package frenetic

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file Fdd.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
open Core

module SDN = Frenetic_kernel.OpenFlow


module Field = struct

  (** The order of the constructors defines the default variable ordering and has a massive
      performance impact. Do not change unless you know what you are doing. *)
  type t
    = Switch
    | Location
    | From
    | AbstractLoc
    | VSwitch
    | VPort
    | Vlan
    | VlanPcp
    (* SJS: for simplicity, support only up to 5 meta fields for now *)
    | Meta0
    | Meta1
    | Meta2
    | Meta3
    | Meta4
    | EthType
    | IPProto
    | EthSrc
    | EthDst
    | IP4Src
    | IP4Dst
    | TCPSrcPort
    | TCPDstPort
    | VFabric
    [@@deriving sexp, enumerate, enum, hash]

  type field = t

  let num_fields = max + 1

  let of_string s =
    Sexp.of_string s |> t_of_sexp

  let to_string t =
    sexp_of_t t |> Sexp.to_string

  let is_valid_order (lst : t list) : bool =
    Set.Poly.(equal (of_list lst) (of_list all))

  let order = Array.init num_fields ~f:ident

  let set_order (lst : t list) : unit =
    assert (is_valid_order lst);
    List.iteri lst ~f:(fun i fld -> order.(to_enum fld) <- i)

  (* Not a clean way to invert a permutation, but fast *)
  let invert arr =
    let inverted = Array.init num_fields ~f:ident in
    Array.iteri arr ~f:(fun i elt -> inverted.(elt) <- i );
    inverted

  let get_order () =
    Array.to_list (invert order)
    |> List.filter_map ~f:of_enum

  (* compare depends on current order! *)
  let compare (x : t) (y : t) : int =
    (* using Obj.magic instead of to_enum for bettter performance *)
    Int.compare order.(Obj.magic x) order.(Obj.magic y)

  let equal x y = Poly.(x = y)

  module type ENV = sig
    type t
    val empty : t
    exception Full
    val add : t -> string -> Syntax.meta_init -> bool -> t (* may raise Full *)
    val lookup : t -> string -> field * (Syntax.meta_init * bool) (* may raise Not_found *)
  end

  module Env : ENV = struct

    type t = {
      alist : (string * (field * (Syntax.meta_init * bool))) list;
      depth : int
    }

    let empty = { alist = []; depth = 0 }

    exception Full

    let add env name init mut =
      let field =
        match env.depth with
        | 0 -> Meta0
        | 1 -> Meta1
        | 2 -> Meta2
        | 3 -> Meta3
        | 4 -> Meta4
        | _ -> raise Full
      in
      { alist = List.Assoc.add ~equal:Poly.(=) env.alist name (field, (init, mut));
        depth = env.depth + 1}

    let lookup env name =
      List.Assoc.find_exn ~equal:Poly.(=) env.alist name
  end

  let of_hv ?(env=Env.empty) hv = match hv with
    | Syntax.Switch _ -> Switch
    | Syntax.Location _ -> Location
    | Syntax.From _ -> From
    | Syntax.AbstractLoc _ -> AbstractLoc
    | Syntax.EthSrc _ -> EthSrc
    | Syntax.EthDst _ -> EthDst
    | Syntax.Vlan _ -> Vlan
    | Syntax.VlanPcp _ -> VlanPcp
    | Syntax.VSwitch _ -> VSwitch
    | Syntax.VPort _ -> VPort
    | Syntax.EthType _ -> EthType
    | Syntax.IPProto _ -> IPProto
    | Syntax.IP4Src _ -> IP4Src
    | Syntax.IP4Dst _ -> IP4Dst
    | Syntax.TCPSrcPort _ -> TCPSrcPort
    | Syntax.TCPDstPort _ -> TCPDstPort
    | Syntax.VFabric _ -> VFabric
    | Syntax.Meta (id,_) -> fst (Env.lookup env id)

  (* Heuristic to pick a variable order that operates by scoring the fields
     in a policy. A field receives a high score if, when a test field=X
     is false, the policy can be shrunk substantially.

