package frenetic

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file FabricGen.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
open Syntax
open Optimize
open Core

module Tbl = Hashtbl.Poly

module type FABRIC_GEN = sig
  type fabric = policy list * policy list

  val generate_fabric : ?log:bool
    -> ?record_paths:string
    -> vrel:pred
    -> vtopo:policy
    -> ving:pred
    -> veg:pred
    -> ptopo:policy
    -> ping:pred
    -> peg:pred
    -> unit
    -> fabric
end

module FabricGen = struct
  type fabric = policy list * policy list

  (* auxilliary list functions *)
  let inters xs ys = List.filter xs ~f:(List.mem ~equal:Poly.(=) ys)
  let minimize xs obj =
    let f best x =
      let v = obj x in
      match best,v with
      | None, None -> None
      | None, Some v -> Some (x, v)
      | Some (y, v'),None -> best
      | Some (y, v'), Some v -> if Poly.(v < v') then Some (x, v) else best
    in
    List.fold xs ~init:None ~f

  (* physical location *)
  type ploc = switchId * portId [@@deriving compare, eq]

  (* virtual location *)
  type vloc = vswitchId * vportId [@@deriving compare, eq]

  (* topology node *)
  type ('a, 'b) node =
    | InPort of 'a * 'b
    | OutPort of 'a * 'b
  [@@deriving sexp, compare, eq]

  (* virtual vertex *)
  module VV = struct
    type t = (vswitchId, vportId) node [@@deriving sexp, compare, eq]
    let hash  = Hashtbl.hash
  end

  (* physical vertex *)
  module PV = struct
    type t = (switchId, portId) node [@@deriving sexp, compare, eq]
    let hash = Hashtbl.hash
  end

  (* product vertex *)
  type prod_vertex =
    | ConsistentIn of VV.t * PV.t
    | InconsistentOut of VV.t * PV.t
    | ConsistentOut of VV.t * PV.t
    | InconsistentIn of VV.t * PV.t
  [@@deriving sexp, compare, eq]

  module V = struct
    type t = prod_vertex [@@deriving sexp, compare, eq]
    let hash = Hashtbl.hash
  end

  (* Module to build graphs from topologies (physical or virtual) *)
  module GraphBuilder (Params : sig
      type switch [@@deriving sexp]
      type port [@@deriving sexp]
      val locs_from_pred : pred -> (switch * port) list
      val links_from_topo : policy -> (switch * port * switch * port) list
    end) (Vlabel : Graph.Sig.COMPARABLE with type t = (Params.switch, Params.port) node) = struct
    module G = struct
      include Params
      include Graph.Persistent.Digraph.Concrete(Vlabel)

      let sexp_of_vertex v = sexp_of_node sexp_of_switch sexp_of_port (V.label v)
      let add_vertex' v g = add_vertex g v
      let add_edge' v1 v2 g = add_edge g v1 v2

      let add_loc (sw, pt) g =
        let in_pt = V.create (InPort (sw, pt)) in
        let out_pt = V.create (OutPort (sw, pt)) in
        g |> add_vertex' in_pt
        |> add_vertex' out_pt

      let add_link (sw1, pt1, sw2, pt2) g =
        g |> add_loc (sw1, pt1)
        |> add_loc (sw2, pt2)
        |> add_edge' (V.create (OutPort (sw1, pt1))) (V.create (InPort (sw2, pt2)))

      let connect_switch_ports' v1 v2 g =
        match V.label v1, V.label v2 with
        | InPort (sw, _), OutPort (sw', _) when Poly.(sw=sw') -> add_edge g v1 v2
        | _ -> g

      let connect_switch_ports g =
        fold_vertex (fun v1 g' -> fold_vertex (fun v2 g' -> connect_switch_ports' v1 v2 g') g g') g g

      let make (ingress : pred) (egress : pred) (topo : policy) =
        empty |> Caml.List.fold_right add_link (links_from_topo topo)
        |> Caml.List.fold_right add_loc (locs_from_pred ingress)
        |> Caml.List.fold_right add_loc (locs_from_pred egress)
        |> connect_switch_ports

