package libsail

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file sail2_values.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
(*Generated by Lem from sail2_values.lem.*)
open Lem_pervasives_extra
open Lem_machine_word
(*open import Sail_impl_base*)

type( 'a, 'b) result = | Ok of ('a) | Err of ('b)

type ii = Nat_big_num.num
type nn = Nat_big_num.num

(*val nat_of_int : integer -> nat*)
let nat_of_int i:int=  (if Nat_big_num.less i( (Nat_big_num.of_int 0)) then 0 else abs (Nat_big_num.to_int i))

(*val pow : integer -> integer -> integer*)
let pow m n:Nat_big_num.num=  (Nat_big_num.pow_int m (nat_of_int n))

let pow2 n:Nat_big_num.num=  (pow( (Nat_big_num.of_int 2)) n)

(*val eq : forall 'a. Eq 'a => 'a -> 'a -> bool*)

(*val neq : forall 'a. Eq 'a => 'a -> 'a -> bool*)

(*val print_endline : string -> unit*)
(*let print_endline _:unit=  ()*)

(*val print : string -> unit*)
(*let print _:unit=  ()*)

(*val prerr_endline : string -> unit*)
(*let prerr_endline _:unit=  ()*)

let prerr x:unit=  (prerr_endline x)

(*val print_int : string -> integer -> unit*)
let print_int msg i:unit=  (print_endline (msg ^ (Nat_big_num.to_string i)))

(*val prerr_int : string -> integer -> unit*)
let prerr_int msg i:unit=  (prerr_endline (msg ^ (Nat_big_num.to_string i)))

(*val putchar : integer -> unit*)
(*let putchar _:unit=  ()*)

(*val shr_int : ii -> ii -> ii*)
let rec shr_int x s:Nat_big_num.num=  (if Nat_big_num.greater s( (Nat_big_num.of_int 0)) then shr_int ( Nat_big_num.div x( (Nat_big_num.of_int 2))) ( Nat_big_num.sub s( (Nat_big_num.of_int 1))) else x)

(*val shl_int : integer -> integer -> integer*)
let rec shl_int i shift1:Nat_big_num.num=  (if Nat_big_num.greater shift1( (Nat_big_num.of_int 0)) then Nat_big_num.mul( (Nat_big_num.of_int 2)) (shl_int i ( Nat_big_num.sub shift1( (Nat_big_num.of_int 1)))) else i)

(*val align_int : integer -> integer -> integer*)
let align_int x y:Nat_big_num.num=  (Nat_big_num.mul (Nat_big_num.div x y) y)
let take_list n xs:'a list=  (Lem_list.take (nat_of_int n) xs)
let drop_list n xs:'a list=  (Lem_list.drop (nat_of_int n) xs)

(*val repeat : forall 'a. list 'a -> integer -> list 'a*)
let rec repeat xs n:'a list=
   (if Nat_big_num.less_equal n( (Nat_big_num.of_int 0)) then []
  else  List.rev_append (List.rev xs) (repeat xs (Nat_big_num.sub n( (Nat_big_num.of_int 1)))))

let duplicate_to_list bit length:'a list=  (repeat [bit] length)

let rec replace bs (n : Nat_big_num.num) b':'a list=  ((match bs with
  | [] -> []
  | b :: bs ->
     if Nat_big_num.equal n( (Nat_big_num.of_int 0)) then b' :: bs
              else b :: replace bs ( Nat_big_num.sub n( (Nat_big_num.of_int 1))) b'
  ))

let upper n:'a=  n

(* Modulus operation corresponding to quot below -- result
   has sign of dividend. *)
let tmod_int (a: Nat_big_num.num) (b:Nat_big_num.num) : Nat_big_num.num=
   (let m = (Nat_big_num.modulus (Nat_big_num.abs a) (Nat_big_num.abs b)) in
  if Nat_big_num.less a( (Nat_big_num.of_int 0)) then Nat_big_num.negate m else m)

let hardware_mod:Nat_big_num.num ->Nat_big_num.num ->Nat_big_num.num=  tmod_int

(* There are different possible answers for integer divide regarding
rounding behaviour on negative operands. Positive operands always
round down so derive the one we want (truncation towards zero) from
that *)
let tdiv_int (a:Nat_big_num.num) (b:Nat_big_num.num) : Nat_big_num.num=
   (let q = (Nat_big_num.div (Nat_big_num.abs a) (Nat_big_num.abs b)) in
  if ((Nat_big_num.less a( (Nat_big_num.of_int 0))) = (Nat_big_num.less b( (Nat_big_num.of_int 0)))) then
    q  (* same sign -- result positive *)
  else
    Nat_big_num.negate q) (* different sign -- result negative *)

let hardware_quot:Nat_big_num.num ->Nat_big_num.num ->Nat_big_num.num=  tdiv_int

let max_64u:Nat_big_num.num=  (Nat_big_num.sub (Nat_big_num.pow_int( (Nat_big_num.of_int 2)) 64)( (Nat_big_num.of_int 1)))
let max_64:Nat_big_num.num=   (Nat_big_num.sub (Nat_big_num.pow_int( (Nat_big_num.of_int 2)) 63)( (Nat_big_num.of_int 1)))
let min_64:Nat_big_num.num=   (Nat_big_num.sub( (Nat_big_num.of_int 0)) (Nat_big_num.pow_int( (Nat_big_num.of_int 2)) 63))
let max_32u:Nat_big_num.num=  (( (Nat_big_num.of_string "4294967295") : Nat_big_num.num))
let max_32:Nat_big_num.num=   (( (Nat_big_num.of_string "2147483647") : Nat_big_num.num))
let min_32:Nat_big_num.num=   (( Nat_big_num.sub( (Nat_big_num.of_int 0))( (Nat_big_num.of_string "2147483648")) : Nat_big_num.num))
let max_8:Nat_big_num.num=    (( (Nat_big_num.of_int 127) : Nat_big_num.num))
let min_8:Nat_big_num.num=    (( Nat_big_num.sub( (Nat_big_num.of_int 0))( (Nat_big_num.of_int 128)) : Nat_big_num.num))
let max_5:Nat_big_num.num=    (( (Nat_big_num.of_int 31) : Nat_big_num.num))
let min_5:Nat_big_num.num=    (( Nat_big_num.sub( (Nat_big_num.of_int 0))( (Nat_big_num.of_int 32)) : Nat_big_num.num))

(* just_list takes a list of maybes and returns Just xs if all elements have
   a value, and Nothing if one of the elements is Nothing. *)
(*val just_list : forall 'a. list (maybe 'a) -> maybe (list 'a)*)
let rec just_list l:('a list)option=  ((match l with
  | [] -> Some []
  | (x :: xs) ->
    (match (x, just_list xs) with
      | (Some x, Some xs) -> Some (x :: xs)
      | (_, _) -> None
    )
  ))

(*val maybe_failwith : forall 'a. maybe 'a -> 'a*)
let maybe_failwith:'a option ->'a=  ((function
  | Some a -> a
  | None -> failwith "maybe_failwith"
))

