Source file runtime.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
open Elpi_util
open Elpi_parser
module Fmt = Format
module F = Ast.Func
open Util
open Data
type constraint_def = {
cdepth : int;
prog : prolog_prog [@equal fun _ _ -> true]
[@printer (fun fmt _ -> Fmt.fprintf fmt "<prolog_prog>")];
context : clause_src list;
conclusion : term;
cgid : UUID.t [@trace];
}
type 'unification_def stuck_goal_kind +=
| Constraint of constraint_def
let get_suspended_goal = function
| Constraint { cdepth; conclusion; context; _ } -> Some { context ; goal = (cdepth, conclusion) }
| _ -> None
module C : sig
type t = Constants.t
module Map = Constants.Map
module Set = Constants.Set
val show : ?table:symbol_table -> t -> string
val pp : ?table:symbol_table -> Fmt.formatter -> t -> unit
val mkConst : constant -> term
val mkAppL : constant -> term list -> term
val fresh_global_constant : unit -> constant * term
val mkinterval : int -> int -> int -> term list
val dummy : term
val table : symbol_table Fork.local_ref
end = struct
type t = Constants.t
let dummy = Data.dummy
let table = Fork.new_local {
c2s = Constants.Map.empty;
c2t = Hashtbl.create 37;
frozen_constants = 0;
}
let show ?(table = !table) n =
try Constants.Map.find n Global_symbols.table.c2s
with Not_found ->
try Constants.Map.find n table.c2s
with Not_found ->
if n >= 0 then "c" ^ string_of_int n
else "SYMBOL" ^ string_of_int n
let pp ?table fmt n =
Format.fprintf fmt "%s" (show ?table n)
let mkConst x =
try Hashtbl.find !table.c2t x
with Not_found ->
let xx = Const x in
Hashtbl.add !table.c2t x xx;
xx
[@@inline]
let fresh_global_constant () =
!table.frozen_constants <- !table.frozen_constants - 1;
let n = !table.frozen_constants in
let xx = Const n in
!table.c2s <- Constants.Map.add n ("frozen-" ^ string_of_int n) !table.c2s ;
Hashtbl.add !table.c2t n xx;
n, xx
module Map = Constants.Map
module Set = Constants.Set
let rec mkinterval depth argsno n =
if n = argsno then []
else mkConst (n+depth)::mkinterval depth argsno (n+1)
;;
let mkAppL c = function
| [] -> mkConst c
| x::xs -> mkApp c x xs [@@inline]
end
let mkConst = C.mkConst
type 'args deref_fun =
?avoid:uvar_body -> from:int -> to_:int -> 'args -> term -> term
module Pp : sig
val ppterm : ?pp_ctx:pp_ctx -> ?min_prec:int ->
int -> string list -> argsdepth:int -> env ->
Fmt.formatter -> term -> unit
val uppterm : ?pp_ctx:pp_ctx -> ?min_prec:int ->
int -> string list -> argsdepth:int -> env ->
Fmt.formatter -> term -> unit
val do_deref : int deref_fun ref
val do_app_deref : term list deref_fun ref
val uv_names : (string IntMap.t * int) Fork.local_ref
val pp_oref : ?pp_ctx:pp_ctx -> Format.formatter -> (Util.UUID.t * Obj.t) -> unit
val pp_constant : ?pp_ctx:pp_ctx -> Format.formatter -> constant -> unit
end = struct
let do_deref = ref (fun ?avoid ~from ~to_ _ _ -> assert false);;
let do_app_deref = ref (fun ?avoid ~from ~to_ _ _ -> assert false);;
let uv_names = Fork.new_local (IntMap.empty, 0)
let min_prec = Elpi_parser.Parser_config.min_precedence
let appl_prec = Elpi_parser.Parser_config.appl_precedence
let lam_prec = Elpi_parser.Parser_config.lam_precedence
let inf_prec = Elpi_parser.Parser_config.inf_precedence
let xppterm ~nice ?(pp_ctx = { Data.uv_names; table = ! C.table }) ?(min_prec=min_prec) depth0 names ~argsdepth env f t =
let pp_app f pphd pparg ?pplastarg (hd,args) =
if args = [] then pphd f hd
else
Fmt.fprintf f "@[<hov 1>%a@ %a@]" pphd hd
(pplist pparg ?pplastelem:pplastarg " ") args in
let ppconstant f c = Fmt.fprintf f "%s" (C.show ~table:pp_ctx.table c) in
let rec pp_uvar prec depth vardepth args f r =
if !!r == C.dummy then begin
let s =
try IntMap.find (uvar_id r) (fst !(pp_ctx.uv_names))
with Not_found ->
let m, n = !(pp_ctx.uv_names) in
let s = "X" ^ string_of_int n in
let n = n + 1 in
let m = IntMap.add (uvar_id r) s m in
pp_ctx.uv_names := (m,n);
s
in
Fmt.fprintf f "%s%s%s" s
(if vardepth=0 then "" else "^" ^ string_of_int vardepth)
(if args=0 then "" else "+" ^ string_of_int args)
end else if nice then begin
aux prec depth f (!do_deref ~from:vardepth ~to_:depth args !!r)
end else Fmt.fprintf f "<%a>_%d" (aux min_prec vardepth) !!r vardepth
and pp_arg prec depth f n =
let name= try List.nth names n with Failure _ -> "A" ^ string_of_int n in
if try env.(n) == C.dummy with Invalid_argument _ -> true then
Fmt.fprintf f "%s" name
else if nice then begin
if argsdepth <= depth then
let dereffed = !do_deref ~from:argsdepth ~to_:depth 0 env.(n) in
aux prec depth f dereffed
else
Fmt.fprintf f "≪%a≫_%d" (aux min_prec argsdepth) env.(n) argsdepth
end else Fmt.fprintf f "≪%a≫_%d" (aux min_prec argsdepth) env.(n) argsdepth
and flat_cons_to_list depth acc t = match t with
UVar (r,vardepth,terms) when !!r != C.dummy ->
flat_cons_to_list depth acc