      (* dot file encoding *)
      let graph_attributes g = []
      let default_vertex_attributes v = []
      let vertex_name v = "\"" ^ (Sexp.to_string (sexp_of_vertex v)) ^ "\""
      let vertex_attributes v = []

      let get_subgraph v =
        let open Graph.Graphviz.DotAttributes in
        match V.label v with
        | InPort (sw, _) | OutPort (sw, _) -> Some {
            sg_name = Sexp.to_string (sexp_of_switch sw);
            sg_attributes = [];
            sg_parent = None
          }

      let default_edge_attributes e = []
      let edge_attributes e = []
    end

    module Dot = Graph.Graphviz.Dot(G)
    include G

  end



  (* Module holding the three types of graphs we need: virtual, phyiscal, and product graphs *)
  module G = struct

    module Virt = GraphBuilder (struct
        type switch = vswitchId [@@deriving sexp]
        type port = vportId [@@deriving sexp]
        let rec locs_from_pred pred =
          match pred with
          | And (Test (VSwitch vsw), Test (VPort vpt)) -> [(vsw, vpt)]
          | Or (p1, p2) -> locs_from_pred p1 @ locs_from_pred p2
          | _ -> failwith "Virtual Compiler: not a valid virtual ingress/egress predicate"
        let rec links_from_topo vtopo =
          match vtopo with
          | VLink (vsw1,vpt1,vsw2,vpt2) -> [(vsw1,vpt1,vsw2,vpt2)]
          | Union (t1, t2) -> links_from_topo t1 @ links_from_topo t2
          | _ -> if Poly.(vtopo = drop) then [] else
              failwith ("Virtual Compiler: not a valid virtual topology")
      end) (VV)

    module Phys = GraphBuilder (struct
        type switch = switchId [@@deriving sexp]
        type port = portId [@@deriving sexp]
        let rec locs_from_pred pred =
          match pred with
          | And (Test (Switch sw), Test (Location (Physical pt))) -> [(sw, pt)]
          | Or (p1, p2) -> locs_from_pred p1 @ locs_from_pred p2
          | _ -> failwith "Virtual Compiler: not a valid physical ingress/egress predicate"
        let rec links_from_topo topo =
          match topo with
          | Link (sw1,pt1,sw2,pt2) -> [(sw1, pt1, sw2, pt2)]
          | Union (t1, t2) -> links_from_topo t1 @ links_from_topo t2
          | _ -> if Poly.(topo = drop) then [] else failwith "Virtual Compiler: not a valid physical topology"
      end) (PV)

    module Prod = struct
      module G = struct
        include Graph.Persistent.Digraph.Concrete(V)
        let graph_attributes g = []
        let default_vertex_attributes v = []
        let vertex_name v = "\"" ^ (Sexp.to_string (sexp_of_prod_vertex (V.label v))) ^ "\""
        let vertex_attributes v = []
        let get_subgraph v =
          let open Graph.Graphviz.DotAttributes in
          match V.label v with
          | ConsistentIn (_, pv) | ConsistentOut (_, pv)
          | InconsistentIn (_, pv) | InconsistentOut (_, pv) ->
            begin match pv with
              | InPort (sw, _) | OutPort (sw, _) -> Some {
                  sg_name = Sexp.to_string (sexp_of_switchId sw);
                  sg_attributes = [];
                  sg_parent = None
                }
            end
        let default_edge_attributes e = []
        let edge_attributes e = []
      end
      module Dot = Graph.Graphviz.Dot(G)
      include G
    end

  end

  let parse_vrel (vrel : pred) : (vloc, ploc list) Hashtbl.t =
    let rec parse_physical pred alist =
      match pred with
      | Or (p1, p2) -> parse_physical p1 alist |> parse_physical p2
      | And (Test (Switch sw), Test (Location (Physical pt))) -> (sw, pt) :: alist
      | _ -> failwith "Virtual Compiler: not a valid virtual relation"
    in
    let rec parse pred alist =
      match pred with
      | Or (p1, p2) ->
        parse p1 alist |> parse p2
      | And (And (Test (VSwitch vsw), Test (VPort vpt)), physical) ->
        ((vsw, vpt), parse_physical physical []) :: alist
      | _ ->
        failwith "Virtual Compiler: not a valid virtual relation"
    in
    match Tbl.of_alist (parse vrel []) with
    | `Ok map -> map
    | `Duplicate_key (_, _) -> failwith "Virtual Compiler: virtual relation contains duplicate key"