(*** Bits *)
type bitU = B0 | B1 | BU

let showBitU:bitU ->string=  ((function
  | B0 -> "O"
  | B1 -> "I"
  | BU -> "U"
))

let bitU_char:bitU ->char=  ((function
  | B0 -> '0'
  | B1 -> '1'
  | BU -> '?'
))

let instance_Show_Show_Sail2_values_bitU_dict:(bitU)show_class= ({

  show_method = showBitU})

(*val compare_bitU : bitU -> bitU -> ordering*)
let compare_bitU l r:int=  ((match (l, r) with
  | (BU, BU) -> 0
  | (B0, B0) -> 0
  | (B1, B1) -> 0
  | (BU, _)  -> (-1)
  | (_, BU)  -> 1
  | (B0, _)  -> (-1)
  | (_, _)   -> 1
))

let instance_Basic_classes_Ord_Sail2_values_bitU_dict:(bitU)ord_class= ({

  compare_method = compare_bitU;

  isLess_method = (fun  l r-> Lem.orderingEqual(compare_bitU l r) (-1));

  isLessEqual_method = (fun l r-> not (Lem.orderingEqual (compare_bitU l r) 1));

  isGreater_method = (fun  l r-> Lem.orderingEqual(compare_bitU l r) 1);

  isGreaterEqual_method = (fun l r-> not (Lem.orderingEqual (compare_bitU l r) (-1)))})

type 'a bitU_class={
  to_bitU_method : 'a -> bitU;
  of_bitU_method : bitU -> 'a
}

let instance_Sail2_values_BitU_Sail2_values_bitU_dict:(bitU)bitU_class= ({

  to_bitU_method = (fun b->b);

  of_bitU_method = (fun b->b)})

let bool_of_bitU:bitU ->(bool)option=  ((function
  | B0 -> Some false
  | B1 -> Some true
  | BU -> None
  ))

let bitU_of_bool b:bitU=  (if b then B1 else B0)

(*instance (BitU bool)
  let to_bitU = bitU_of_bool
  let of_bitU = bool_of_bitU
end*)

let cast_bit_bool:bitU ->(bool)option=  bool_of_bitU

let not_bit:bitU ->bitU=  ((function
  | B1 -> B0
  | B0 -> B1
  | BU -> BU
  ))

(*val is_one : integer -> bitU*)
let is_one i:bitU=
   (if Nat_big_num.equal i( (Nat_big_num.of_int 1)) then B1 else B0)

(*val and_bit : bitU -> bitU -> bitU*)
let and_bit x y:bitU=
   ((match (x, y) with
    | (B0, _) -> B0
    | (_, B0) -> B0
    | (B1, B1) -> B1
    | (_, _) -> BU
  ))

(*val or_bit : bitU -> bitU -> bitU*)
let or_bit x y:bitU=
   ((match (x, y) with
    | (B1, _) -> B1
    | (_, B1) -> B1
    | (B0, B0) -> B0
    | (_, _) -> BU
  ))

(*val xor_bit : bitU -> bitU -> bitU*)
let xor_bit x y:bitU=
  ((match (x, y) with
    | (B0, B0) -> B0
    | (B0, B1) -> B1
    | (B1, B0) -> B1
    | (B1, B1) -> B0
    | (_, _) -> BU
  ))

(*val &. : bitU -> bitU -> bitU*)

(*val |. : bitU -> bitU -> bitU*)

(*val +. : bitU -> bitU -> bitU*)


(*** Bool lists ***)

(*val bools_of_nat_aux : integer -> natural -> list bool -> list bool*)
let rec bools_of_nat_aux len x acc:(bool)list=
   (if Nat_big_num.less_equal len( (Nat_big_num.of_int 0)) then acc
  else bools_of_nat_aux ( Nat_big_num.sub len( (Nat_big_num.of_int 1))) ( Nat_big_num.div x( (Nat_big_num.of_int 2))) ((if Nat_big_num.equal (Nat_big_num.modulus x( (Nat_big_num.of_int 2)))( (Nat_big_num.of_int 1)) then true else false) :: acc))
let bools_of_nat len n:(bool)list=  (bools_of_nat_aux len n []) (*List.reverse (bools_of_nat_aux n)*)

(*val nat_of_bools_aux : natural -> list bool -> natural*)
let rec nat_of_bools_aux acc bs:Nat_big_num.num=  ((match bs with
  | [] -> acc
  | true :: bs -> nat_of_bools_aux ( Nat_big_num.add( Nat_big_num.mul( (Nat_big_num.of_int 2)) acc)( (Nat_big_num.of_int 1))) bs
  | false :: bs -> nat_of_bools_aux ( Nat_big_num.mul( (Nat_big_num.of_int 2)) acc) bs
))
let nat_of_bools bs:Nat_big_num.num=  (nat_of_bools_aux( (Nat_big_num.of_int 0)) bs)

(*val unsigned_of_bools : list bool -> integer*)
let unsigned_of_bools bs:Nat_big_num.num=  ((nat_of_bools bs))

(*val signed_of_bools : list bool -> integer*)
let signed_of_bools bs:Nat_big_num.num=
   ((match bs with
    | true :: _  -> Nat_big_num.sub( (Nat_big_num.of_int 0)) ( Nat_big_num.add( (Nat_big_num.of_int 1)) (unsigned_of_bools (Lem_list.map not bs)))
    | false :: _ -> unsigned_of_bools bs
    | [] -> (Nat_big_num.of_int 0) (* Treat empty list as all zeros *)
  ))

(*val int_of_bools : bool -> list bool -> integer*)
let int_of_bools sign bs:Nat_big_num.num=  (if sign then signed_of_bools bs else unsigned_of_bools bs)

(*val pad_list : forall 'a. 'a -> list 'a -> integer -> list 'a*)
let rec pad_list x xs n:'a list=
   (if Nat_big_num.less_equal n( (Nat_big_num.of_int 0)) then xs else pad_list x (x :: xs) ( Nat_big_num.sub n( (Nat_big_num.of_int 1))))

let ext_list pad len xs:'a list=
   (let longer = (Nat_big_num.sub len (Nat_big_num.of_int (List.length xs))) in
  if Nat_big_num.less longer( (Nat_big_num.of_int 0)) then drop (nat_of_int (Nat_big_num.abs (longer))) xs
  else pad_list pad xs longer)

let extz_bools len bs:(bool)list=  (ext_list false len bs)
let exts_bools len bs:(bool)list=
   ((match bs with
    | true :: _ -> ext_list true len bs
    | _ -> ext_list false len bs
  ))

let rec add_one_bool_ignore_overflow_aux bits:(bool)list=  ((match bits with
  | [] -> []
  | false :: bits -> true :: bits
  | true :: bits -> false :: add_one_bool_ignore_overflow_aux bits
))

let add_one_bool_ignore_overflow bits:(bool)list=
   (List.rev (add_one_bool_ignore_overflow_aux (List.rev bits)))

(*let bool_list_of_int n =
  let bs_abs = false :: bools_of_nat (naturalFromInteger (abs n)) in
  if n >= (0 : integer) then bs_abs
  else add_one_bool_ignore_overflow (List.map not bs_abs)
let bools_of_int len n = exts_bools len (bool_list_of_int n)*)
let bools_of_int len n:(bool)list=
   (let bs_abs = (bools_of_nat len (Nat_big_num.abs (Nat_big_num.abs n))) in
  if Nat_big_num.greater_equal n ( (Nat_big_num.of_int 0) : Nat_big_num.num) then bs_abs
  else add_one_bool_ignore_overflow (Lem_list.map not bs_abs))