(!do_deref ~from:vardepth ~to_:depth terms !!r)
| AppUVar (r,vardepth,terms) when !!r != C.dummy ->
flat_cons_to_list depth acc
(!do_app_deref ~from:vardepth ~to_:depth terms !!r)
| Cons (x,y) -> flat_cons_to_list depth (x::acc) y
| _ -> List.rev acc, t
and is_lambda depth =
function
Lam _ -> true
| UVar (r,vardepth,terms) when !!r != C.dummy ->
is_lambda depth (!do_deref ~from:vardepth ~to_:depth terms !!r)
| AppUVar (r,vardepth,terms) when !!r != C.dummy ->
is_lambda depth (!do_app_deref ~from:vardepth ~to_:depth terms !!r)
| _ -> false
and aux_last prec depth f t =
if nice then begin
match t with
Lam _ -> aux min_prec depth f t
| UVar (r,vardepth,terms) when !!r != C.dummy ->
aux_last prec depth f (!do_deref ~from:vardepth ~to_:depth terms !!r)
| AppUVar (r,vardepth,terms) when !!r != C.dummy ->
aux_last prec depth f
(!do_app_deref ~from:vardepth ~to_:depth terms !!r)
| _ -> aux prec depth f t
end else aux inf_prec depth f t
and aux prec depth f t =
let with_parens ?(test=true) myprec h =
if test && myprec < prec then
(Fmt.fprintf f "(" ; h () ; Fmt.fprintf f ")")
else h () in
match t with
| (Cons _ | Nil) ->
let prefix,last = flat_cons_to_list depth [] t in
Fmt.fprintf f "[" ;
pplist ~boxed:true (aux Elpi_parser.Parser_config.comma_precedence depth) ", " f prefix ;
if last != Nil then begin
Fmt.fprintf f " | " ;
aux prec 1 f last
end;
Fmt.fprintf f "]"
| Const s -> ppconstant f s
| App (hd,x,xs) ->
(try
let prec, hdlvl =
Elpi_parser.Parser_config.precedence_of (C.show ~table:pp_ctx.table hd) in
with_parens hdlvl
(fun _ ->
let open Elpi_lexer_config.Lexer_config in
match prec with
| Some Infix when List.length xs = 1 ->
Fmt.fprintf f "@[<hov 1>%a@ %a@ %a@]"
(aux (hdlvl+1) depth) x ppconstant hd
(aux (hdlvl+1) depth) (List.hd xs)
| Some Infixl when List.length xs = 1 ->
Fmt.fprintf f "@[<hov 1>%a@ %a@ %a@]"
(aux hdlvl depth) x ppconstant hd
(aux (hdlvl+1) depth) (List.hd xs)
| Some Infixr when List.length xs = 1 ->
Fmt.fprintf f "@[<hov 1>%a@ %a@ %a@]"
(aux (hdlvl+1) depth) x ppconstant hd
(aux hdlvl depth) (List.hd xs)
| Some Prefix when xs = [] ->
Fmt.fprintf f "@[<hov 1>%a@ %a@]" ppconstant hd
(aux hdlvl depth) x
| Some Postfix when xs = [] ->
Fmt.fprintf f "@[<hov 1>%a@ %a@]" (aux hdlvl depth) x
ppconstant hd
| _ ->
pp_app f ppconstant (aux inf_prec depth)
~pplastarg:(aux_last inf_prec depth) (hd,x::xs))
with Not_found ->
let lastarg = List.nth (x::xs) (List.length xs) in
let hdlvl =
if is_lambda depth lastarg then lam_prec
else if hd == Global_symbols.andc then 110
else appl_prec in
with_parens hdlvl (fun _ ->
if hd == Global_symbols.andc then
pplist (aux inf_prec depth) ~pplastelem:(aux_last inf_prec depth) ", " f (x::xs)
else pp_app f ppconstant (aux inf_prec depth)
~pplastarg:(aux_last inf_prec depth) (hd,x::xs)))
| Builtin (hd,[a;b]) when hd == Global_symbols.eqc ->
let _, hdlvl =
Elpi_parser.Parser_config.precedence_of (C.show ~table:pp_ctx.table hd) in
with_parens hdlvl (fun _ ->
Fmt.fprintf f "@[<hov 1>%a@ %a@ %a@]"
(aux (hdlvl+1) depth) a ppconstant hd
(aux (hdlvl+1) depth) b)
| Builtin (hd,xs) ->
with_parens appl_prec (fun _ ->
pp_app f ppconstant (aux inf_prec depth)
~pplastarg:(aux_last inf_prec depth) (hd,xs))
| UVar (r,vardepth,argsno) when not nice ->
let args = List.map destConst (C.mkinterval vardepth argsno 0) in
with_parens ~test:(args <> []) appl_prec (fun _ ->
Fmt.fprintf f "." ;
pp_app f (pp_uvar inf_prec depth vardepth 0) ppconstant (r,args))
| UVar (r,vardepth,argsno) when !!r == C.dummy ->
let diff = vardepth - depth0 in
let diff = if diff >= 0 then diff else 0 in
let vardepth = vardepth - diff in
let argsno = argsno + diff in
let args = List.map destConst (C.mkinterval vardepth argsno 0) in
with_parens ~test:(args <> []) appl_prec (fun _ ->
pp_app f (pp_uvar inf_prec depth vardepth 0) ppconstant (r,args))
| UVar (r,vardepth,argsno) ->
pp_uvar prec depth vardepth argsno f r
| AppUVar (r,vardepth,terms) when !!r != C.dummy && nice ->
aux prec depth f (!do_app_deref ~from:vardepth ~to_:depth terms !!r)
| AppUVar (r,vardepth,terms) ->
with_parens appl_prec (fun _ ->
pp_app f (pp_uvar inf_prec depth vardepth 0) (aux inf_prec depth)
~pplastarg:(aux_last inf_prec depth) (r,terms))
| Arg (n,argsno) ->
let args = List.map destConst (C.mkinterval argsdepth argsno 0) in
with_parens ~test:(args <> []) appl_prec (fun _ ->
pp_app f (pp_arg prec depth) ppconstant (n,args))
| AppArg (v,terms) ->
with_parens appl_prec (fun _ ->
pp_app f (pp_arg inf_prec depth) (aux inf_prec depth)
~pplastarg:(aux_last inf_prec depth) (v,terms))
| Lam t ->
with_parens lam_prec (fun _ ->
let c = mkConst depth in
Fmt.fprintf f "%a \\@ %a" (aux inf_prec depth) c
(aux min_prec (depth+1)) t)
| CData d -> CData.pp f d
| Discard -> Fmt.fprintf f "_"
in