  let get_vrel vrel =
    let vrel_tbl = parse_vrel vrel in
    let vrel (vsw, vpt) = Tbl.find vrel_tbl (vsw, vpt) |> Core.Option.value ~default:[] in
    (fun vv -> match G.Virt.V.label vv with
       | InPort (vsw, vpt) ->
         vrel (vsw, vpt)
         |> List.map ~f:(fun (sw, pt) -> G.Phys.V.create (InPort (sw, pt)))
       | OutPort (vsw, vpt) ->
         vrel (vsw, vpt)
         |> List.map ~f:(fun (sw, pt) -> G.Phys.V.create (OutPort (sw, pt))))

  let make_product_graph (vgraph : G.Virt.t) (pgraph : G.Phys.t) (ving : pred) (vrel : pred) =
    begin

      let vrel' = get_vrel vrel in

      let add_loop v g =
        match G.Phys.V.label v with
        | OutPort (sw,pt) -> G.Phys.add_edge g v (G.Phys.V.create (InPort (sw,pt)))
        | _ -> g
      in

      let pgraph_closure =
        let module Op = Graph.Oper.P(G.Phys) in
        let closure = Op.transitive_closure ~reflexive:false pgraph in
        G.Phys.fold_vertex add_loop closure closure
      in

      let virt_ing =
        List.map (G.Virt.locs_from_pred ving)
          ~f:(fun (vsw, vpt) -> InPort (vsw, vpt) |> G.Virt.V.create) 
      in

      let prod_ing =
        List.map virt_ing ~f:(fun vv -> List.cartesian_product [vv] (vrel' vv))
        |> List.concat
        |> List.map ~f:(fun (vv, pv) -> G.Prod.V.create (ConsistentIn (vv, pv)))
      in

      let step v =
        begin match G.Prod.V.label v with
          | ConsistentIn (vv, pv)  ->
            let virtual_sucs = G.Virt.succ vgraph vv in
            List.map virtual_sucs ~f:(fun vv -> InconsistentOut (vv, pv) |> G.Prod.V.create)
          | InconsistentOut (vv, pv) ->
            let physical_sucs =
              match vrel' vv with
              (* SJS: This is a hack. We interpret [] as true, although to be consistent we would have
                      to interpret it as false *)
              | [] -> G.Phys.succ pgraph_closure pv
              | logical_sucs -> inters logical_sucs (G.Phys.succ pgraph_closure pv) in
            List.map physical_sucs ~f:(fun psuc -> ConsistentOut (vv, psuc) |> G.Prod.V.create)
          | ConsistentOut (vv, pv) ->
            (* SJS: check that if there are no successors, we have reached the egress *)
            let virtual_sucs = G.Virt.succ vgraph vv in
            List.map virtual_sucs ~f:(fun vsuc -> InconsistentIn (vsuc, pv) |> G.Prod.V.create)
          | InconsistentIn (vv, pv) ->
            let physical_sucs =
              match vrel' vv with
              (* SJS: This is a hack. We interpret [] as true, although to be consistent we would have
                      to interpret it as false *)
              | [] -> G.Phys.succ pgraph_closure pv
              | logical_sucs -> inters logical_sucs (G.Phys.succ pgraph_closure pv) in
            List.map physical_sucs ~f:(fun pv -> ConsistentIn (vv, pv) |> G.Prod.V.create)
        end
      in

      let rec make work_list edges g =
        begin match work_list with
          | [] ->
            (* add edges after all vertices are inserted *)
            List.fold edges ~init:g ~f:(fun g (v1, v2) -> G.Prod.add_edge g v1 v2)
          | v::vs ->
            if G.Prod.mem_vertex g v then
              make vs edges g
            else
              let g' = G.Prod.add_vertex g v in
              let sucs = step v in
              let edges' = List.fold sucs ~init:edges ~f:(fun edges suc -> (v, suc)::edges) in
              make (sucs@work_list) edges' g'
        end
      in