     NOTE(arjun): This could be done better, but it seems to work quite well
     on FatTrees and the SDX benchmarks. Some ideas for improvement:

     - Easy: also account for setting tests field=X suceeded
     - Harder, but possibly much better: properly calculate the size of the
       pol for different field assignments. Don't traverse the policy
       repeatedly. Instead, write a size function that returns map from
       field assignments to sizes. *)
  let auto_order (pol : Syntax.policy) : unit =
    let open Syntax in
    (* Construct array of scores, where score starts at 0 for every field *)
    let count_arr = Array.init num_fields ~f:(fun _ -> 0) in
    let rec f_pred size (env, pred) = match pred with
      | True -> ()
      | False -> ()
      | Test (Syntax.Meta (id,_)) ->
        begin match Env.lookup env id with
        | (f, (Alias hv, false)) ->
          let f = to_enum f in
          let f' = to_enum (of_hv hv) in
          count_arr.(f) <- count_arr.(f) + size;
          count_arr.(f') <- count_arr.(f') + size
        | (f,_) ->
          let f = to_enum f in
          count_arr.(f) <- count_arr.(f) + size
        end
      | Test hv ->
        let f = to_enum (of_hv hv) in
        count_arr.(f) <- count_arr.(f) + size
      | Or (a, b) -> f_pred size (env, a); f_pred size (env, b)
      | And (a, b) -> f_pred size (env, a); f_pred size (env, b)
      | Neg a -> f_pred size (env, a) in
    let rec f_seq' pol lst env k = match pol with
      | Mod _ -> k (1, lst)
      | Filter a -> k (1, (env, a) :: lst)
      | Seq (p, q) ->
        f_seq' p lst env (fun (m, lst) ->
          f_seq' q lst env (fun (n, lst) ->
            k (m * n, lst)))
      | Union _ -> k (f_union pol env, lst)
      | Let { id; init; mut; body=p } ->
        let env = Env.add env id init mut in
        f_seq' p lst env k
      | Star p -> k (f_union p env, lst)
      | Link (sw,pt,_,_) -> k (1, (env, Test (Switch sw)) :: (env, Test (Location (Physical pt))) :: lst)
      | VLink (sw,pt,_,_) -> k (1, (env, Test (VSwitch sw)) :: (env, Test (VPort pt)) :: lst)
      | Dup -> k (1, lst)
    and f_seq pol env : int =
      let (size, preds) = f_seq' pol [] env (fun x -> x) in
      List.iter preds ~f:(f_pred size);
      size
    and f_union' pol lst env k = match pol with
      | Mod _ -> (1, lst)
      | Filter a -> (1, (env, a) :: lst)
      | Union (p, q) ->
        f_union' p lst env (fun (m, lst) ->
          f_union' q lst env (fun (n, lst) ->
            k (m + n, lst)))
      | Seq _ -> k (f_seq pol env, lst)
      | Let { id; init; mut; body=p } ->
        let env = Env.add env id init mut in
        k (f_seq p env, lst)
      | Star p -> f_union' p lst env k
      | Link (sw,pt,_,_) -> k (1, (env, Test (Switch sw)) :: (env, Test (Location (Physical pt))) :: lst)
      | VLink (sw,pt,_,_) -> k (1, (env, Test (VSwitch sw)) :: (env, Test (VPort pt)) :: lst)
      | Dup -> k (1, lst)
    and f_union pol env : int =
      let (size, preds) = f_union' pol [] env (fun x -> x) in
      List.iter preds ~f:(f_pred size);
      size
    in
    let _ = f_seq pol Env.empty in
    Array.foldi count_arr ~init:[] ~f:(fun i acc n -> ((Obj.magic i, n) :: acc))
    |> List.stable_sort ~compare:(fun (_, x) (_, y) -> Int.compare x y)
    |> List.rev (* SJS: do NOT remove & reverse order! Want stable sort *)
    |> List.map ~f:fst
    |> set_order

end

module Value = struct

  type t
    = Const of Int64.t
    | Mask of Int64.t * int
    | AbstractLocation of Syntax.abstract_location
    | Pipe of string
    | Query of string
    (* TODO(grouptable): HACK, should only be able to fast fail on ports.
     * Put this somewhere else *)
    | FastFail of Int32.t list
    [@@deriving sexp, hash]

  (* subseq_eq, meet and join are defined to make this fit interface of Vlr.Lattice *)
  let subset_eq a b =
    (* Note that Mask checking is a lot like OpenFlow.Pattern.Ip, but the int's are different sizes *)
    let subset_eq_mask a m b n =
      if Poly.(m < n)
        then false
        else
          Poly.(Int64.shift_right_logical a (64-n) = Int64.shift_right_logical b (64-n))
    in
    match a, b with
    | Const  a           , Const b
    (* Note that comparing a mask to a constant requires the mask to be all 64 bits, otherwise they fail the lesser mask test *)
    | Mask(a, 64)        , Const b -> Poly.(a = b)
    | AbstractLocation a , AbstractLocation b -> Poly.(a = b)
    | Pipe   a           , Pipe  b
    | Query  a           , Query b -> Poly.(a = b)
    | Mask             _ , Const            _
    | AbstractLocation _ ,                  _
    | Pipe             _ ,                  _
    | Query            _ ,                  _
    | FastFail         _ ,                  _
    | _                  , AbstractLocation _
    | _                  , Pipe             _
    | _                  , Query            _
    | _                  , FastFail         _ -> false
    | Mask(a, m)         , Mask(b, n) -> subset_eq_mask a m  b n
    | Const a            , Mask(b, n) -> subset_eq_mask a 64 b n