try aux min_prec depth0 f t with e -> Fmt.fprintf f "EXN PRINTING: %s" (Printexc.to_string e)
;;
let ppterm = xppterm ~nice:false
let uppterm = xppterm ~nice:true
let pp_oref ?pp_ctx fmt (id,t) =
if not (UUID.equal id id_term) then anomaly "pp_oref"
else
let t : term = Obj.obj t in
if t == C.dummy then Fmt.fprintf fmt "_"
else uppterm ?pp_ctx 0 [] ~argsdepth:0 empty_env fmt t
let pp_constant ?pp_ctx fmt c =
let table =
match pp_ctx with
| None -> None
| Some { table } -> Some table in
C.pp ?table fmt c
end
open Pp
let rid, max_runtime_id = Fork.new_local 0, ref 0
module ConstraintStoreAndTrail : sig
type propagation_item = {
cstr : constraint_def;
cstr_blockers : uvar_body list;
}
val new_delayed : propagation_item list Fork.local_ref
val to_resume : stuck_goal list Fork.local_ref
val blockers_map : stuck_goal list IntMap.t Fork.local_ref
val blocked_by : uvar_body -> stuck_goal list
val declare_new : stuck_goal -> unit
val remove_old : stuck_goal -> unit
val remove_old_constraint : constraint_def -> unit
val contents :
?overlapping:uvar_body list -> unit -> (constraint_def * blockers) list
val print : ?pp_ctx:pp_ctx -> Fmt.formatter -> (constraint_def * blockers) list -> unit
val print1 : ?pp_ctx:pp_ctx -> Fmt.formatter -> constraint_def * blockers -> unit
val print_gid: Fmt.formatter -> constraint_def * blockers -> unit
val pp_stuck_goal : ?pp_ctx:pp_ctx -> Fmt.formatter -> stuck_goal -> unit
val state : State.t Fork.local_ref
val initial_state : State.t Fork.local_ref
type trail
val empty : trail
val initial_trail : trail Fork.local_ref
val trail : trail Fork.local_ref
val cut_trail : unit -> unit
val last_call : bool ref
val trail_assignment : uvar_body -> unit
val trail_stuck_goal_addition : stuck_goal -> unit
val trail_stuck_goal_removal : stuck_goal -> unit
val undo :
old_trail:trail -> ?old_state:State.t -> unit -> unit
val print_trail : Fmt.formatter -> unit
module Ugly : sig val delayed : stuck_goal list ref end
end = struct
type propagation_item = {
cstr : constraint_def;
cstr_blockers : uvar_body list;
}
let state =
Fork.new_local State.dummy
let initial_state =
Fork.new_local State.dummy
let read_custom_constraint ct =
State.get ct !state
let update_custom_constraint ct f =
state := State.update ct !state f
type trail_item =
| Assignement of uvar_body
| StuckGoalAddition of stuck_goal
| StuckGoalRemoval of stuck_goal
[@@deriving show]
type trail = trail_item list
[@@deriving show]
let empty = []
let trail = Fork.new_local []
let initial_trail = Fork.new_local []
let last_call = Fork.new_local false;;
let cut_trail () = trail := !initial_trail [@@inline];;
let blockers_map = Fork.new_local (IntMap.empty : stuck_goal list IntMap.t)
let blocked_by r = IntMap.find (uvar_id r) !blockers_map
module Ugly = struct let delayed : stuck_goal list ref = Fork.new_local [] end
open Ugly
let contents ?overlapping () =
let overlap : uvar_body list -> bool =
match overlapping with
| None -> fun _ -> true
| Some l -> fun b -> List.exists (fun x -> List.memq x l) b in
map_filter (function
| { kind = Constraint c; blockers }
when overlap blockers -> Some (c,blockers)
| _ -> None) !delayed
let trail_assignment x =
[%spy "dev:trail:assign" ~rid Fmt.pp_print_bool !last_call pp_trail_item (Assignement x)];
if not !last_call then trail := Assignement x :: !trail
[@@inline]
;;
let trail_stuck_goal_addition x =
[%spy "dev:trail:add-constraint" ~rid Fmt.pp_print_bool !last_call pp_trail_item (StuckGoalAddition x)];
if not !last_call then trail := StuckGoalAddition x :: !trail
[@@inline]
;;
let trail_stuck_goal_removal x =
[%spy "dev:trail:remove-constraint" ~rid Fmt.pp_print_bool !last_call pp_trail_item (StuckGoalRemoval x)];
if not !last_call then trail := StuckGoalRemoval x :: !trail
[@@inline]
;;
let append_blocked blocked map r =
let blocker = uvar_id r in
try
let old = IntMap.find blocker map in
IntMap.add blocker (blocked :: old) map
with Not_found ->
uvar_set_blocker r;
IntMap.add blocker (blocked :: []) map
let remove_blocked blocked map r =
let blocker = uvar_id r in
let old = IntMap.find blocker map in
let l = remove_from_list blocked old in
if l = [] then begin
uvar_unset_blocker r;
IntMap.remove blocker map
end else
IntMap.add blocker l map
let remove ({ blockers } as sg) =
[%spy "dev:constraint:remove" ~rid pp_stuck_goal sg];
delayed := remove_from_list sg !delayed;
blockers_map := List.fold_left (remove_blocked sg) !blockers_map blockers
let add ({ blockers } as sg) =
[%spy "dev:constraint:add" ~rid pp_stuck_goal sg];
delayed := sg :: !delayed;
blockers_map := List.fold_left (append_blocked sg) !blockers_map blockers
let new_delayed = Fork.new_local []
let to_resume = Fork.new_local []
let print_trail fmt =
pp_trail fmt !trail;
Fmt.fprintf fmt "to_resume:%d new_delayed:%d\n%!"