(*** Bit lists ***)

(*val has_undefined_bits : list bitU -> bool*)
let has_undefined_bits bs:bool=  (List.exists ((function BU -> true | _ -> false )) bs)

let bits_of_nat len n:(bitU)list=  (Lem_list.map bitU_of_bool (bools_of_nat len n))

let nat_of_bits bits:(Nat_big_num.num)option=
   ((match (just_list (Lem_list.map bool_of_bitU bits)) with
    | Some bs -> Some (nat_of_bools bs)
    | None -> None
  ))

let not_bits:(bitU)list ->(bitU)list=  (Lem_list.map not_bit)

(*val binop_list : forall 'a. ('a -> 'a -> 'a) -> list 'a -> list 'a -> list 'a*)
let binop_list op xs ys:'a list=
   (List.fold_right (fun (x, y) acc -> op x y :: acc) (list_combine xs ys) [])

let unsigned_of_bits bits:(Nat_big_num.num)option=
   ((match (just_list (Lem_list.map bool_of_bitU bits)) with
    | Some bs -> Some (unsigned_of_bools bs)
    | None -> None
  ))

let signed_of_bits bits:(Nat_big_num.num)option=
   ((match (just_list (Lem_list.map bool_of_bitU bits)) with
    | Some bs -> Some (signed_of_bools bs)
    | None -> None
  ))

(*val int_of_bits : bool -> list bitU -> maybe integer*)
let int_of_bits sign bs:(Nat_big_num.num)option=  (if sign then signed_of_bits bs else unsigned_of_bits bs)

let extz_bits len bits:(bitU)list=  (ext_list B0 len bits)
let exts_bits len bits:(bitU)list=
   ((match bits with
  | BU :: _ -> ext_list BU len bits
  | B1 :: _ -> ext_list B1 len bits
  | _ -> ext_list B0 len bits
  ))

let rec add_one_bit_ignore_overflow_aux bits:(bitU)list=  ((match bits with
  | [] -> []
  | B0 :: bits -> B1 :: bits
  | B1 :: bits -> B0 :: add_one_bit_ignore_overflow_aux bits
  | BU :: bits -> BU :: Lem_list.map (fun _ -> BU) bits
))

let add_one_bit_ignore_overflow bits:(bitU)list=
   (List.rev (add_one_bit_ignore_overflow_aux (List.rev bits)))

(*let bit_list_of_int n = List.map bitU_of_bool (bool_list_of_int n)
let bits_of_int len n = exts_bits len (bit_list_of_int n)*)
let bits_of_int len n:(bitU)list=  (Lem_list.map bitU_of_bool (bools_of_int len n))

(*val arith_op_bits :
  (integer -> integer -> integer) -> bool -> list bitU -> list bitU -> list bitU*)
let arith_op_bits op sign l r:(bitU)list=
   ((match (int_of_bits sign l, int_of_bits sign r) with
    | (Some li, Some ri) -> bits_of_int (Nat_big_num.of_int (List.length l)) (op li ri)
    | (_, _) -> repeat [BU] (Nat_big_num.of_int (List.length l))
  ))

let char_of_nibble:bitU*bitU*bitU*bitU ->(char)option=  ((function
  | (B0, B0, B0, B0) -> Some '0'
  | (B0, B0, B0, B1) -> Some '1'
  | (B0, B0, B1, B0) -> Some '2'
  | (B0, B0, B1, B1) -> Some '3'
  | (B0, B1, B0, B0) -> Some '4'
  | (B0, B1, B0, B1) -> Some '5'
  | (B0, B1, B1, B0) -> Some '6'
  | (B0, B1, B1, B1) -> Some '7'
  | (B1, B0, B0, B0) -> Some '8'
  | (B1, B0, B0, B1) -> Some '9'
  | (B1, B0, B1, B0) -> Some 'A'
  | (B1, B0, B1, B1) -> Some 'B'
  | (B1, B1, B0, B0) -> Some 'C'
  | (B1, B1, B0, B1) -> Some 'D'
  | (B1, B1, B1, B0) -> Some 'E'
  | (B1, B1, B1, B1) -> Some 'F'
  | _ -> None
  ))

let nibble_of_char:char ->(bitU*bitU*bitU*bitU)option=  ((function
  | '0' -> Some (B0, B0, B0, B0)
  | '1' -> Some (B0, B0, B0, B1)
  | '2' -> Some (B0, B0, B1, B0)
  | '3' -> Some (B0, B0, B1, B1)
  | '4' -> Some (B0, B1, B0, B0)
  | '5' -> Some (B0, B1, B0, B1)
  | '6' -> Some (B0, B1, B1, B0)
  | '7' -> Some (B0, B1, B1, B1)
  | '8' -> Some (B1, B0, B0, B0)
  | '9' -> Some (B1, B0, B0, B1)
  | 'A' -> Some (B1, B0, B1, B0)
  | 'B' -> Some (B1, B0, B1, B1)
  | 'C' -> Some (B1, B1, B0, B0)
  | 'D' -> Some (B1, B1, B0, B1)
  | 'E' -> Some (B1, B1, B1, B0)
  | 'F' -> Some (B1, B1, B1, B1)
  | _ -> None
  ))

let rec hexstring_of_bits bs:((char)list)option=  ((match bs with
  | b1 :: b2 :: b3 :: b4 :: bs ->
     let n = (char_of_nibble (b1, b2, b3, b4)) in
     let s = (hexstring_of_bits bs) in
     (match (n, s) with
     | (Some n, Some s) -> Some (n :: s)
     | _ -> None
     )
  | [] -> Some []
  | _ -> None
  ))

let show_bitlist_prefix c bs:string=
   ((match hexstring_of_bits bs with
  | Some s -> Xstring.implode (c :: ('x' :: s))
  | None -> Xstring.implode (c :: ('b' :: map bitU_char bs))
  ))

let show_bitlist bs:string=  (show_bitlist_prefix '0' bs)

(*val hex_char : natural -> char*)

let hex_char n:char= (
 if(Nat_big_num.equal n ( (Nat_big_num.of_int 0))) then '0' else
   (
   if(Nat_big_num.equal n ( (Nat_big_num.of_int 1))) then '1' else
     (
     if(Nat_big_num.equal n ( (Nat_big_num.of_int 2))) then '2' else
       (
       if(Nat_big_num.equal n ( (Nat_big_num.of_int 3))) then '3' else
         (
         if(Nat_big_num.equal n ( (Nat_big_num.of_int 4))) then '4' else
           (
           if(Nat_big_num.equal n ( (Nat_big_num.of_int 5))) then '5' else
             (
             if(Nat_big_num.equal n ( (Nat_big_num.of_int 6))) then '6' else
               (
               if(Nat_big_num.equal n ( (Nat_big_num.of_int 7))) then 
               '7' else
                 (
                 if(Nat_big_num.equal n ( (Nat_big_num.of_int 8))) then 
                 '8' else
                   (
                   if(Nat_big_num.equal n ( (Nat_big_num.of_int 9))) then 
                   '9' else
                     (
                     if(Nat_big_num.equal n ( (Nat_big_num.of_int 10))) then
                       'A' else
                       (
                       if(Nat_big_num.equal n ( (Nat_big_num.of_int 11))) then
                         'B' else
                         (
                         if(Nat_big_num.equal n ( (Nat_big_num.of_int 12))) then
                           'C' else
                           (
                           if(Nat_big_num.equal n ( (Nat_big_num.of_int 13))) then
                             'D' else
                             (
                             if(Nat_big_num.equal n
                                  ( (Nat_big_num.of_int 14))) then 'E' else
                               (
                               if(Nat_big_num.equal n
                                    ( (Nat_big_num.of_int 15))) then 
                               'F' else
                                 (failwith
                                    "hex_char: not a hexadecimal digit")))))))))))))))))