  let meet ?(tight=false) a b =
    let meet_mask a m b n =
      let lt = subset_eq (Mask(a, m)) (Mask(b, n)) in
      let gt = subset_eq (Mask(b, n)) (Mask(a, m)) in
      if lt && gt then
        Some(Mask(a, m))
      else if lt then
        if (not tight) || (m = (n + 1)) then Some(Mask(a, m)) else None
      else if gt then
        if (not tight) || (n = (m + 1)) then Some(Mask(b, n)) else None
      else
        None
    in
    match a, b with
    | AbstractLocation a , AbstractLocation b ->
      if Syntax.equal_abstract_location a b then Some(AbstractLocation a) else None
    | AbstractLocation _ , _
    | _ , AbstractLocation _ -> None
    | Const  a   , Const b
    | Mask(a, 64), Const b -> if Poly.(a = b) then Some(Const a) else None
    | Pipe   a   , Pipe  b -> if Poly.(a = b) then Some(Pipe a) else None
    | Query  a   , Query b -> if Poly.(a = b) then Some(Query a) else None
    | Mask     _ , Const _
    | Pipe     _ ,       _
    | Query    _ ,       _
    | _          , Pipe  _
    | _          , Query _
    | FastFail _ , _
    | _          , FastFail _ -> None
    | Mask(a, m) , Mask(b, n) -> meet_mask a m  b n
    | Const a, Mask(b, n)     -> meet_mask a 64 b n

  let join ?(tight=false) a b =
    (* The intent here looks a lot like OpenFlow.Pattern.Ip.join, but the notion of "tightness" might not
       not apply.  Look at perhaps sharing the logic between the two, abstracting out bit length since this deals with
       64 bit ints *)
    let join_mask a m b n =
      let lt = subset_eq (Mask(a, m)) (Mask(b, n)) in
      let gt = subset_eq (Mask(b, n)) (Mask(a, m)) in
      if lt && gt then
        Some(Mask(a, m))
      else if lt then
        if (not tight) || (n = (m - 1)) then Some(Mask(b, n)) else None
      else if gt then
        if (not tight) || (m = (n - 1)) then Some(Mask(a, m)) else None
      else
        if (not tight) || m = n then
          let x, y = (Mask(a, m - 1), Mask(b, n - 1)) in
          if subset_eq x y && subset_eq y x then Some(x) else None
        else
          None (* XXX(seliopou): complete definition *)
    in
    match a, b with
    | AbstractLocation a , AbstractLocation b ->
      if Syntax.equal_abstract_location a b then Some(AbstractLocation a) else None
    | AbstractLocation _ , _
    | _ , AbstractLocation _ -> None
    | Const  a   , Const b
    | Mask(a, 64), Const b -> if Poly.(a = b) then Some(Const a) else None
    | Pipe   a   , Pipe  b -> if Poly.(a = b) then Some(Pipe a) else None
    | Query  a   , Query b -> if Poly.(a = b) then Some(Query a) else None
    | Mask     _ , Const _
    | Pipe     _ ,       _
    | Query    _ ,       _
    | _          , Pipe  _
    | _          , Query _
    | FastFail _ , _
    | _          , FastFail _ -> None
    | Mask(a, m) , Mask(b, n) -> join_mask a m  b n
    | Const a, Mask(b, n)     -> join_mask a 64 b n

