq_real (x, y) = Rational.geq x y
let to_real x = Rational.of_int (Big_int.to_int x)
let negate_real x = Rational.neg x
let neg_real x = Rational.neg x
let string_of_real x =
if Big_int.equal (Rational.den x) (Big_int.of_int 1) then Big_int.to_string (Rational.num x)
else Big_int.to_string (Rational.num x) ^ "/" ^ Big_int.to_string (Rational.den x)
let print_real (str, r) = print_endline (str ^ string_of_real r)
let prerr_real (str, r) = prerr_endline (str ^ string_of_real r)
let round_down x = Rational.floor x
let round_up x = Rational.ceiling x
let quotient_real (x, y) = Rational.div x y
let div_real (x, y) = Rational.div x y
let mult_real (x, y) = Rational.mul x y
let real_power (_, _) = failwith "real_power"
let int_power (x, y) = Big_int.pow_int x (Big_int.to_int y)
let add_real (x, y) = Rational.add x y
let sub_real (x, y) = Rational.sub x y
let abs_real x = Rational.abs x
let sqrt_real x =
let precision = 30 in
let s = Big_int.sqrt (Rational.num x) in
if Big_int.equal (Rational.den x) (Big_int.of_int 1) && Big_int.equal (Big_int.mul s s) (Rational.num x) then
to_real s
else (
let p = ref (to_real (Big_int.sqrt (Big_int.div (Rational.num x) (Rational.den x)))) in
let n = ref (Rational.of_int 0) in
let convergence =
ref (Rational.div (Rational.of_int 1) (Rational.of_big_int (Big_int.pow_int_positive 10 precision)))
in
let quit_loop = ref false in
while not !quit_loop do
n := Rational.div (Rational.add !p (Rational.div x !p)) (Rational.of_int 2);
if Rational.lt (Rational.abs (Rational.sub !p !n)) !convergence then quit_loop := true else p := !n
done;
!n
)
let random_real () = Rational.div (Rational.of_int (Random.bits ())) (Rational.of_int (Random.bits ()))
let lt (x, y) = Big_int.less x y
let gt (x, y) = Big_int.greater x y
let lteq (x, y) = Big_int.less_equal x y
let gteq (x, y) = Big_int.greater_equal x y
let pow2 x = Big_int.pow_int (Big_int.of_int 2) (Big_int.to_int x)
let max_int (x, y) = Big_int.max x y
let min_int (x, y) = Big_int.min x y
let abs_int x = Big_int.abs x
let string_of_int x = Big_int.to_string x
let undefined_real () = Rational.of_int 0
let rec pow x = function 0 -> 1 | n -> x * pow x (n - 1)
let real_of_string str =
match Util.split_on_char '.' str with
| [whole; frac] ->
let whole = Rational.of_int (int_of_string whole) in
let frac = Rational.div (Rational.of_int (int_of_string frac)) (Rational.of_int (pow 10 (String.length frac))) in
Rational.add whole frac
| [_] -> Rational.of_int (int_of_string str)
| _ -> failwith "invalid real literal"
let print str = Stdlib.print_string str
let prerr str = Stdlib.prerr_string str
let print_int (str, x) = print_endline (str ^ Big_int.to_string x)
let prerr_int (str, x) = prerr_endline (str ^ Big_int.to_string x)
let print_bits (str, xs) = print_endline (str ^ string_of_bits xs)
let prerr_bits (str, xs) = prerr_endline (str ^ string_of_bits xs)
let print_string (str, msg) = print_endline (str ^ msg)
let prerr_string (str, msg) = prerr_endline (str ^ msg)
let reg_deref r = !r
let string_of_zbit = function B0 -> "0" | B1 -> "1"
let string_of_znat n = Big_int.to_string n
let string_of_zint n = Big_int.to_string n
let string_of_zimplicit n = Big_int.to_string n
let string_of_zunit () = "()"
let string_of_zbool = function true -> "true" | false -> "false"
let string_of_zreal _ = "REAL"
let string_of_zstring str = "\"" ^ String.escaped str ^ "\""
let rec string_of_list sep string_of = function
| [] -> ""
| [x] -> string_of x
| x :: ls -> string_of x ^ sep ^ string_of_list sep string_of ls
let skip () = ()
let memea (_, _) = ()
let zero_extend (vec, n) =
let m = Big_int.to_int n in
if m <= List.length vec then take m vec else replicate_bits ([B0], Big_int.of_int (m - List.length vec)) @ vec
let sign_extend (vec, n) =
let m = Big_int.to_int n in
match vec with
| B0 :: _ as vec -> replicate_bits ([B0], Big_int.of_int (m - List.length vec)) @ vec
| [] -> replicate_bits ([B0], Big_int.of_int (m - List.length vec)) @ vec
| B1 :: _ as vec -> replicate_bits ([B1], Big_int.of_int (m - List.length vec)) @ vec
let zeros n = replicate_bits ([B0], n)