(*val hex_str_aux : natural -> list char -> list char*)

let rec hex_str_aux n acc:(char)list=
   (if Nat_big_num.equal n( (Nat_big_num.of_int 0)) then acc else
  hex_str_aux ( Nat_big_num.div n( (Nat_big_num.of_int 16))) (hex_char ( Nat_big_num.modulus n( (Nat_big_num.of_int 16))) :: acc))

(*val hex_str : integer -> string*)

let hex_str i:string=
   (if Nat_big_num.less i( (Nat_big_num.of_int 0)) then failwith "hex_str: negative" else
  if Nat_big_num.equal i( (Nat_big_num.of_int 0)) then "0x0" else
  "0x" ^ Xstring.implode (hex_str_aux (Nat_big_num.abs (Nat_big_num.abs i)) []))

(*val subrange_list_inc : forall 'a. list 'a -> integer -> integer -> list 'a*)
let subrange_list_inc xs i j:'a list=
   (let (toJ,_suffix) = (Lem_list.split_at (nat_of_int ( Nat_big_num.add j( (Nat_big_num.of_int 1)))) xs) in
  let (_prefix,fromItoJ) = (Lem_list.split_at (nat_of_int i) toJ) in
  fromItoJ)

(*val subrange_list_dec : forall 'a. list 'a -> integer -> integer -> list 'a*)
let subrange_list_dec xs i j:'a list=
   (let top = (Nat_big_num.sub (Nat_big_num.of_int (List.length xs))( (Nat_big_num.of_int 1))) in
  subrange_list_inc xs ( Nat_big_num.sub top i) ( Nat_big_num.sub top j))

(*val subrange_list : forall 'a. bool -> list 'a -> integer -> integer -> list 'a*)
let subrange_list is_inc xs i j:'a list=  (if is_inc then subrange_list_inc xs i j else subrange_list_dec xs i j)

(*val update_subrange_list_inc : forall 'a. list 'a -> integer -> integer -> list 'a -> list 'a*)
let update_subrange_list_inc xs i j xs':'a list=
   (let (toJ,suffix) = (Lem_list.split_at (nat_of_int ( Nat_big_num.add j( (Nat_big_num.of_int 1)))) xs) in
  let (prefix,_fromItoJ) = (Lem_list.split_at (nat_of_int i) toJ) in 
  List.rev_append (List.rev (List.rev_append (List.rev prefix) xs')) suffix)

(*val update_subrange_list_dec : forall 'a. list 'a -> integer -> integer -> list 'a -> list 'a*)
let update_subrange_list_dec xs i j xs':'a list=
   (let top = (Nat_big_num.sub (Nat_big_num.of_int (List.length xs))( (Nat_big_num.of_int 1))) in
  update_subrange_list_inc xs ( Nat_big_num.sub top i) ( Nat_big_num.sub top j) xs')

(*val update_subrange_list : forall 'a. bool -> list 'a -> integer -> integer -> list 'a -> list 'a*)
let update_subrange_list is_inc xs i j xs':'a list=
   (if is_inc then update_subrange_list_inc xs i j xs' else update_subrange_list_dec xs i j xs')

(*val access_list_inc : forall 'a. list 'a -> integer -> 'a*)
let access_list_inc xs n:'a=  (List.nth xs (nat_of_int n))

(*val access_list_dec : forall 'a. list 'a -> integer -> 'a*)
let access_list_dec xs n:'a=
   (let top = (Nat_big_num.sub (Nat_big_num.of_int (List.length xs))( (Nat_big_num.of_int 1))) in
  access_list_inc xs ( Nat_big_num.sub top n))

(*val access_list : forall 'a. bool -> list 'a -> integer -> 'a*)
let access_list is_inc xs n:'a=
   (if is_inc then access_list_inc xs n else access_list_dec xs n)

(*val update_list_inc : forall 'a. list 'a -> integer -> 'a -> list 'a*)
let update_list_inc xs n x:'a list=  (Lem_list.list_update xs (nat_of_int n) x)

(*val update_list_dec : forall 'a. list 'a -> integer -> 'a -> list 'a*)
let update_list_dec xs n x:'a list=
   (let top = (Nat_big_num.sub (Nat_big_num.of_int (List.length xs))( (Nat_big_num.of_int 1))) in
  update_list_inc xs ( Nat_big_num.sub top n) x)

(*val update_list : forall 'a. bool -> list 'a -> integer -> 'a -> list 'a*)
let update_list is_inc xs n x:'a list=
   (if is_inc then update_list_inc xs n x else update_list_dec xs n x)

let extract_only_bit:(bitU)list ->bitU=  ((function
  | [] ->  BU
  | [e] -> e
  | _ ->   BU
))

(*** Machine words *)

(*val length_mword : forall 'a. mword 'a -> integer*)

(*val slice_mword_dec : forall 'a 'b. mword 'a -> integer -> integer -> mword 'b*)
let slice_mword_dec w i j:Lem.mword=  (Lem.word_extract (nat_of_int i) (nat_of_int j) w)

(*val slice_mword_inc : forall 'a 'b. mword 'a -> integer -> integer -> mword 'b*)
let slice_mword_inc w i j:Lem.mword=
   (let top = (Nat_big_num.sub (Nat_big_num.of_int (Lem.word_length w))( (Nat_big_num.of_int 1))) in
  slice_mword_dec w ( Nat_big_num.sub top i) ( Nat_big_num.sub top j))

(*val slice_mword : forall 'a 'b. bool -> mword 'a -> integer -> integer -> mword 'b*)
let slice_mword is_inc w i j:Lem.mword=  (if is_inc then slice_mword_inc w i j else slice_mword_dec w i j)

(*val update_slice_mword_dec : forall 'a 'b. mword 'a -> integer -> integer -> mword 'b -> mword 'a*)
let update_slice_mword_dec w i j w':Lem.mword=  (Lem.word_update w (nat_of_int i) (nat_of_int j) w')

(*val update_slice_mword_inc : forall 'a 'b. mword 'a -> integer -> integer -> mword 'b -> mword 'a*)
let update_slice_mword_inc w i j w':Lem.mword=
   (let top = (Nat_big_num.sub (Nat_big_num.of_int (Lem.word_length w))( (Nat_big_num.of_int 1))) in
  update_slice_mword_dec w ( Nat_big_num.sub top i) ( Nat_big_num.sub top j) w')