(List.length !to_resume) (List.length !new_delayed)
let declare_new sg =
let blockers = uniqq sg.blockers in
let sg = { sg with blockers } in
add sg ;
begin match sg.kind with
| Unification _ -> ()
| Constraint cstr ->
new_delayed := { cstr; cstr_blockers = sg.blockers } :: !new_delayed
| _ -> assert false
end;
(trail_stuck_goal_addition[@inlined]) sg
let remove_cstr_if_exists x l =
let rec aux acc = function
| [] -> l
| { cstr = y } :: tl when x == y -> List.rev acc @ tl
| y :: tl -> aux (y :: acc) tl
in
aux [] l
let remove_old cstr =
remove cstr ;
begin match cstr.kind with
| Unification _ -> ()
| Constraint c -> new_delayed := remove_cstr_if_exists c !new_delayed
| _ -> assert false
end;
(trail_stuck_goal_removal[@inlined]) cstr
;;
let remove_old_constraint cd =
let c = List.find
(function { kind = Constraint x } -> x == cd | _ -> false) !delayed in
remove_old c
let undo ~old_trail ?old_state () =
to_resume := []; new_delayed := [];
[%spy "dev:trail:undo" ~rid pp_trail !trail pp_string "->" pp_trail old_trail];
while !trail != old_trail do
match !trail with
| Assignement r :: rest ->
r.contents <- C.dummy;
trail := rest
| StuckGoalAddition sg :: rest -> remove sg; trail := rest
| StuckGoalRemoval sg :: rest -> add sg; trail := rest
| [] -> anomaly "undo to unknown trail"
done;
match old_state with
| Some old_state -> state := old_state
| None -> ()
;;
let print1 ?pp_ctx fmt x =
let pp_depth fmt d =
if d > 0 then
Fmt.fprintf fmt "{%a} :@ "
(pplist (uppterm ?pp_ctx d [] ~argsdepth:0 empty_env) " ") (C.mkinterval 0 d 0) in
let pp_hyps fmt ctx =
if ctx <> [] then
Fmt.fprintf fmt "@[<hov 2>%a@]@ ?- "
(pplist (fun fmt { hdepth = d; hsrc = t } ->
uppterm ?pp_ctx d [] ~argsdepth:0 empty_env fmt t) ", ") ctx in
let pp_goal depth = uppterm ?pp_ctx depth [] ~argsdepth:0 empty_env in
let { cdepth=depth;context=pdiff; conclusion=g }, blockers = x in
Fmt.fprintf fmt " @[<h>@[<hov 2>%a%a%a@]@ /* suspended on %a */@]"
pp_depth depth
pp_hyps pdiff
(pp_goal depth) g
(pplist (uppterm ?pp_ctx 0 [] ~argsdepth:0 empty_env) ", ")
(List.map (fun r -> UVar(r,0,0)) blockers)
let print_gid fmt x =
let { cgid = gid [@trace]; cdepth = _ }, _ = x in
let () [@trace] = Fmt.fprintf fmt "%a" UUID.pp gid in
()
let print ?pp_ctx fmt x =
pplist (print1 ?pp_ctx) " " fmt x
let pp_stuck_goal ?pp_ctx fmt { kind; blockers } = match kind with
| Unification { adepth = ad; env = e; bdepth = bd; a; b } ->
Fmt.fprintf fmt
" @[<h>@[<hov 2>^%d:%a@ == ^%d:%a@]@ /* suspended on %a */@]"
ad (uppterm ?pp_ctx ad [] ~argsdepth:0 empty_env) a
bd (uppterm ?pp_ctx ad [] ~argsdepth:ad e) b
(pplist ~boxed:false (uppterm ?pp_ctx 0 [] ~argsdepth:0 empty_env) ", ")
(List.map (fun r -> UVar(r,0,0)) blockers)
| Constraint c -> print ?pp_ctx fmt [c,blockers]
| _ -> assert false
end
module T = ConstraintStoreAndTrail
module CS = ConstraintStoreAndTrail
let (@:=) r v =
(T.trail_assignment[@inlined]) r;
if uvar_is_a_blocker r then begin
let blocked = CS.blocked_by r in
[%spy "user:assign:resume" ~rid (fun fmt l ->
let l = map_filter (function
| { kind = Constraint { cgid; _ } ; _ } -> Some cgid
| _ -> None) l in
Fmt.fprintf fmt "%a" (pplist ~boxed:true UUID.pp " ") l) blocked];
CS.to_resume :=
List.fold_right
(fun x acc -> if List.memq x acc then acc else x::acc) blocked
!CS.to_resume
end;
r.contents <- v
;;
let (@::==) r v =
(T.trail_assignment[@inlined]) r;
r.contents <- v
module HO : sig
val unif : argsdepth:int -> matching:bool -> (UUID.t[@trace]) -> int -> env -> int -> term -> term -> bool
val move :
argsdepth:int -> env -> ?avoid:uvar_body ->
from:int -> to_:int -> term -> term
val hmove :
?avoid:uvar_body ->
from:int -> to_:int -> term -> term
val subst : int -> term list -> term -> term
val deref_uv : int deref_fun
val deref_appuv : term list deref_fun
val mkAppUVar : uvar_body -> int -> term list -> term
val mkAppArg : int -> int -> term list -> term
val is_flex : depth:int -> term -> uvar_body option
val list_to_lp_list : term list -> term
val mknLam : int -> term -> term
val full_deref : adepth:int -> env -> depth:int -> term -> term
val deref_head : depth:int -> term -> term
val eta_contract_flex : depth:int -> term -> term option
type assignment = uvar_body * int * term
val expand_uv :
depth:int -> uvar_body -> lvl:int -> ano:int -> term * assignment option
val expand_appuv :
depth:int -> uvar_body -> lvl:int -> args:term list -> term * assignment option
val shift_bound_vars : depth:int -> to_:int -> term -> term
val map_free_vars : map:constant C.Map.t -> depth:int -> to_:int -> term -> term
val delay_hard_unif_problems : bool Fork.local_ref
end = struct
exception NotInTheFragment
let rec in_fragment expected =
function
[] -> 0
| Const c::tl when c = expected -> 1 + in_fragment (expected+1) tl
| UVar ({ contents = t} ,_,_)::tl ->
in_fragment expected (t :: tl)
| _ -> raise NotInTheFragment
exception NonMetaClosed
let deterministic_restriction e ~args_safe t =
let rec aux =
function
Lam f -> aux f
| App (_,t,l) -> aux t; List.iter aux l
| Cons (x,xs) -> aux x; aux xs
| Builtin (_,l) -> List.iter aux l
| UVar (r,_,_)
| AppUVar (r,_,_) when !!r == C.dummy -> raise NonMetaClosed
| UVar (r,_,_) -> aux !!r
| AppUVar (r,_,l) -> aux !!r ; List.iter aux l
| Arg (i,_) when e.(i) == C.dummy && not args_safe -> raise NonMetaClosed