  (* Value compare is used in Pattern below, but is not public *)
  let compare x y = match (x, y) with
    | Const a, Mask (b, 64)
    | Mask (a, 64), Const b
    | Const a, Const b -> Int64.compare a b
    | Query s1, Query s2
    | Pipe s1, Pipe s2 -> String.compare s1 s2
    | FastFail l1, FastFail l2 -> List.compare Int32.compare l1 l2
    | Mask(a, m) , Mask(b, n) ->
      let shift = 64 - min m n in
      (match Int64.(compare (shift_right a shift) (shift_right b shift)) with
       | 0 -> Int.compare n m
       | c -> c)
    | AbstractLocation a , AbstractLocation b ->
      Syntax.compare_abstract_location a b
    | Const _ , _ -> -1
    | _, Const _ -> 1
    | Mask _, _ -> -1
    | _, Mask _ -> 1
    | AbstractLocation _ , _ -> -1
    | _ , AbstractLocation _ -> 1
    | Query _, _ -> -1
    | _, Query _ -> 1
    | Pipe _, _ -> -1
    | _, Pipe _ -> 1

  let equal x y = compare x y = 0

  let to_string = function
    | Const(a)   -> Printf.sprintf "%Lu" a
    | Mask(a, m) -> Printf.sprintf "%Lu/%d" a m
    | AbstractLocation(s) -> Printf.sprintf "%s" s
    | Pipe(p) -> Printf.sprintf "Pipe(%s)" p
    | Query(p) -> Printf.sprintf "Query(%s)" p
    | FastFail(p_lst) -> Printf.sprintf "FastFail(%s)" (Syntax.string_of_fastfail p_lst)

  let of_int   t = Const (Int64.of_int   t)
  (* Private to this file only *)
  let of_int32 t = Const (Int64.of_int32 t)
  let of_int64 t = Const t
  let to_int64_exn = function
    | Const k -> k
    | _ -> assert false
end

exception FieldValue_mismatch of Field.t * Value.t

module Pattern = struct
  type t = Field.t * Value.t
  [@@deriving compare]

  let to_string (f, v) =
    Printf.sprintf "%s = %s" (Field.to_string f) (Value.to_string v)

  let equal a b =
    compare a b = 0

  let to_int = Int64.to_int_exn
  let to_int32 = Int64.to_int32_exn

  let of_hv ?(env=Field.Env.empty) hv =
    let open Syntax in
    match hv with
    | Switch sw_id -> (Field.Switch, Value.(Const sw_id))
    | Location(Physical p) -> (Field.Location, Value.of_int32 p)
    | From loc -> (Field.From, Value.AbstractLocation loc)
    | AbstractLoc loc -> (Field.AbstractLoc, Value.AbstractLocation loc)
    (* TODO(grouptable): value hack *)
    | Location(FastFail p_lst) -> (Field.Location, Value.(FastFail p_lst))
    | Location(Pipe p)  -> (Field.Location, Value.(Pipe p))
    | Location(Query p) -> (Field.Location, Value.(Query p))
    | EthSrc(dlAddr) -> (Field.EthSrc, Value.(Const dlAddr))
    | EthDst(dlAddr) -> (Field.EthDst, Value.(Const dlAddr))
    | Vlan(vlan) -> (Field.Vlan, Value.of_int vlan)
    | VlanPcp(vlanPcp) -> (Field.VlanPcp, Value.of_int vlanPcp)
    | VSwitch(vsw_id) -> (Field.VSwitch, Value.(Const vsw_id))
    | VPort(vpt) ->  (Field.VPort, Value.(Const vpt))
    | EthType(dlTyp) -> (Field.EthType, Value.of_int dlTyp)
    | IPProto(nwProto) -> (Field.IPProto, Value.of_int nwProto)
    | IP4Src(nwAddr, mask) ->
      (Field.IP4Src, Value.(Mask(Int64.of_int32 nwAddr, 32 + (Int32.to_int_exn mask))))
    | IP4Dst(nwAddr, mask) ->
      (Field.IP4Dst, Value.(Mask(Int64.of_int32 nwAddr, 32 + (Int32.to_int_exn mask))))
    | TCPSrcPort(tpPort) -> (Field.TCPSrcPort, Value.of_int tpPort)
    | TCPDstPort(tpPort) -> (Field.TCPDstPort, Value.of_int tpPort)
    | VFabric(vfab) -> (Field.VFabric, Value.(Const vfab))
    | Meta(name,v) -> (fst (Field.Env.lookup env name), Value.(Const v))