      (prod_ing, make prod_ing [] (G.Prod.empty))

    end



  (* The fabric has to ensure that no matter what the programmer does, it can always restore
     consistency. This function eliminates all paths that allow the programmer to step to a
     unrepairable state. *)
  let prune_product_graph g =
    (* an inconsistent location in the product graph is "fatal" if restoring consistency is
       impossible; here we exlude nodes that are fatal "by transitivity" *)
    let is_fatal v g =
      match G.Prod.V.label v with
      | InconsistentIn _ | InconsistentOut _ -> G.Prod.out_degree g v = 0
      | _ -> false
    in
    (* erases fatal node and all its predecessors that are fatal by transitivity *)
    let rec erase_fatal v g =
      match G.Prod.V.label v with
      | InconsistentIn _ | InconsistentOut _ ->
        let g' = G.Prod.remove_vertex g v in
        G.Prod.fold_pred erase_fatal g v g'
      | ConsistentOut _ | ConsistentIn _ ->
        let g' = G.Prod.remove_vertex g v in
        G.Prod.fold_pred (fun v g -> if is_fatal v g then erase_fatal v g else g) g v g'
    in
    G.Prod.fold_vertex (fun v g -> if is_fatal v g then erase_fatal v g else g) g g

  (* The pruned graph may leave the fabric with several options to restore consistency; to arrive at
     a fabric graph, we must decide on a single option wherever we have a choice, thus determining a
     fabric uniquely.
     This function implements a greedy algorithm that makes this choice by minimizing the cost of the
     selection at each step, yielding a fabric valid for ingress ing. *)
  let fabric_graph_of_pruned g ing cost =
    let rec select v g' =
      if G.Prod.mem_vertex g' v then g' else
        let g' = G.Prod.add_vertex g' v in
        match G.Prod.V.label v with
        | ConsistentIn _ | ConsistentOut _ ->
          G.Prod.fold_succ (select' v) g v g'
        | InconsistentIn _ | InconsistentOut _ ->
          let sucs = G.Prod.succ g v in
          begin match minimize sucs (fun v' -> cost v v') with
            | None -> assert false (*no alernate path*)
            | Some (selection, _) -> select' v selection g'
          end
    and select' v v' g' =
      G.Prod.add_edge (select v' g') v v'
    in
    Caml.List.fold_right select ing G.Prod.empty

  (* functions for fabric generation *)
  let match_ploc (sw,pt) = Filter (And (Test(Switch sw), Test(Location(Physical(pt)))))
  let match_vloc (vsw,vpt) = Filter (And (Test(VSwitch vsw), Test(VPort vpt)))
  let set_vloc (vsw,vpt) = mk_seq (Mod (VSwitch vsw)) (Mod (VPort vpt))

  let match_vloc' vv =
    match G.Virt.V.label vv with
    | InPort (vsw, vpt) | OutPort (vsw, vpt) -> match_vloc (vsw, vpt)

  let match_ploc' pv =
    match G.Phys.V.label pv with
    | InPort (sw, pt) | OutPort (sw, pt) -> match_ploc (sw, pt)

  let set_vloc' vv =
    match G.Virt.V.label vv with
    | InPort (vsw, vpt) | OutPort (vsw, vpt) -> set_vloc (vsw, vpt)

  let rec pol_of_path path =
    match path with
    | (OutPort (sw1, pt1), (InPort (sw2, pt2))) :: path' ->
      if Poly.(sw1 = sw2) then begin
        assert Poly.(pt1 = pt2);
        pol_of_path path'
      end
      else
        mk_seq (Link (sw1, pt1, sw2, pt2)) (pol_of_path path')
    | (InPort (sw, pt), (OutPort (sw', pt'))) :: path' ->
      assert Poly.(sw = sw');
      if Poly.(pt = pt') then
        pol_of_path path'
      else
        mk_seq (Mod (Location (Physical (pt')))) (pol_of_path path')
    | [] -> id
    | _ -> assert false