| AppArg (i,_) when e.(i) == C.dummy -> raise NonMetaClosed
| Arg (i,_) -> if e.(i) != C.dummy then aux e.(i)
| AppArg (i,l) -> aux e.(i) ; List.iter aux l
| Const _
| Nil
| Discard
| CData _ -> ()
in
try aux t ; true
with NonMetaClosed -> false
exception RestrictionFailure
let occurr_check r1 r2 =
match r1 with
| None -> ()
| Some r1 ->
if !!r1 != C.dummy || r1 == r2 then raise RestrictionFailure
let rec make_lambdas destdepth args =
if args <= 0 then
UVar(oref C.dummy,destdepth,0)
else
Lam (make_lambdas (destdepth+1) (args-1))
let rec mknLam n x = if n = 0 then x else Lam (mknLam (n-1) x)
let mkAppUVar r lvl l =
try UVar(r,lvl,in_fragment lvl l)
with NotInTheFragment -> AppUVar(r,lvl,l)
let mkAppArg i fromdepth xxs' =
try Arg(i,in_fragment fromdepth xxs')
with NotInTheFragment -> AppArg (i,xxs')
let expand_uv r ~lvl ~ano =
let args = C.mkinterval 0 (lvl+ano) 0 in
if lvl = 0 then AppUVar(r,lvl,args), None else
let r1 = oref C.dummy in
let t = AppUVar(r1,0,args) in
let assignment = mknLam ano t in
t, Some (r,lvl,assignment)
let expand_uv ~depth r ~lvl ~ano =
[%spy "dev:expand_uv:in" ~rid (uppterm depth [] ~argsdepth:0 empty_env) (UVar(r,lvl,ano))];
let t, ass as rc = expand_uv r ~lvl ~ano in
[%spy "dev:expand_uv:out" ~rid (uppterm depth [] ~argsdepth:0 empty_env) t (fun fmt -> function
| None -> Fmt.fprintf fmt "no assignment"
| Some (_,_,t) ->
Fmt.fprintf fmt "%a := %a"
(uppterm depth [] ~argsdepth:0 empty_env) (UVar(r,lvl,ano))
(uppterm lvl [] ~argsdepth:0 empty_env) t) ass];
rc
let expand_appuv r ~lvl ~args =
if lvl = 0 then AppUVar(r,lvl,args), None else
let args_lvl = C.mkinterval 0 lvl 0 in
let r1 = oref C.dummy in
let t = AppUVar(r1,0,args_lvl @ args) in
let nargs = List.length args in
let assignment =
mknLam nargs (AppUVar(r1,0,args_lvl @ C.mkinterval lvl nargs 0)) in
t, Some (r,lvl,assignment)
let expand_appuv ~depth r ~lvl ~args =
[%spy "dev:expand_appuv:in" ~rid (uppterm depth [] ~argsdepth:0 empty_env) (AppUVar(r,lvl,args))];
let t, ass as rc = expand_appuv r ~lvl ~args in
[%spy "dev:expand_appuv:out" ~rid (uppterm depth [] ~argsdepth:0 empty_env) t (fun fmt -> function
| None -> Fmt.fprintf fmt "no assignment"
| Some (_,_,t) ->
Fmt.fprintf fmt "%a := %a"
(uppterm depth [] ~argsdepth:0 empty_env) (AppUVar(r,lvl,args))
(uppterm lvl [] ~argsdepth:0 empty_env) t) ass];
rc
let deoptimize_uv_w_args = function
| UVar(r,lvl,args) when args > 0 ->
AppUVar(r,lvl,C.mkinterval lvl args 0)
| x -> x
let rec move ~argsdepth e ?avoid ~from ~to_ t =
let delta = from - to_ in
let rc =
if delta = 0 && e == empty_env && avoid == None then t
else begin
let rec maux e depth x =
[%trace "move" ~rid ("adepth:%d depth:%d from:%d to:%d x:%a"
argsdepth depth from to_ (ppterm (from+depth) [] ~argsdepth e) x) begin
match x with
| Const c ->
if delta == 0 then x else
if c >= from then mkConst (c - delta) else
if c < to_ then x else
raise RestrictionFailure
| Lam f ->
let f' = maux e (depth+1) f in
if f == f' then x else Lam f'
| App (c,t,l) when delta == 0 || c < from && c < to_ ->
let t' = maux e depth t in
let l' = smart_map3 maux e depth l in
if t == t' && l == l' then x else App (c,t',l')
| App (c,t,l) when c >= from ->
App(c-delta, maux e depth t, smart_map3 maux e depth l)
| App _ -> raise RestrictionFailure
| Builtin (c,l) ->
let l' = smart_map3 maux e depth l in
if l == l' then x else Builtin (c,l')
| CData _ -> x
| Cons(hd,tl) ->
let hd' = maux e depth hd in
let tl' = maux e depth tl in
if hd == hd' && tl == tl' then x else Cons(hd',tl')
| Nil -> x
| Discard when avoid = None -> x
| Discard ->
let r = oref C.dummy in
UVar(r,to_,0)
| UVar _ when delta == 0 && avoid == None -> x
| UVar ({ contents = t }, vardepth, args) when t != C.dummy ->
if depth == 0 then deref_uv ?avoid ~from:vardepth ~to_ args t
else maux empty_env depth (deref_uv ~from:vardepth ~to_:(from+depth) args t)
| AppUVar ({ contents = t }, vardepth, args) when t != C.dummy ->
maux empty_env depth (deref_appuv ~from:vardepth ~to_:(from+depth) args t)
| Arg (i, argsno) when e.(i) != C.dummy ->
if to_ = argsdepth then deref_uv ?avoid ~from:argsdepth ~to_:(to_+depth) argsno e.(i)
else
let args = C.mkinterval from argsno 0 in
let args =
try smart_map3 maux e depth args
with RestrictionFailure ->
anomaly "move: could check if unrestrictable args are unused" in
deref_appuv ?avoid ~from:argsdepth ~to_:(to_+depth) args e.(i)
| AppArg(i, args) when e.(i) != C.dummy ->
let args =
try smart_map3 maux e depth args
with RestrictionFailure ->
anomaly "move: could check if unrestrictable args are unused" in
deref_appuv ?avoid ~from:argsdepth ~to_:(to_+depth) args e.(i)
| Arg (i, args) ->
let to_ = min argsdepth to_ in
let r = oref C.dummy in
let v = UVar(r,to_,0) in
e.(i) <- v;
if args == 0 then v else UVar(r,to_,args)
| AppArg(i, args) when
List.for_all (deterministic_restriction e ~args_safe:(argsdepth=to_)) args
->
let to_ = min argsdepth to_ in
let args =
try smart_map (maux e depth) args
with RestrictionFailure ->
anomaly "TODO: implement deterministic restriction" in
let r = oref C.dummy in
let v = UVar(r,to_,0) in
e.(i) <- v;
mkAppUVar r to_ args
| AppArg _ ->
Fmt.fprintf Fmt.str_formatter
"Non deterministic pruning, delay to be implemented: t=%a, delta=%d%!"