  let to_hv (f, v) =
    let open Field in
    let open Value in
    match f, v with
    | (Switch  , Const sw) -> Syntax.Switch sw
    | (Location, Const p) -> Syntax.(Location (Physical (to_int32 p)))
    | (Location, Pipe  p) -> Syntax.(Location (Pipe p))
    | (Location, Query q) -> Syntax.(Location (Query q))
    | (From, AbstractLocation l) -> Syntax.From l
    | (AbstractLoc, AbstractLocation l) -> Syntax.AbstractLoc l
    | (EthSrc  , Const dlAddr) -> Syntax.(EthSrc dlAddr)
    | (EthDst  , Const dlAddr) -> Syntax.(EthDst dlAddr)
    | (Vlan    , Const vlan) -> Syntax.(Vlan(to_int vlan))
    | (VlanPcp , Const vlanPcp) -> Syntax.(VlanPcp (to_int vlanPcp))
    | (VSwitch  , Const vsw) -> Syntax.VSwitch vsw
    | (VPort  , Const vpt) -> Syntax.VPort vpt
    | (EthType , Const dlTyp) -> Syntax.(EthType (to_int dlTyp))
    | (IPProto , Const nwProto) -> Syntax.(IPProto (to_int nwProto))
    | (IP4Src  , Mask(nwAddr, mask)) -> Syntax.(IP4Src(to_int32 nwAddr, Int32.of_int_exn (mask - 32)))
    | (IP4Src  , Const nwAddr) -> Syntax.(IP4Src(to_int32 nwAddr, 32l))
    | (IP4Dst  , Mask(nwAddr, mask)) -> Syntax.(IP4Dst(to_int32 nwAddr, Int32.of_int_exn (mask - 32)))
    | (IP4Dst  , Const nwAddr) -> Syntax.(IP4Dst(to_int32 nwAddr, 32l))
    | (TCPSrcPort, Const tpPort) -> Syntax.(TCPSrcPort(to_int tpPort))
    | (TCPDstPort, Const tpPort) -> Syntax.(TCPDstPort(to_int tpPort))
    | (VFabric, Const vfab) -> Syntax.VFabric vfab
    | _, _ -> raise (FieldValue_mismatch(f, v))

  let to_pred (f, v) =
    Syntax.Test (to_hv (f, v))

  let to_sdn (f, v) : SDN.Pattern.t -> SDN.Pattern.t =
    let open Field in
    let open Value in
    match f, v with
    | (Location, Const p) -> fun pat ->
      { pat with SDN.Pattern.inPort = Some(to_int32 p) }
    | (EthSrc, Const dlAddr) -> fun pat ->
      { pat with SDN.Pattern.dlSrc = Some(dlAddr) }
    | (EthDst, Const dlAddr) -> fun pat ->
      { pat with SDN.Pattern.dlDst = Some(dlAddr) }
    | (Vlan    , Const vlan) -> fun pat ->
      { pat with SDN.Pattern.dlVlan = Some(to_int vlan) }
    | (VlanPcp , Const vlanPcp) -> fun pat ->
      { pat with SDN.Pattern.dlVlanPcp = Some(to_int vlanPcp) }
    | (EthType, Const dlTyp) -> fun pat ->
      { pat with SDN.Pattern.dlTyp = Some(to_int dlTyp) }
    | (IPProto , Const nwProto) -> fun pat ->
      { pat with SDN.Pattern.nwProto = Some(to_int nwProto) }
    | (IP4Src  , Mask(nwAddr, mask)) -> fun pat ->
      { pat with SDN.Pattern.nwSrc =
          Some(to_int32 nwAddr, Int32.of_int_exn (mask - 32)) }
    | (IP4Src  , Const nwAddr) -> fun pat ->
      { pat with SDN.Pattern.nwSrc = Some(to_int32 nwAddr, 32l) }
    | (IP4Dst  , Mask(nwAddr, mask)) -> fun pat ->
      { pat with SDN.Pattern.nwDst =
          Some(to_int32 nwAddr, Int32.of_int_exn (mask - 32)) }
    | (IP4Dst  , Const nwAddr) -> fun pat ->
      { pat with SDN.Pattern.nwDst = Some(to_int32 nwAddr, 32l) }
    | (TCPSrcPort, Const tpPort) -> fun pat ->
      { pat with SDN.Pattern.tpSrc = Some(to_int tpPort) }
    | (TCPDstPort, Const tpPort) -> fun pat ->
      { pat with SDN.Pattern.tpDst = Some(to_int tpPort) }
    (* Should never happen because these pseudo-fields should have been removed by the time to_sdn is used *)
    | (Switch, Const _)
    | (From, AbstractLocation _)
    | (AbstractLoc, AbstractLocation _)
    | (VSwitch, Const _)
    | (VPort, Const _)
    | (VFabric, Const _)
    | (Meta0, Const _)
    | (Meta1, Const _)
    | (Meta2, Const _)
    | (Meta3, Const _)
    | (Meta4, Const _) -> assert false
    | _, _ -> raise (FieldValue_mismatch(f, v))