  let rec print_path path out_channel =
    match path with
    | (OutPort (sw1, _), (InPort (sw2, _))) :: path' ->
      if Poly.(sw1 = sw2) then
        print_path path' out_channel
      else
        (Printf.fprintf out_channel "%Lu-%Lu" sw1 sw2;
         print_path path' out_channel)
    | (InPort (sw, _), (OutPort (sw', _))) :: path' ->
      Printf.fprintf out_channel " ";
      print_path path' out_channel
    | [] -> Printf.fprintf out_channel "\n%!";
    | _ -> assert false

  let fabric_atom_of_prod_edge ?record_paths path_oracle v1 v2 =
    match G.Prod.V.label v1, G.Prod.V.label v2 with
    | ConsistentOut _, InconsistentIn _ | ConsistentIn _, InconsistentOut _ -> `None
    | (InconsistentOut (vv, pv1) as l), ConsistentOut (vv', pv2)
    | (InconsistentIn (vv, pv1) as l), ConsistentIn (vv', pv2) ->
      assert Poly.(vv = vv');
      let path = path_oracle pv1 pv2 in
      let _ = Core.Option.(record_paths >>| print_path path) in
      let fabric =
        [match_vloc' vv; match_ploc' pv1; pol_of_path path; set_vloc' vv]
        |> mk_big_seq
      in
      begin match l with
        | InconsistentOut _ -> `Out fabric
        | InconsistentIn _ -> `In fabric
        | _ -> assert false
      end
    | _ -> assert false

  let fabric_of_fabric_graph ?record_paths g ing path_oracle =
    if not (List.for_all ing ~f:(G.Prod.mem_vertex g)) then
      failwith "virtual compiler: specification allows for no valid fabric"
    else
      let record_paths = Core.Option.(record_paths >>| Out_channel.create) in
      let f v1 v2 ((fout, fin) as fs) =
        match fabric_atom_of_prod_edge ?record_paths path_oracle v1 v2 with
        | `None -> fs
        | `Out f -> (f::fout, fin)
        | `In f -> (fout, f::fin) in
      let fabric = G.Prod.fold_edges f g ([], []) in
      let _ = Core.Option.(record_paths >>| Out_channel.close) in
      fabric

  let default_ving_pol ~vrel ~ping : policy option =
    let vrel' : (vloc, ploc list) Hashtbl.t = parse_vrel vrel in
    let vrel : (ploc, vloc list) Hashtbl.t = Tbl.create () in
    Tbl.iteri vrel' ~f:(fun ~key:v ~data:ps -> List.iter ps ~f:(fun p ->
      Tbl.add_multi vrel ~key:p ~data:v
    ));
    let open Optimize in
    try
      G.Phys.locs_from_pred ping
      |> List.map ~f:(fun ploc -> match Tbl.find vrel ploc with
        | Some [vloc] -> mk_seq (match_ploc ploc) (set_vloc vloc)
        | _ -> failwith "vrel must map physical ingress uniquely to virtual ingress")
      |> mk_big_union
      |> Option.some
    with
    | Failure _ -> None

  let generate_fabric ?(log=true) ?record_paths ~vrel ~vtopo ~ving ~veg ~ptopo ~ping ~peg () =
    let vgraph = G.Virt.make ving veg vtopo in
    let pgraph = G.Phys.make ping peg ptopo in
    let prod_ing, prod_graph = make_product_graph vgraph pgraph ving vrel in

    let unwrap_e e = (G.Phys.V.label (G.Phys.E.src e), G.Phys.V.label (G.Phys.E.dst e)) in
    let unwrap_path path = List.map path ~f:unwrap_e in

    let module WEIGHT = struct
      type edge = G.Phys.E.t
      type t = int
      let weight e =
        match unwrap_e e with
        | InPort _, OutPort _ -> 0
        | OutPort _, InPort _ -> 1
        | _, _ -> assert false
      let compare = compare
      let add x y = x + y
      let zero = 0
    end in

    let module Dijkstra = Graph.Path.Dijkstra(G.Phys)(WEIGHT) in
    let dist_tbl = Tbl.create () in

    let is_loop pv1 pv2 =
      match pv1, pv2 with
      | OutPort (sw, _), InPort (sw', _) -> Poly.(sw = sw')
      | _ -> false
    in