(*val update_slice_mword : forall 'a 'b. bool -> mword 'a -> integer -> integer -> mword 'b -> mword 'a*)
let update_slice_mword is_inc w i j w':Lem.mword=
   (if is_inc then update_slice_mword_inc w i j w' else update_slice_mword_dec w i j w')

(*val access_mword_dec : forall 'a. mword 'a -> integer -> bitU*)
let access_mword_dec w n:bitU=  (bitU_of_bool (Lem.word_getBit w (nat_of_int n)))

(*val access_mword_inc : forall 'a. mword 'a -> integer -> bitU*)
let access_mword_inc w n:bitU=
   (let top = (Nat_big_num.sub (Nat_big_num.of_int (Lem.word_length w))( (Nat_big_num.of_int 1))) in
  access_mword_dec w ( Nat_big_num.sub top n))

(*val access_mword : forall 'a. bool -> mword 'a -> integer -> bitU*)
let access_mword is_inc w n:bitU=
   (if is_inc then access_mword_inc w n else access_mword_dec w n)

(*val update_mword_bool_dec : forall 'a. mword 'a -> integer -> bool -> mword 'a*)
let update_mword_bool_dec w n b:Lem.mword=  (Lem.word_setBit w (nat_of_int n) b)
let update_mword_dec w n b:(Lem.mword)option=  (Lem.option_map (update_mword_bool_dec w n) (bool_of_bitU b))

(*val update_mword_bool_inc : forall 'a. mword 'a -> integer -> bool -> mword 'a*)
let update_mword_bool_inc w n b:Lem.mword=
   (let top = (Nat_big_num.sub (Nat_big_num.of_int (Lem.word_length w))( (Nat_big_num.of_int 1))) in
  update_mword_bool_dec w ( Nat_big_num.sub top n) b)
let update_mword_inc w n b:(Lem.mword)option=  (Lem.option_map (update_mword_bool_inc w n) (bool_of_bitU b))

(*val int_of_mword : forall 'a. bool -> mword 'a -> integer*)
let int_of_mword sign w:Nat_big_num.num=
   (if sign then Lem.signedIntegerFromWord w else Lem.naturalFromWord w)

(* Translating between a type level number (itself 'n) and an integer *)

let size_itself_int dict_Machine_word_Size_a x:Nat_big_num.num=  (Nat_big_num.of_int (size_itself 
  dict_Machine_word_Size_a x))

(* NB: the corresponding sail type is forall 'n. atom('n) -> itself('n),
   the actual integer is ignored. *)

(*val make_the_value : forall 'n. integer -> itself 'n*)
let make_the_value _:unit=  ()

(*** Bitvectors *)

type 'a bitvector_class={
  bits_of_method : 'a -> bitU list;
  (* We allow of_bits to be partial, as not all bitvector representations
     support undefined bits *)
  of_bits_method : bitU list ->  'a option;
  of_bools_method : bool list -> 'a;
  length_method : 'a -> Nat_big_num.num;
  (* of_int: the first parameter specifies the desired length of the bitvector *)
  of_int_method : Nat_big_num.num -> Nat_big_num.num -> 'a;
  (* Conversion to integers is undefined if any bit is undefined *)
  unsigned_method : 'a ->  Nat_big_num.num option;
  signed_method : 'a ->  Nat_big_num.num option;
  (* Lifting of integer operations to bitvectors:  The boolean flag indicates
     whether to treat the bitvectors as signed (true) or not (false). *)
  arith_op_bv_method : (Nat_big_num.num -> Nat_big_num.num -> Nat_big_num.num) -> bool -> 'a -> 'a -> 'a
}

(*val of_bits_failwith : forall 'a. Bitvector 'a => list bitU -> 'a*)
let of_bits_failwith dict_Sail2_values_Bitvector_a bits:'a=  (maybe_failwith (
  dict_Sail2_values_Bitvector_a.of_bits_method bits))

let int_of_bv dict_Sail2_values_Bitvector_a sign:'a ->(Nat_big_num.num)option=  (if sign then  
  dict_Sail2_values_Bitvector_a.signed_method else  dict_Sail2_values_Bitvector_a.unsigned_method)

let instance_Sail2_values_Bitvector_list_dict dict_Sail2_values_BitU_a:('a list)bitvector_class= ({

  bits_of_method = (fun v->Lem_list.map  
  dict_Sail2_values_BitU_a.to_bitU_method v);

  of_bits_method = (fun v->Some (Lem_list.map  
  dict_Sail2_values_BitU_a.of_bitU_method v));

  of_bools_method = (fun v->Lem_list.map  
  dict_Sail2_values_BitU_a.of_bitU_method (Lem_list.map bitU_of_bool v));

  length_method = (fun xs->Nat_big_num.of_int (List.length xs));

  of_int_method = (fun len n->Lem_list.map  
  dict_Sail2_values_BitU_a.of_bitU_method (bits_of_int len n));

  unsigned_method = (fun v->unsigned_of_bits (Lem_list.map  
  dict_Sail2_values_BitU_a.to_bitU_method v));

  signed_method = (fun v->signed_of_bits (Lem_list.map  
  dict_Sail2_values_BitU_a.to_bitU_method v));

  arith_op_bv_method = (fun op sign l r->Lem_list.map  
  dict_Sail2_values_BitU_a.of_bitU_method (arith_op_bits op sign (Lem_list.map  
  dict_Sail2_values_BitU_a.to_bitU_method l) (Lem_list.map  dict_Sail2_values_BitU_a.to_bitU_method r)))})

let instance_Sail2_values_Bitvector_Machine_word_mword_dict dict_Machine_word_Size_a:(Lem.mword)bitvector_class= ({

  bits_of_method = (fun v->Lem_list.map bitU_of_bool (Lem.bitlistFromWord v));

  of_bits_method = (fun v->Lem.option_map Lem.wordFromBitlist (just_list (Lem_list.map bool_of_bitU v)));

  of_bools_method = (fun v->Lem.wordFromBitlist v);

  length_method = (fun v->Nat_big_num.of_int (Lem.word_length v));

  of_int_method = (fun _ n -> wordFromInteger 
  dict_Machine_word_Size_a n);

  unsigned_method = (fun v->Some (Lem.naturalFromWord v));

  signed_method = (fun v->Some (Lem.signedIntegerFromWord v));

  arith_op_bv_method = (fun op sign l r->wordFromInteger 
  dict_Machine_word_Size_a (op (int_of_mword sign l) (int_of_mword sign r)))})

let access_bv_inc dict_Sail2_values_Bitvector_a v n:bitU=  (access_list true  (
  dict_Sail2_values_Bitvector_a.bits_of_method v) n)
let access_bv_dec dict_Sail2_values_Bitvector_a v n:bitU=  (access_list false (
  dict_Sail2_values_Bitvector_a.bits_of_method v) n)

let update_bv_inc dict_Sail2_values_Bitvector_a v n b:(bitU)list=  (update_list true  (
  dict_Sail2_values_Bitvector_a.bits_of_method v) n b)
let update_bv_dec dict_Sail2_values_Bitvector_a v n b:(bitU)list=  (update_list false (
  dict_Sail2_values_Bitvector_a.bits_of_method v) n b)