(ppterm depth [] ~argsdepth e) x delta;
anomaly (Fmt.flush_str_formatter ())
| UVar (r,vardepth,argsno) ->
occurr_check avoid r;
if delta <= 0 then
if vardepth + argsno <= from then x
else
let r,vardepth,argsno =
decrease_depth r ~from:vardepth ~to_:from argsno in
let args = C.mkinterval vardepth argsno 0 in
let args = smart_map (maux empty_env depth) args in
mkAppUVar r vardepth args
else
if vardepth + argsno <= to_ then x
else
let t, assignment = expand_uv ~depth:(from+depth) r ~lvl:vardepth ~ano:argsno in
option_iter (fun (r,_,assignment) ->
[%spy "user:assign:expand" ~rid (fun fmt () -> Fmt.fprintf fmt "%a := %a"
(uppterm (from+depth) [] ~argsdepth e) x
(uppterm vardepth [] ~argsdepth e) assignment) ()];
r @:= assignment) assignment;
maux e depth t
| AppUVar (r,vardepth,args) ->
occurr_check avoid r;
if delta < 0 then
let r,vardepth,argsno =
decrease_depth r ~from:vardepth ~to_:from 0 in
let args0= C.mkinterval vardepth argsno 0 in
let args =
try smart_map (maux e depth) (args0@args)
with RestrictionFailure -> anomaly "impossible, delta < 0" in
mkAppUVar r vardepth args
else if delta == 0 then
AppUVar (r,vardepth,smart_map (maux e depth) args)
else if List.for_all (deterministic_restriction e ~args_safe:(argsdepth=to_)) args then
let pruned = ref (vardepth > to_) in
let orig_argsno = List.length args in
let filteredargs_vardepth = ref [] in
let filteredargs_to =
let rec filter i acc = function
| [] -> filteredargs_vardepth := List.rev acc; []
| arg :: args ->
try
let arg = maux e depth arg in
arg :: filter (succ i) (mkConst (vardepth + i) :: acc) args
with RestrictionFailure ->
pruned := true;
filter (succ i) acc args
in
filter 0 [] args in
if !pruned then begin
let vardepth' = min vardepth to_ in
let r' = oref C.dummy in
let newvar = mkAppUVar r' vardepth' !filteredargs_vardepth in
let assignment = mknLam orig_argsno newvar in
[%spy "user:assign:restrict" ~rid (fun fmt () -> Fmt.fprintf fmt "%d %a := %a" vardepth
(ppterm (from+depth) [] ~argsdepth e) x
(ppterm (vardepth) [] ~argsdepth e) assignment) ()];
r @:= assignment;
mkAppUVar r' vardepth' filteredargs_to
end else
mkAppUVar r vardepth filteredargs_to
else begin
Fmt.fprintf Fmt.str_formatter
"Non deterministic pruning, delay to be implemented: t=%a, delta=%d%!"
(ppterm depth [] ~argsdepth e) x delta;
anomaly (Fmt.flush_str_formatter ())
end
end]
in
maux e 0 t
end
in
[%spy "dev:move:out" ~rid (ppterm to_ [] ~argsdepth e) rc];
rc
and hmove ?avoid ~from ~to_ t =
[%trace "hmove" ~rid ("@[<hov 1>from:%d@ to:%d@ %a@]" from to_ (uppterm from [] ~argsdepth:0 empty_env) t) begin
move ?avoid ~argsdepth:0 ~from ~to_ empty_env t
end]
and decrease_depth r ~from ~to_ argsno =
if from <= to_ then r,from,argsno
else
let newr = oref C.dummy in
let newargsno = argsno+from-to_ in
let newvar = UVar(newr,to_,from-to_) in
r @:= newvar;
newr,to_,newargsno
and subst fromdepth ts t =
[%trace "subst" ~rid ("@[<hov 2>fromdepth:%d t: %a@ ts: %a@]" fromdepth
(uppterm (fromdepth) [] ~argsdepth:0 empty_env) t (pplist (uppterm fromdepth [] ~argsdepth:0 empty_env) ", ") ts)
begin
if ts == [] then t
else
let len = List.length ts in
let fromdepthlen = fromdepth + len in
let rec aux depth tt =
[%trace "subst-aux" ~rid ("@[<hov 2>t: %a@]" (uppterm (fromdepth+1) [] ~argsdepth:0 empty_env) tt)
begin match tt with
| Const c as x ->
if c >= fromdepth && c < fromdepthlen then
match List.nth ts (len-1 - (c-fromdepth)) with
| Arg(i,0) as t -> t
| t -> hmove ~from:fromdepth ~to_:(depth-len) t
else if c < fromdepth then x
else mkConst (c-len)
| Arg _ | AppArg _ -> anomaly "subst takes a heap term"
| App(c,x,xs) as orig ->
let x' = aux depth x in
let xs' = smart_map (aux depth) xs in
let xxs' = x'::xs' in
if c >= fromdepth && c < fromdepthlen then
match List.nth ts (len-1 - (c-fromdepth)) with
| Arg(i,0) -> mkAppArg i fromdepth xxs'
| t ->
let t = hmove ~from:fromdepth ~to_:(depth-len) t in
beta (depth-len) [] t xxs'
else if c < fromdepth then
if x == x' && xs == xs' then orig else App(c,x',xs')
else App(c-len,x',xs')
| Builtin(c,xs) as orig ->
let xs' = smart_map (aux depth) xs in
if xs == xs' then orig else Builtin(c,xs')
| Cons(hd,tl) as orig ->
let hd' = aux depth hd in
let tl' = aux depth tl in
if hd == hd' && tl == tl' then orig else Cons(hd',tl')
| Nil -> tt
| Discard -> tt
| UVar({contents=g},vardepth,argsno) when g != C.dummy ->
[%tcall aux depth (deref_uv ~from:vardepth ~to_:depth argsno g)]
| UVar(r,vardepth,argsno) as orig ->
if vardepth+argsno <= fromdepth then orig
else
let r,vardepth,argsno =