let ones n = replicate_bits ([B1], n)
let shift_bits_right_arith (x, y) =
let ybi = uint y in
let msbs = replicate_bits (take 1 x, ybi) in
let rbits = msbs @ x in
take (List.length x) rbits
let shiftr (x, y) =
let zeros = zeros y in
let rbits = zeros @ x in
take (List.length x) rbits
let arith_shiftr (x, y) =
let msbs = replicate_bits (take 1 x, y) in
let rbits = msbs @ x in
take (List.length x) rbits
let shift_bits_right (x, y) = shiftr (x, uint y)
let shiftl (x, y) =
let yi = Big_int.to_int y in
let zeros = zeros y in
let rbits = x @ zeros in
drop yi rbits
let shift_bits_left (x, y) = shiftl (x, uint y)
let speculate_conditional_success () = true
let get_time_ns () = Big_int.of_int (int_of_float (1e9 *. Unix.gettimeofday ()))
let hex_bits_1_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 1) then
ZSome (bits_of_big_int 1 n, len)
else ZNone ()
let hex_bits_2_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 2) then
ZSome (bits_of_big_int 2 n, len)
else ZNone ()
let hex_bits_3_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 3) then
ZSome (bits_of_big_int 3 n, len)
else ZNone ()
let hex_bits_4_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 4) then
ZSome (bits_of_big_int 4 n, len)
else ZNone ()
let hex_bits_5_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 5) then
ZSome (bits_of_big_int 5 n, len)
else ZNone ()
let hex_bits_6_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 6) then
ZSome (bits_of_big_int 6 n, len)
else ZNone ()
let hex_bits_7_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 7) then
ZSome (bits_of_big_int 7 n, len)
else ZNone ()
let hex_bits_8_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 8) then
ZSome (bits_of_big_int 8 n, len)
else ZNone ()
let hex_bits_9_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 9) then
ZSome (bits_of_big_int 9 n, len)
else ZNone ()
let hex_bits_10_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 10) then
ZSome (bits_of_big_int 10 n, len)
else ZNone ()
let hex_bits_11_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 11) then
ZSome (bits_of_big_int 11 n, len)
else ZNone ()
let hex_bits_12_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 12) then
ZSome (bits_of_big_int 12 n, len)
else ZNone ()
let hex_bits_13_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 13) then
ZSome (bits_of_big_int 13 n, len)
else ZNone ()
let hex_bits_14_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 14) then
ZSome (bits_of_big_int 14 n, len)
else ZNone ()
let hex_bits_15_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 15) then
ZSome (bits_of_big_int 15 n, len)
else ZNone ()
let hex_bits_16_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 16) then
ZSome (bits_of_big_int 16 n, len)
else ZNone ()
let hex_bits_17_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 17) then
ZSome (bits_of_big_int 17 n, len)
else ZNone ()
let hex_bits_18_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 18) then
ZSome (bits_of_big_int 18 n, len)
else ZNone ()
let hex_bits_19_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 19) then
ZSome (bits_of_big_int 19 n, len)
else ZNone ()
let hex_bits_20_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 20) then
ZSome (bits_of_big_int 20 n, len)
else ZNone ()
let hex_bits_21_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 21) then
ZSome (bits_of_big_int 21 n, len)
else ZNone ()
let hex_bits_22_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 22) then
ZSome (bits_of_big_int 22 n, len)
else ZNone ()
let hex_bits_23_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 23) then
ZSome (bits_of_big_int 23 n, len)
else ZNone ()
let hex_bits_24_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 24) then
ZSome (bits_of_big_int 24 n, len)
else ZNone ()
let hex_bits_25_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 25) then
ZSome (bits_of_big_int 25 n, len)
else ZNone ()
let hex_bits_26_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 26) then
ZSome (bits_of_big_int 26 n, len)
else ZNone ()
let hex_bits_27_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 27) then