let subrange_bv_inc dict_Sail2_values_Bitvector_a v i j:(bitU)list=  (subrange_list true  (
  dict_Sail2_values_Bitvector_a.bits_of_method v) i j)
let subrange_bv_dec dict_Sail2_values_Bitvector_a v i j:(bitU)list=  (subrange_list false (
  dict_Sail2_values_Bitvector_a.bits_of_method v) i j)

let update_subrange_bv_inc dict_Sail2_values_Bitvector_a dict_Sail2_values_Bitvector_b v i j v':(bitU)list=  (update_subrange_list true  (
  dict_Sail2_values_Bitvector_b.bits_of_method v) i j (dict_Sail2_values_Bitvector_a.bits_of_method v'))
let update_subrange_bv_dec dict_Sail2_values_Bitvector_a dict_Sail2_values_Bitvector_b v i j v':(bitU)list=  (update_subrange_list false (
  dict_Sail2_values_Bitvector_b.bits_of_method v) i j (dict_Sail2_values_Bitvector_a.bits_of_method v'))

(*val extz_bv : forall 'a. Bitvector 'a => integer -> 'a -> list bitU*)
let extz_bv dict_Sail2_values_Bitvector_a n v:(bitU)list=  (extz_bits n (
  dict_Sail2_values_Bitvector_a.bits_of_method v))

(*val exts_bv : forall 'a. Bitvector 'a => integer -> 'a -> list bitU*)
let exts_bv dict_Sail2_values_Bitvector_a n v:(bitU)list=  (exts_bits n (
  dict_Sail2_values_Bitvector_a.bits_of_method v))

(*val nat_of_bv : forall 'a. Bitvector 'a => 'a -> maybe nat*)
let nat_of_bv dict_Sail2_values_Bitvector_a v:(int)option=  (Lem.option_map nat_of_int (
  dict_Sail2_values_Bitvector_a.unsigned_method v))

(*val string_of_bv : forall 'a. Bitvector 'a => 'a -> string*)
let string_of_bv dict_Sail2_values_Bitvector_a v:string=  (show_bitlist (
  dict_Sail2_values_Bitvector_a.bits_of_method v))

(*val string_of_bv_subrange : forall 'a. Bitvector 'a => 'a -> integer -> integer -> string*)
let string_of_bv_subrange dict_Sail2_values_Bitvector_a v i j:string=  (show_bitlist (subrange_bv_dec 
  (instance_Sail2_values_Bitvector_list_dict
     instance_Sail2_values_BitU_Sail2_values_bitU_dict) (dict_Sail2_values_Bitvector_a.bits_of_method v) i j))

(*val print_bits : forall 'a. Bitvector 'a => string -> 'a -> unit*)
let print_bits dict_Sail2_values_Bitvector_a str v:unit=  (print_endline (str ^ string_of_bv 
  dict_Sail2_values_Bitvector_a v))

(*val prerr_bits : forall 'a. Bitvector 'a => string -> 'a -> unit*)
let prerr_bits dict_Sail2_values_Bitvector_a str v:unit=  (prerr_endline (str ^ string_of_bv 
  dict_Sail2_values_Bitvector_a v))

(*val dec_str : integer -> string*)
let dec_str bv:string=  (Nat_big_num.to_string bv)

(*val concat_str : string -> string -> string*)
let concat_str str1 str2:string=  (str1 ^ str2)

(*val int_of_bit : bitU -> integer*)
let int_of_bit b:Nat_big_num.num=
   ((match b with
  | B0 -> (Nat_big_num.of_int 0)
  | B1 -> (Nat_big_num.of_int 1)
  | _ -> failwith "int_of_bit saw unknown"
  ))

(*val count_leading_zero_bits : list bitU -> integer*)
let rec count_leading_zero_bits v:Nat_big_num.num=
   ((match v with
  | B0 :: v' -> Nat_big_num.add (count_leading_zero_bits v')( (Nat_big_num.of_int 1))
  | _ -> (Nat_big_num.of_int 0)
  ))

(*val count_leading_zeros_bv : forall 'a. Bitvector 'a => 'a -> integer*)
let count_leading_zeros_bv dict_Sail2_values_Bitvector_a v:Nat_big_num.num=  (count_leading_zero_bits (
  dict_Sail2_values_Bitvector_a.bits_of_method v))

(*val decimal_string_of_bv : forall 'a. Bitvector 'a => 'a -> string*)
let decimal_string_of_bv dict_Sail2_values_Bitvector_a bv:string=
   (let place_values =
    (Lem_list.mapi
      (fun i b -> Nat_big_num.mul (int_of_bit b) ( Nat_big_num.pow_int( (Nat_big_num.of_int 2)) i))
      (List.rev (dict_Sail2_values_Bitvector_a.bits_of_method bv)))
  in
  let sum = (List.fold_left Nat_big_num.add( (Nat_big_num.of_int 0)) place_values) in
  Nat_big_num.to_string sum)

(*val align_bits : forall 'a. Bitvector 'a => 'a -> integer -> 'a*)
let align_bits dict_Sail2_values_Bitvector_a x y:'a=
   (let len = (dict_Sail2_values_Bitvector_a.length_method x) in
  (match  dict_Sail2_values_Bitvector_a.unsigned_method x with
  | Some x -> dict_Sail2_values_Bitvector_a.of_int_method len (align_int x y)
  | None -> failwith "align_bits: failed to convert bitvector"
  ))

(*** Bytes and addresses *)

type memory_byte = bitU list

(*val byte_chunks : forall 'a. list 'a -> maybe (list (list 'a))*)
let rec byte_chunks bs:(('a list)list)option=  ((match bs with
  | [] -> Some []
  | a::b::c::d::e::f::g::h::rest ->
     Lem.option_bind (byte_chunks rest) (fun rest -> Some ([a;b;c;d;e;f;g;h] :: rest))
  | _ -> None
))

(*val bytes_of_bits : forall 'a. Bitvector 'a => 'a -> maybe (list memory_byte)*)
let bytes_of_bits dict_Sail2_values_Bitvector_a bs:(((bitU)list)list)option=  (byte_chunks (
  dict_Sail2_values_Bitvector_a.bits_of_method bs))

(*val bits_of_bytes : list memory_byte -> list bitU*)
let bits_of_bytes bs:(bitU)list=  (List.concat (Lem_list.map (fun v->Lem_list.map (fun b->b) v) bs))

let mem_bytes_of_bits dict_Sail2_values_Bitvector_a bs:(((bitU)list)list)option=  (Lem.option_map List.rev (bytes_of_bits 
  dict_Sail2_values_Bitvector_a bs))
let bits_of_mem_bytes bs:(bitU)list=  (bits_of_bytes (List.rev bs))