decrease_depth r ~from:vardepth ~to_:fromdepth argsno in
let args = C.mkinterval vardepth argsno 0 in
let args = smart_map (aux depth) args in
mkAppUVar r vardepth args
| AppUVar({ contents = t },vardepth,args) when t != C.dummy ->
[%tcall aux depth (deref_appuv ~from:vardepth ~to_:depth args t)]
| AppUVar(r,vardepth,args) ->
let r,vardepth,argsno =
decrease_depth r ~from:vardepth ~to_:fromdepth 0 in
let args0 = C.mkinterval vardepth argsno 0 in
let args = smart_map (aux depth) (args0@args) in
mkAppUVar r vardepth args
| Lam t -> Lam (aux (depth+1) t)
| CData _ as x -> x
end] in
aux fromdepthlen t
end]
and beta depth sub t args =
[%trace "beta" ~rid ("@[<hov 2>subst@ t: %a@ args: %a@]"
(uppterm (depth+List.length sub) [] ~argsdepth:0 empty_env) t
(pplist (uppterm depth [] ~argsdepth:0 empty_env) ", ") args)
begin match t, args with
| UVar ({contents=g},vardepth,argsno), _ when g != C.dummy ->
[%tcall beta depth sub
(deref_uv ~from:vardepth ~to_:(depth+List.length sub) argsno g) args]
| AppUVar({ contents=g },vardepth,uargs), _ when g != C.dummy ->
[%tcall beta depth sub
(deref_appuv ~from:vardepth ~to_:(depth+List.length sub) uargs g) args]
| Lam t', hd::tl -> [%tcall beta depth (hd::sub) t' tl]
| _ ->
let t' = subst depth sub t in
[%spy "dev:subst:out" ~rid (ppterm depth [] ~argsdepth:0 empty_env) t'];
match args with
| [] -> t'
| ahd::atl ->
match t' with
| Const c -> App (c,ahd,atl)
| Arg _
| AppArg _ -> anomaly "beta takes only heap terms"
| App (c,arg,args1) -> App (c,arg,args1@args)
| Builtin (c,args1) -> Builtin (c,args1@args)
| UVar (r,n,m) -> begin
try UVar(r,n,m + in_fragment (n+m) args)
with NotInTheFragment ->
let args1 = C.mkinterval n m 0 in
AppUVar (r,n,args1@args) end
| AppUVar (r,depth,args1) -> AppUVar (r,depth,args1@args)
| Lam _ -> anomaly "beta: some args and some lambdas"
| CData x -> type_error (Printf.sprintf "beta: '%s'" (CData.show x))
| Nil -> type_error "beta: Nil"
| Cons _ -> type_error "beta: Cons"
| Discard -> type_error "beta: Discard"
end]
and eat_args depth l t =
match t with
| Lam t' when l > 0 -> eat_args (depth+1) (l-1) t'
| UVar ({contents=t},origdepth,args) when t != C.dummy ->
eat_args depth l (deref_uv ~from:origdepth ~to_:depth args t)
| AppUVar ({contents=t},origdepth,args) when t != C.dummy ->
eat_args depth l (deref_appuv ~from:origdepth ~to_:depth args t)
| _ -> depth,l,t
and deref_appuv ?avoid ~from ~to_ args t =
beta to_ [] (deref_uv ?avoid ~from ~to_ 0 t) args
and deref_uv ?avoid ~from ~to_ args t =
[%trace "deref_uv" ~rid ("from:%d to:%d %a @@ %d"
from to_ (ppterm from [] ~argsdepth:0 empty_env) t args) begin
if args == 0 then hmove ?avoid ~from ~to_ t
else
let from,args',t = eat_args from args t in
let t = deref_uv ?avoid ~from ~to_ 0 t in
if args' == 0 then t
else
match t with
| Lam _ -> anomaly "eat_args went crazy"
| Const c ->
let args = C.mkinterval (from+1) (args'-1) 0 in
App (c,mkConst from, args)
| App (c,arg,args2) ->
let args = C.mkinterval from args' 0 in
App (c,arg,args2 @ args)
| Builtin (c,args2) ->
let args = C.mkinterval from args' 0 in
Builtin (c,args2 @ args)
| UVar(t,depth,0) when from = depth ->
UVar(t,depth,args')
| AppUVar (r,depth,args2) ->
let args = C.mkinterval from args' 0 in
AppUVar (r,depth,args2 @ args)
| UVar (r,vardepth,argsno) ->
let args1 = C.mkinterval vardepth argsno 0 in
let args2 = C.mkinterval from args' 0 in
let args = args1 @ args2 in
mkAppUVar r vardepth args
| Cons _ | Nil -> type_error "deref_uv: applied list"
| Discard -> type_error "deref_uv: applied Discard"
| CData _ -> t
| Arg _ | AppArg _ -> assert false
end]
;;
let rec is_flex ~depth =
function
| Arg _ | AppArg _ -> anomaly "is_flex called on Args"
| UVar ({ contents = t }, vardepth, args) when t != C.dummy ->
is_flex ~depth (deref_uv ~from:vardepth ~to_:depth args t)
| AppUVar ({ contents = t }, vardepth, args) when t != C.dummy ->
is_flex ~depth (deref_appuv ~from:vardepth ~to_:depth args t)
| UVar (r, _, _) | AppUVar (r, _, _) -> Some r
| Const _ | Lam _ | App _ | Builtin _ | CData _ | Cons _ | Nil | Discard -> None
let is_llam lvl args adepth bdepth depth left e =
let to_ = if left then adepth+depth else bdepth+depth in
let get_con = function Const x -> x | _ -> raise RestrictionFailure in
let deref_to_const = function
| UVar ({ contents = t }, from, args) when t != C.dummy ->
get_con (deref_uv ~from ~to_ args t)
| AppUVar ({ contents = t }, from, args) when t != C.dummy ->
get_con (deref_appuv ~from ~to_ args t)
| Arg (i,args) when e.(i) != C.dummy ->