ZSome (bits_of_big_int 27 n, len)
else ZNone ()
let hex_bits_28_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 28) then
ZSome (bits_of_big_int 28 n, len)
else ZNone ()
let hex_bits_29_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 29) then
ZSome (bits_of_big_int 29 n, len)
else ZNone ()
let hex_bits_30_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 30) then
ZSome (bits_of_big_int 30 n, len)
else ZNone ()
let hex_bits_31_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 31) then
ZSome (bits_of_big_int 31 n, len)
else ZNone ()
let hex_bits_32_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 32) then
ZSome (bits_of_big_int 32 n, len)
else ZNone ()
let hex_bits_33_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 33) then
ZSome (bits_of_big_int 33 n, len)
else ZNone ()
let hex_bits_48_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 48) then
ZSome (bits_of_big_int 48 n, len)
else ZNone ()
let hex_bits_64_matches_prefix s =
match maybe_int_of_prefix s with
| ZNone () -> ZNone ()
| ZSome (n, len) ->
if Big_int.less_equal Big_int.zero n && Big_int.less n (Big_int.pow_int_positive 2 64) then
ZSome (bits_of_big_int 64 n, len)
else ZNone ()
let string_of_bool = function true -> "true" | false -> "false"
let dec_str x = Big_int.to_string x
let to_lower_hex_char n = if 10 <= n && n <= 15 then Char.chr (n + 87) else Char.chr (n + 48)
let to_upper_hex_char n = if 10 <= n && n <= 15 then Char.chr (n + 55) else Char.chr (n + 48)
let hex_str_helper to_char x =
if Big_int.equal x Big_int.zero then "0x0"
else (
let x = ref x in
let s = ref "" in
while not (Big_int.equal !x Big_int.zero) do
let lower_4 = Big_int.to_int (Big_int.bitwise_and !x (Big_int.of_int 15)) in
s := String.make 1 (to_char lower_4) ^ !s;
x := Big_int.shift_right !x 4
done;
"0x" ^ !s
)
let hex_str = hex_str_helper to_lower_hex_char
let hex_str_upper = hex_str_helper to_upper_hex_char
let is_hex_char ch =
let c = Char.code ch in
(Char.code '0' <= c && c <= Char.code '9')
|| (Char.code 'a' <= c && c <= Char.code 'f')
|| (Char.code 'A' <= c && c <= Char.code 'F')
let valid_hex_bits (n, s) =
let len = String.length s in
if len < 3 || String.sub s 0 2 <> "0x" then false
else (
let hex = String.sub s 2 (len - 2) in
let is_valid = ref true in
String.iter (fun c -> is_valid := !is_valid && is_hex_char c) hex;
!is_valid
)
let parse_hex_bits (n, s) =
if not (valid_hex_bits (n, s)) then zeros n
else bits_of_string (String.sub s 2 (String.length s - 2)) |> List.rev |> Util.take (Big_int.to_int n) |> List.rev
let trace_memory_write (_, _, _) = ()
let trace_memory_read (_, _, _) = ()
let sleep_request () = ()
let wakeup_request () = ()
let reset_registers () = ()
let load_raw (paddr, file) =
let i = ref 0 in
let paddr = uint paddr in
let in_chan = open_in file in
try
while true do
let byte = input_char in_chan |> Char.code in
wram (Big_int.add paddr (Big_int.of_int !i)) byte;
incr i
done
with End_of_file -> ()
let rand_zvector (g : 'generators) (size : int) (_order : bool) (elem_gen : 'generators -> 'a) : 'a list =
Util.list_init size (fun _ -> elem_gen g)
let rand_zbit (_ : 'generators) : bit = bit_of_bool (Random.bool ())
let rand_zbitvector (g : 'generators) (size : int) (_order : bool) : bit list =
Util.list_init size (fun _ -> rand_zbit g)
let rand_zbool (_ : 'generators) : bool = Random.bool ()
let rand_zunit (_ : 'generators) : unit = ()
let rand_choice l =
let n = List.length l in
List.nth l (Random.int n)
let emulator_read_mem (_addrsize, addr, len) = fast_read_ram (len, addr)
let emulator_read_mem_ifetch (_addrsize, addr, len) = fast_read_ram (len, addr)
let emulator_read_mem_exclusive (_addrsize, addr, len) = fast_read_ram (len, addr)
let emulator_write_mem (_addrsize, addr, len, value) =
write_ram' (len, uint addr, value);
true
let emulator_write_mem_exclusive (_addrsize, addr, len, value) =
write_ram' (len, uint addr, value);
true
let emulator_read_tag (_addrsize, addr) = read_tag_bool addr
let emulator_write_tag (_addrsize, addr, tag) = write_tag_bool (addr, tag)