end


module Action = struct

  module Field_or_cont = struct
    type t =
      | F of Field.t
      | K
    [@@deriving sexp, compare, hash, eq]
  end
  type field_or_cont = Field_or_cont.t =
    | F of Field.t
    | K
  [@@deriving sexp, compare, hash, eq]

  module Seq = struct
    module M = Map.Make(Field_or_cont)
    include M

    (* let equal = equal Value.equal *)
    let compare = compare_direct Value.compare
    let hash_fold_t (f : 'v Hash.folder) (s: Hash.state) (t : 'v t) =
      Map.hash_fold_direct Field_or_cont.hash_fold_t f s t

    let fold_fields seq ~init ~f =
      fold seq ~init ~f:(fun ~key ~data acc -> match key with
        | F key -> f ~key ~data acc
        | _ -> acc)

    let prod s1 s2 =
      (* Favor modifications to the right *)
      merge s1 s2 ~f:(fun ~key m ->
        match m with
        | `Both(_, v) | `Left v | `Right v -> Some(v)
      )

    let equal_mod_k s1 s2 =
      equal Value.equal (remove s1 K) (remove s2 K)

    let compare_mod_k s1 s2 =
      compare (remove s1 K) (remove s2 K)

    let to_hvs seq =
      seq |> to_alist |> List.filter_map ~f:(function (F f,v) -> Some (f,v) | _ -> None)

    let to_string (t : Value.t t) : string =
      let s = to_alist t
        |> List.map ~f:(fun (f,v) ->
            let f = match f with
              | K -> "state"
              | F f -> Field.to_string f
            in
            sprintf "%s := %s" f (Value.to_string v))
        |> String.concat ~sep:", "
      in "[" ^ s ^ "]"
  end

  module Par = struct
    include Set.Make(struct
      type t = Value.t Seq.t [@@deriving sexp]
      let compare = Seq.compare
    end)

    let hash_fold_t (s : Hash.state) (t : t) =
      Set.hash_fold_direct (Seq.hash_fold_t Value.hash_fold_t) s t
    let hash (t : t) =
      hash_fold_t (Hash.alloc ()) t
      |> Hash.get_hash_value

    let to_hvs par =
      fold par ~init:[] ~f:(fun acc seq -> Seq.to_hvs seq @ acc)

    let to_string t : string =
      let s = to_list t
        |> List.map ~f:Seq.to_string
        |> String.concat ~sep:"; "
      in "{" ^ s ^ "}"

    let mod_k = map ~f:(fun seq -> Seq.remove seq K)

    let compare_mod_k p1 p2 =
      compare (mod_k p1) (mod_k p2)

    let equal_mod_k p1 p2 =
      equal (mod_k p1) (mod_k p2)
  end
  include Par

  let one = Par.singleton Seq.empty
  let zero = Par.empty
  let is_one = Par.equal one
  let is_zero = Par.is_empty

  let sum (a:t) (b:t) : t =
    (* This implements parallel composition specifically for NetKAT
       modifications. *)
    if is_zero a then b            (* 0 + p = p *)
    else if is_zero b then a       (* p + 0 = p *)
    else Par.union a b

  let prod (a:t) (b:t) : t =
    (* This implements sequential composition specifically for NetKAT
       modifications and makes use of NetKAT laws to simplify results.*)
    if is_zero a then zero       (* 0; p == 0 *)
    else if is_zero b then zero  (* p; 0 == 0 *)
    else if is_one a then b      (* 1; p == p *)
    else if is_one b then a      (* p; 1 == p *)
    else
      Par.fold a ~init:zero ~f:(fun acc seq1 ->
        (* cannot implement sequential composition of this kind here *)
        let _ = assert (match Seq.find seq1 K with None -> true | _ -> false) in
        let r = Par.map b ~f:(Seq.prod seq1)
        in
        Par.union acc r)

  let negate t : t =
    (* This implements negation for the [zero] and [one] actions. Any
       non-[zero] action will be mapped to [zero] by this function. *)
    if is_zero t then one else zero

  let get_queries (t : t) : string list =
    Par.fold t ~init:[] ~f:(fun queries seq ->
      match Seq.find seq (F Location) with
      | Some (Query str) -> str :: queries
      | _ -> queries)