(*val bitv_of_byte_lifteds : list Sail_impl_base.byte_lifted -> list bitU
let bitv_of_byte_lifteds v =
  foldl (fun x (Byte_lifted y) -> x ++ (List.map bitU_of_bit_lifted y)) [] v

val bitv_of_bytes : list Sail_impl_base.byte -> list bitU
let bitv_of_bytes v =
  foldl (fun x (Byte y) -> x ++ (List.map bitU_of_bit y)) [] v

val byte_lifteds_of_bitv : list bitU -> list byte_lifted
let byte_lifteds_of_bitv bits =
  let bits = List.map bit_lifted_of_bitU bits in
  byte_lifteds_of_bit_lifteds bits

val bytes_of_bitv : list bitU -> list byte
let bytes_of_bitv bits =
  let bits = List.map bit_of_bitU bits in
  bytes_of_bits bits

val bit_lifteds_of_bitUs : list bitU -> list bit_lifted
let bit_lifteds_of_bitUs bits = List.map bit_lifted_of_bitU bits

val bit_lifteds_of_bitv : list bitU -> list bit_lifted
let bit_lifteds_of_bitv v = bit_lifteds_of_bitUs v


val address_lifted_of_bitv : list bitU -> address_lifted
let address_lifted_of_bitv v =
  let byte_lifteds = byte_lifteds_of_bitv v in
  let maybe_address_integer =
    match (maybe_all (List.map byte_of_byte_lifted byte_lifteds)) with
    | Just bs -> Just (integer_of_byte_list bs)
    | _ -> Nothing
    end in
  Address_lifted byte_lifteds maybe_address_integer

val bitv_of_address_lifted : address_lifted -> list bitU
let bitv_of_address_lifted (Address_lifted bs _) = bitv_of_byte_lifteds bs

val address_of_bitv : list bitU -> address
let address_of_bitv v =
  let bytes = bytes_of_bitv v in
  address_of_byte_list bytes*)

let rec reverse_endianness_list bits:'a list=
   (if List.length bits <= 8 then bits else 
    List.rev_append (List.rev (reverse_endianness_list (drop_list( (Nat_big_num.of_int 8)) bits))) (take_list( (Nat_big_num.of_int 8)) bits))


(*** Registers *)

(*type register_field = string
type register_field_index = string * (integer * integer) (* name, start and end *)

type register =
  | Register of string * (* name *)
                integer * (* length *)
                integer * (* start index *)
                bool * (* is increasing *)
                  list register_field_index
  | UndefinedRegister of integer (* length *)
  | RegisterPair of register * register*)

type 'rv register_Value_class={
  bool_of_regval_method : 'rv ->  bool option;
  regval_of_bool_method : bool -> 'rv;
  int_of_regval_method : 'rv ->  Nat_big_num.num option;
  regval_of_int_method : Nat_big_num.num -> 'rv;
  real_of_regval_method : 'rv ->  float option;
  regval_of_real_method : float -> 'rv;
  string_of_regval_method : 'rv ->  string option;
  regval_of_string_method : string -> 'rv
}

type( 'regstate, 'regval, 'a) register_ref =
  { name : string;
     (*is_inc : bool;*)
     read_from : 'regstate -> 'a;
     write_to : 'a -> 'regstate -> 'regstate;
     of_regval : 'regval ->  'a option;
     regval_of : 'a -> 'regval }

(* Register operations which do not depend on polymorphic type *)
type( 'regstate, 'regval) register_ops =
  (('regval -> bool) * ('regstate -> 'regval) *
   ('regval -> 'regstate ->  'regstate option))

(*val register_ops_of : forall 'st 'regval 'a.
    register_ref 'st 'regval 'a -> register_ops 'st 'regval*)
let register_ops_of reg:('regval ->bool)*('st ->'regval)*('regval ->'st ->'st option)=
   ((fun x -> Lem.is_some (reg.of_regval x)),
   (fun x -> reg.regval_of (reg.read_from x)),
   (fun x st -> Lem.option_map (fun v -> reg.write_to v st) (reg.of_regval x)))

(* Register accessors: pair of functions for reading and writing register values *)
type( 'regstate, 'regval) register_accessors =
  ((string -> 'regstate ->  'regval option) *
   (string -> 'regval -> 'regstate ->  'regstate option))

(*val mk_accessors : forall 'st 'v.
    (string -> maybe (register_ops 'st 'v)) -> register_accessors 'st 'v*)
let mk_accessors regs:(string ->'st ->'v option)*(string ->'v ->'st ->'st option)=
   ((fun nm st -> Lem.option_map (fun (_, acc, _) -> acc st) (regs nm)),
   (fun nm v st -> Lem.option_bind (regs nm) (fun (_, _, put) -> put v st)))

type( 'regtype, 'a) field_ref =
  { field_name : string;
     field_start : Nat_big_num.num;
     field_is_inc : bool;
     get_field : 'regtype -> 'a;
     set_field : 'regtype -> 'a -> 'regtype }

(*let name_of_reg = function
  | Register name _ _ _ _ -> name
  | UndefinedRegister _ -> failwith "name_of_reg UndefinedRegister"
  | RegisterPair _ _ -> failwith "name_of_reg RegisterPair"
end

let size_of_reg = function
  | Register _ size _ _ _ -> size
  | UndefinedRegister size -> size
  | RegisterPair _ _ -> failwith "size_of_reg RegisterPair"
end

let start_of_reg = function
  | Register _ _ start _ _ -> start
  | UndefinedRegister _ -> failwith "start_of_reg UndefinedRegister"
  | RegisterPair _ _ -> failwith "start_of_reg RegisterPair"
end

let is_inc_of_reg = function
  | Register _ _ _ is_inc _ -> is_inc
  | UndefinedRegister _ -> failwith "is_inc_of_reg UndefinedRegister"
  | RegisterPair _ _ -> failwith "in_inc_of_reg RegisterPair"
end

let dir_of_reg = function
  | Register _ _ _ is_inc _ -> dir_of_bool is_inc
  | UndefinedRegister _ -> failwith "dir_of_reg UndefinedRegister"
  | RegisterPair _ _ -> failwith "dir_of_reg RegisterPair"
end

let size_of_reg_nat reg = natFromInteger (size_of_reg reg)
let start_of_reg_nat reg = natFromInteger (start_of_reg reg)

val register_field_indices_aux : register -> register_field -> maybe (integer * integer)
let rec register_field_indices_aux register rfield =
  match register with
  | Register _ _ _ _ rfields -> List.lookup rfield rfields
  | RegisterPair r1 r2 ->
      let m_indices = register_field_indices_aux r1 rfield in
      if isJust m_indices then m_indices else register_field_indices_aux r2 rfield
  | UndefinedRegister _ -> Nothing
  end

val register_field_indices : register -> register_field -> integer * integer
let register_field_indices register rfield =
  match register_field_indices_aux register rfield with
  | Just indices -> indices
  | Nothing -> failwith "Invalid register/register-field combination"
  end

let register_field_indices_nat reg regfield=
  let (i,j) = register_field_indices reg regfield in
  (natFromInteger i,natFromInteger j)*)