    let get_path_and_distance pv1 pv2 =
      if is_loop pv1 pv2 then Some ([],0) else
        match Tbl.find dist_tbl (pv1, pv2) with
        | None ->
          (* FIXME: temporary hack to avoid Jane Street's annoying warnings. *)
          begin[@warning "-3"] try
            let path', dist = Dijkstra.shortest_path pgraph pv1 pv2 in
            let path = unwrap_path path' in
            Tbl.set dist_tbl ~key:(pv1, pv2) ~data:(path, dist);
            Some (path, dist)
          with Not_found | Not_found_s _ ->
            None
          end
        | pd -> pd
    in

    let path_oracle pv1 pv2 =
      match get_path_and_distance pv1 pv2 with
      | Some (p,d) -> p
      | None -> assert false
    in

    let pv_of_v v =
      match G.Prod.V.label v with
      | InconsistentIn (_, pv) | InconsistentOut (_, pv)
      | ConsistentIn (_, pv) | ConsistentOut (_, pv) -> pv
    in

    let cost v1 v2 =
      match get_path_and_distance (pv_of_v v1) (pv_of_v v2) with
      | Some (p,d) -> Some p
      | None -> None
    in

    let pruned_graph = lazy (prune_product_graph prod_graph) in
    let fabric_graph = lazy (fabric_graph_of_pruned (Lazy.force pruned_graph) prod_ing cost) in
    let fabric = lazy (fabric_of_fabric_graph ?record_paths (Lazy.force fabric_graph) prod_ing path_oracle) in
    let vg_file = "vg.dot" in
    let pg_file = "pg.dot" in
    let g_raw_file = "g_raw.dot" in
    let g_pruned_file = "g_pruned.dot" in
    let g_fabric_file = "g_fabric.dot" in
    let vg_ch = Out_channel.create vg_file in
    let pg_ch = Out_channel.create pg_file in
    let g_raw_ch = Out_channel.create g_raw_file in
    let g_pruned_ch = Out_channel.create g_pruned_file in
    let g_fabric_ch = Out_channel.create g_fabric_file in
    if log then begin
      Printf.printf "[virtual] Statistics:\n";
      Printf.printf "  |V(vgraph)|: %i\n" (G.Virt.nb_vertex vgraph);
      Printf.printf "  |E(vgraph)|: %i\n" (G.Virt.nb_edges vgraph);
      G.Virt.Dot.output_graph vg_ch vgraph;
      Out_channel.close vg_ch;
      Printf.printf "  |V(pgraph)|: %i\n" (G.Phys.nb_vertex pgraph);
      Printf.printf "  |E(pgraph)|: %i\n" (G.Phys.nb_edges pgraph);
      G.Phys.Dot.output_graph pg_ch pgraph;
      Out_channel.close pg_ch;
      Printf.printf "  |V(prod_graph)|: %i\n" (G.Prod.nb_vertex prod_graph);
      Printf.printf "  |E(prod_graph)|: %i\n" (G.Prod.nb_edges prod_graph);
      G.Prod.Dot.output_graph g_raw_ch prod_graph;
      Out_channel.close g_raw_ch;
      Printf.printf "  |V(pruned_graph)|: %i\n" (G.Prod.nb_vertex (Lazy.force pruned_graph));
      Printf.printf "  |E(pruned_graph)|: %i\n" (G.Prod.nb_edges (Lazy.force pruned_graph));
      G.Prod.Dot.output_graph g_pruned_ch (Lazy.force pruned_graph);
      Out_channel.close g_pruned_ch;
      Printf.printf "  |V(fabric_graph)|: %i\n" (G.Prod.nb_vertex (Lazy.force fabric_graph));
      Printf.printf "  |E(fabric_graph)|: %i\n" (G.Prod.nb_edges (Lazy.force fabric_graph));
      G.Prod.Dot.output_graph g_fabric_ch (Lazy.force fabric_graph);
      Out_channel.close g_fabric_ch;
      Printf.printf "\n";
    end;
    Lazy.force fabric

end
OCaml

Innovation. Community. Security.