  let to_sdn ?group_tbl (in_port : int64 option) (t:t) : SDN.par =
    let to_int = Int64.to_int_exn in
    let to_int32 = Int64.to_int32_exn in
    let t = Par.filter_map t ~f:(fun seq ->
      (* Queries are equivalent to drop, so remove any [Seq.t]'s from the
       * [Par.t] that set the location to a query.
       *
       * Pipe locations are no longer relevant to compilation, so rewrite all
       * all of them to the empty string. This will allow multiple singleton
       * [Seq.t]'s of port location assignments in a [Par.t] to be collapsed
       * into into one. *)
      match Seq.find seq (F Field.Location) with
      | Some(Value.Query _) -> None
      | Some(Value.Pipe  _) -> Some(Seq.set seq (F Field.Location) (Value.Pipe ""))
      | _                   -> Some(seq))
    in
    let to_port p = match in_port with
      | Some(p') when Poly.(p = p') -> SDN.InPort
      | _                    -> SDN.(Physical(to_int32 p))
    in
    Par.fold t ~init:[] ~f:(fun acc seq ->
      let open Field in
      let open Value in
      let init =
        match Seq.find seq (F Location) with
        | None           -> [SDN.(Output(InPort))]
        | Some (Const p) -> [SDN.(Output(to_port p))]
        | Some (Pipe  _) -> [SDN.(Output(Controller 128))]
        | Some (Query _) -> assert false
        | Some (FastFail p_lst) ->
           (match group_tbl with
            | Some tbl ->
              let gid = Frenetic_kernel.GroupTable0x04.add_fastfail_group tbl p_lst
              in [SDN.(FastFail gid)]
            | None -> failwith "fast failover present, but no group table provided!")
        | Some mask      -> raise (FieldValue_mismatch(Location, mask))
      in
      Seq.fold (Seq.remove seq (F Location)) ~init ~f:(fun ~key ~data acc ->
        match key, data with
        | F From       , AbstractLocation loc -> raise Syntax.Non_local
        | F AbstractLoc, AbstractLocation loc -> raise Syntax.Non_local
        | F Switch  , Const switch -> raise Syntax.Non_local
        | F Switch  , _ -> raise (FieldValue_mismatch(Switch, data))
        | F Location, _ -> assert false
        | F EthSrc  , Const dlAddr  -> SDN.(Modify(SetEthSrc dlAddr)) :: acc
        | F EthDst  , Const dlAddr  -> SDN.(Modify(SetEthDst dlAddr)) :: acc
        | F Vlan    , Const vlan    -> SDN.(Modify(SetVlan(Some(to_int vlan)))) :: acc
        | F VlanPcp , Const vlanPcp -> SDN.(Modify(SetVlanPcp (to_int vlanPcp))) :: acc
        | F VSwitch, Const _ | F VPort, Const _ | F VFabric, Const _ -> assert false (* JNF: danger, danger *)
        | F EthType , Const dlTyp   -> SDN.(Modify(SetEthTyp (to_int dlTyp))) :: acc
        | F IPProto , Const nwProto -> SDN.(Modify(SetIPProto (to_int nwProto))) :: acc
        | F IP4Src  , Mask (nwAddr, 64)
        | F IP4Src  , Const nwAddr   -> SDN.(Modify(SetIP4Src(to_int32 nwAddr))) :: acc
        | F IP4Dst  , Mask (nwAddr, 64)
        | F IP4Dst  , Const nwAddr   -> SDN.(Modify(SetIP4Dst(to_int32 nwAddr))) :: acc
        | F TCPSrcPort, Const tpPort -> SDN.(Modify(SetTCPSrcPort(to_int tpPort))) :: acc
        | F TCPDstPort, Const tpPort -> SDN.(Modify(SetTCPDstPort(to_int tpPort))) :: acc
        | F f, _ -> raise (FieldValue_mismatch(f, data))
        | K, _ -> assert false
      ) :: acc)

  let demod (f, v) t =
    Par.fold t ~init:zero ~f:(fun acc seq ->
      let seq' = match Seq.find seq (F f) with
        | Some(v')
            when Value.compare v v' = 0 -> Seq.remove seq (F f)
        | _                             -> seq
      in
      sum acc (Par.singleton seq'))

  let to_policy t =
    let open Syntax in
    Par.fold t ~init:drop ~f:(fun acc seq ->
      let seq' = Seq.fold_fields seq ~init:id ~f:(fun ~key ~data acc ->
        let hv = match Pattern.to_hv (key, data) with
          | IP4Src(nwAddr, 32l) -> IP4Src(nwAddr, 32l)
          | IP4Dst(nwAddr, 32l) -> IP4Dst(nwAddr, 32l)
          | IP4Src _ | IP4Dst _ -> raise (FieldValue_mismatch(key, data))
          | hv -> hv
        in
        Optimize.mk_seq (Mod(hv)) acc)
      in
      Optimize.mk_union seq' acc)