(*let rec external_reg_value reg_name v =
  let (internal_start, external_start, direction) =
    match reg_name with
     | Reg _ start size dir ->
        (start, (if dir = D_increasing then start else (start - (size +1))), dir)
     | Reg_slice _ reg_start dir (slice_start, _) ->
        ((if dir = D_increasing then slice_start else (reg_start - slice_start)),
         slice_start, dir)
     | Reg_field _ reg_start dir _ (slice_start, _) ->
        ((if dir = D_increasing then slice_start else (reg_start - slice_start)),
         slice_start, dir)
     | Reg_f_slice _ reg_start dir _ _ (slice_start, _) ->
        ((if dir = D_increasing then slice_start else (reg_start - slice_start)),
         slice_start, dir)
     end in
  let bits = bit_lifteds_of_bitv v in
  <| rv_bits           = bits;
     rv_dir            = direction;
     rv_start          = external_start;
     rv_start_internal = internal_start |>

val internal_reg_value : register_value -> list bitU
let internal_reg_value v =
  List.map bitU_of_bit_lifted v.rv_bits
         (*(integerFromNat v.rv_start_internal)
         (v.rv_dir = D_increasing)*)


let external_slice (d:direction) (start:nat) ((i,j):(nat*nat)) =
  match d with
  (* This is the case the thread/concurrency model expects, so no change needed *)
  | D_increasing -> (i,j)
  | D_decreasing -> let slice_i = start - i in
                    let slice_j = (i - j) + slice_i in
                    (slice_i,slice_j)
  end *)

(* TODO
let external_reg_whole r =
  Reg (r.name) (natFromInteger r.start) (natFromInteger r.size) (dir_of_bool r.is_inc)

let external_reg_slice r (i,j) =
  let start = natFromInteger r.start in
  let dir = dir_of_bool r.is_inc in
  Reg_slice (r.name) start dir (external_slice dir start (i,j))

let external_reg_field_whole reg rfield =
  let (m,n) = register_field_indices_nat reg rfield in
  let start = start_of_reg_nat reg in
  let dir = dir_of_reg reg in
  Reg_field (name_of_reg reg) start dir rfield (external_slice dir start (m,n))

let external_reg_field_slice reg rfield (i,j) =
  let (m,n) = register_field_indices_nat reg rfield in
  let start = start_of_reg_nat reg in
  let dir = dir_of_reg reg in
  Reg_f_slice (name_of_reg reg) start dir rfield
              (external_slice dir start (m,n))
              (external_slice dir start (i,j))*)

(*val external_mem_value : list bitU -> memory_value
let external_mem_value v =
  byte_lifteds_of_bitv v $> List.reverse

val internal_mem_value : memory_value -> list bitU
let internal_mem_value bytes =
  List.reverse bytes $> bitv_of_byte_lifteds*)


(*val foreach : forall 'a 'vars.
  (list 'a) -> 'vars -> ('a -> 'vars -> 'vars) -> 'vars*)
let rec foreach l vars body:'vars=
   ((match l with
    | [] -> vars
    | (x :: xs) -> foreach xs (body x vars) body
  ))

(*val index_list : integer -> integer -> integer -> list integer*)
let rec index_list from to1 step:(Nat_big_num.num)list=
   (if ( Nat_big_num.greater step( (Nat_big_num.of_int 0)) && Nat_big_num.less_equal from to1) || ( Nat_big_num.less step( (Nat_big_num.of_int 0)) && Nat_big_num.less_equal to1 from) then
    from :: index_list ( Nat_big_num.add from step) to1 step
  else [])

(*val while : forall 'vars. 'vars -> ('vars -> bool) -> ('vars -> 'vars) -> 'vars*)
let rec while0 vars cond body:'vars=
   (if cond vars then while0 (body vars) cond body else vars)

(*val until : forall 'vars. 'vars -> ('vars -> bool) -> ('vars -> 'vars) -> 'vars*)
let rec until vars cond body:'vars=
   (let vars = (body vars) in
  if cond vars then vars else until (body vars) cond body)


(* convert numbers unsafely to naturals *)

type 'a toNatural_class={ toNatural_method : 'a -> Nat_big_num.num }
(* eta-expanded for Isabelle output, otherwise it breaks *)
let instance_Sail2_values_ToNatural_Num_integer_dict:(Nat_big_num.num)toNatural_class= ({

  toNatural_method = (fun n -> Nat_big_num.abs n)})
let instance_Sail2_values_ToNatural_Num_int_dict:(int)toNatural_class= ({

  toNatural_method = (fun n -> Nat_big_num.of_int (abs n))})
let instance_Sail2_values_ToNatural_nat_dict:(int)toNatural_class= ({

  toNatural_method = (fun n -> Nat_big_num.of_int n)})
let instance_Sail2_values_ToNatural_Num_natural_dict:(Nat_big_num.num)toNatural_class= ({

  toNatural_method = (fun n -> n)})

let toNaturalFiveTup dict_Sail2_values_ToNatural_a dict_Sail2_values_ToNatural_b dict_Sail2_values_ToNatural_c dict_Sail2_values_ToNatural_d dict_Sail2_values_ToNatural_e (n1,n2,n3,n4,n5):Nat_big_num.num*Nat_big_num.num*Nat_big_num.num*Nat_big_num.num*Nat_big_num.num=
   (dict_Sail2_values_ToNatural_d.toNatural_method n1, dict_Sail2_values_ToNatural_c.toNatural_method n2, dict_Sail2_values_ToNatural_b.toNatural_method n3, dict_Sail2_values_ToNatural_a.toNatural_method n4, dict_Sail2_values_ToNatural_e.toNatural_method n5)

(* Let the following types be generated by Sail per spec, using either bitlists
   or machine words as bitvector representation *)
(*type regfp =
  | RFull of (string)
  | RSlice of (string * integer * integer)
  | RSliceBit of (string * integer)
  | RField of (string * string)

type niafp =
  | NIAFP_successor
  | NIAFP_concrete_address of vector bitU
  | NIAFP_indirect_address

(* only for MIPS *)
type diafp =
  | DIAFP_none
  | DIAFP_concrete of vector bitU
  | DIAFP_reg of regfp

let regfp_to_reg (reg_info : string -> maybe string -> (nat * nat * direction * (nat * nat))) = function
  | RFull name ->
     let (start,length,direction,_) = reg_info name Nothing in
     Reg name start length direction
  | RSlice (name,i,j) ->
     let i = natFromInteger i in
     let j = natFromInteger j in
     let (start,length,direction,_) = reg_info name Nothing in
     let slice = external_slice direction start (i,j) in
     Reg_slice name start direction slice
  | RSliceBit (name,i) ->
     let i = natFromInteger i in
     let (start,length,direction,_) = reg_info name Nothing in
     let slice = external_slice direction start (i,i) in
     Reg_slice name start direction slice
  | RField (name,field_name) ->
     let (start,length,direction,span) = reg_info name (Just field_name) in
     let slice = external_slice direction start span in
     Reg_field name start direction field_name slice
end

let niafp_to_nia reginfo = function
  | NIAFP_successor -> NIA_successor
  | NIAFP_concrete_address v -> NIA_concrete_address (address_of_bitv v)
  | NIAFP_indirect_address -> NIA_indirect_address
end

let diafp_to_dia reginfo = function
  | DIAFP_none -> DIA_none
  | DIAFP_concrete v -> DIA_concrete_address (address_of_bitv v)
  | DIAFP_reg r -> DIA_register (regfp_to_reg reginfo r)
end
*)
OCaml

Innovation. Community. Security.