  let fold_fv t ~(init : 'a) ~(f : 'a -> field:Field.t -> value:Value.t -> 'a) : 'a =
    Par.fold t ~init ~f:(fun acc seq ->
      Seq.fold seq ~init:acc ~f:(fun ~key ~data acc -> match key with
        | F key -> f acc ~field:key ~value:data
        | _ -> acc))

  let pipes t =
    fold_fv t ~init:String.Set.empty ~f:(fun acc ~field ~value ->
      match field, value with
      | Field.Location, Value.Pipe q -> Set.add acc q
      | _, _ -> acc)

  let queries t =
    fold_fv t ~init:String.Set.empty ~f:(fun acc ~field ~value ->
      match field, value with
      | Field.Location, Value.Query q -> Set.add acc q
      | _, _ -> acc)
    |> Set.to_list

  let compare =
    Par.compare

  let size =
    Par.fold ~init:0 ~f:(fun acc seq -> acc + (Seq.length seq))

  let to_string = Par.to_string
    (* let par = to_sdn ~group_tbl:(Frenetic_kernel.GroupTable0x04.create ()) None t in
    Printf.sprintf "[%s]" (SDN.string_of_par par) *)

end



module FDD = struct

  include Vlr.Make
    (Field)
    (Value)
    (Action)

  let mk_cont k = const Action.(Par.singleton (Seq.singleton K (Value.of_int64 k)))

  let conts fdd =
    fold fdd
      ~f:(fun par ->
        Action.Par.fold par ~init:Int64.Set.empty ~f:(fun acc seq ->
          match Action.(Seq.find seq K) with
          | None -> acc
          | Some k -> Value.to_int64_exn k |> Int64.Set.add acc))
      ~g:(fun _ t f -> Set.union t f)

  let map_conts fdd ~(f: int64 -> int64) =
    let open Action in
    let f par = Par.map par ~f:(fun seq -> Seq.change seq K (function
      | None -> failwith "continuation expected, but none found"
      | Some k -> Some (k |> Value.to_int64_exn |> f |> Value.of_int64)))
    in
    map_r f fdd


  let equivalent t1 t2 =
    (* A context represents the set of packets that can reach a certain node.
       It is implemented simply as a partial map from fields to values.
     *)
    let module Ctxt = Action.Seq in
    let rec do_nodes t1 t2 ctxt =
      match unget t1, unget t2 with
      | Branch {test=(f1,v1); tru=l1; fls=r1; all_fls=all_fls_1},
        Branch {test=(f2,v2); tru=l2; fls=r2; all_fls=all_fls_2} ->
        begin match Field.compare f1 f2 with
        | -1 ->
          do_nodes l1 t2 Ctxt.(set ctxt (F f1) v1) &&
          do_nodes r1 t2 ctxt
        | 1 ->
          do_nodes t1 l2 Ctxt.(set ctxt (F f2) v2) &&
          do_nodes t1 r2 ctxt
        | 0 ->
          begin match Value.compare v1 v2 with
          | 0 ->
            do_nodes l1 l2 Ctxt.(set ctxt (F f1) v1) &&
            do_nodes r1 r2 ctxt
          | -1 ->
            do_nodes l1 all_fls_2 Ctxt.(set ctxt (F f1) v1) &&
            do_nodes r1 t2 ctxt
          | 1 ->
            do_nodes all_fls_1 l2 Ctxt.(set ctxt (F f2) v2) &&
            do_nodes t1 r2 ctxt
          | _ -> assert false
          end
        | _ -> assert false
        end
      | Branch {test=(f1,v1); tru=l1; fls=r1}, Leaf _ ->
        do_nodes l1 t2 Ctxt.(set ctxt (F f1) v1) &&
        do_nodes r1 t2 ctxt
      | Leaf _, Branch {test=(f2,v2); tru=l2; fls=r2} ->
        do_nodes t1 l2 Ctxt.(set ctxt (F f2) v2) &&
        do_nodes t1 r2 ctxt
      | Leaf par1, Leaf par2 ->
        Action.Par.equal (normalize par1 ctxt) (normalize par2 ctxt)
    and normalize par ctxt =
      (* actions are context dependent; here we canonicalize them by interpreting
         them in the context.
       *)
      Action.Par.map par ~f:(Action.Seq.prod ctxt)
    in
    do_nodes t1 t2 Ctxt.empty

end
OCaml

Innovation. Community. Security.