get_con (deref_uv ~from:adepth ~to_ args e.(i))
| AppArg (i,args) when e.(i) != C.dummy ->
get_con (deref_appuv ~from:adepth ~to_ args e.(i))
| Const x -> if not left && x >= bdepth then x + (adepth-bdepth) else x
| _ -> raise RestrictionFailure
in
let rec aux n = function
| [] -> []
| x :: xs ->
if x >= lvl && not (List.mem x xs) then (x,n) :: aux (n+1) xs
else raise RestrictionFailure in
try true, aux 0 (List.map deref_to_const args)
with RestrictionFailure -> false, []
let is_llam lvl args adepth bdepth depth left e =
let res = is_llam lvl args adepth bdepth depth left e in
[%spy "dev:is_llam" ~rid (fun fmt () -> let (b,map) = res in Fmt.fprintf fmt "%d + %a = %b, %a"
lvl (pplist (ppterm adepth [] ~argsdepth:bdepth e) " ") args b
(pplist (fun fmt (x,n) -> Fmt.fprintf fmt "%d |-> %d" x n) " ") map) ()];
res
let rec mknLam n t = if n = 0 then t else mknLam (n-1) (Lam t)
let bind ~argsdepth r gamma l a d delta b left t e =
let new_lams = List.length l in
let pos x = try List.assoc x l with Not_found -> raise RestrictionFailure in
let cst ?(hmove=true) c b delta =
if left then begin
if c < gamma && c < b then c
else
let c = if hmove && c >= b then c + delta else c in
if c < gamma then c
else if c >= a + d then c + new_lams - (a+d - gamma)
else pos c + gamma
end else begin
if c < gamma then c
else if c >= a + d then c + new_lams - (a+d - gamma)
else pos c + gamma
end in
let cst ?hmove c b delta =
let n = cst ?hmove c b delta in
[%spy "dev:bind:constant-mapping" ~rid (fun fmt () -> let (n,m) = c,n in Fmt.fprintf fmt
"%d -> %d (c:%d b:%d gamma:%d delta:%d d:%d)" n m c b gamma delta d) ()];
n in
let rec bind b delta w t =
[%trace "bind" ~rid ("%b gamma:%d + %a = t:%a a:%d delta:%d d:%d w:%d b:%d"
left gamma (pplist (fun fmt (x,n) -> Fmt.fprintf fmt "%a |-> %d"
(ppterm a [] ~argsdepth e) (mkConst x) n) " ") l
(ppterm a [] ~argsdepth empty_env) t a delta d w b) begin
match t with
| UVar (r1,_,_) | AppUVar (r1,_,_) when r == r1 -> raise RestrictionFailure
| Const c -> let n = cst c b delta in if n < 0 then mkConst n else Const n
| Lam t -> Lam (bind b delta (w+1) t)
| App (c,t,ts) -> App (cst c b delta, bind b delta w t, smart_map (bind b delta w) ts)
| Cons(hd,tl) -> Cons(bind b delta w hd, bind b delta w tl)
| Nil -> t
| Builtin (c, tl) -> Builtin(c, smart_map (bind b delta w) tl)
| CData _ -> t
| Arg (i,args) when e.(i) != C.dummy ->
bind a 0 w (deref_uv ~from:argsdepth ~to_:(a+d+w) args e.(i))
| AppArg (i,args) when e.(i) != C.dummy ->
bind a 0 w (deref_appuv ~from:argsdepth ~to_:(a+d+w) args e.(i))
| UVar ({ contents = t }, from, args) when t != C.dummy ->
bind b delta w (deref_uv ~from ~to_:((if left then b else a)+d+w) args t)
| AppUVar ({ contents = t }, from, args) when t != C.dummy ->
bind b delta w (deref_appuv ~from ~to_:((if left then b else a)+d+w) args t)
| (UVar _ | AppUVar _ | Arg _ | AppArg _ | Discard) as orig ->
let r, lvl, (is_llam, args), orig_args = match orig with
| UVar(r,lvl,0) -> r, lvl, (true, []), []
| UVar(r,lvl,args) ->
let r' = oref C.dummy in
let v = UVar(r',lvl+args,0) in
r @:= mknLam args v;
r', (lvl+args), (true,[]), []
| AppUVar (r,lvl, orig_args) ->
r, lvl, is_llam lvl orig_args a b (d+w) left e, orig_args
| Discard ->
let r = oref C.dummy in
r, a+d+w, (true,[]), []
| Arg (i,0) ->
let r = oref C.dummy in
let v = UVar(r,a,0) in
e.(i) <- v;
r, a, (true,[]), []
| Arg (i,args) ->
let r = oref C.dummy in
let v = UVar(r,a,0) in
e.(i) <- v;
let r' = oref C.dummy in
let v' = UVar(r',a+args,0) in
r @:= mknLam args v';
r', a+args, (true, []), []
| AppArg (i,orig_args) ->
let is_llam, args = is_llam a orig_args a b (d+w) false e in
let r = oref C.dummy in
let v = UVar(r,a,0) in
e.(i) <- v;
r, a, (is_llam, args), orig_args
| _ -> assert false in
[%spy "dev:bind:maybe-prune" ~rid (fun fmt () ->
Fmt.fprintf fmt "lvl:%d is_llam:%b args:%a orig_args:%a orig:%a"
lvl is_llam
(pplist (fun fmt (x,n) ->
Fmt.fprintf fmt "%a->%d" (ppterm a [] ~argsdepth:b e) (mkConst x) n) " ") args
(pplist (ppterm a [] ~argsdepth e) " ") orig_args
(ppterm a [] ~argsdepth e) orig) ()];
if is_llam then begin
let n_args = List.length args in
if lvl > gamma then
let args_gamma_lvl_abs, args_gamma_lvl_here =
let mk_arg i = mkConst i, mkConst (cst ~hmove:false i b delta) in
let rec mk_interval d argsno n =
if n = argsno then []
else if n+d >= lvl then
let i = n+d in
(try
let nn = List.assoc i args in
(mkConst (lvl+nn), mkConst (gamma+List.length l+n)) :: mk_interval d argsno (n+1)
with Not_found -> mk_interval d argsno (n+1))
else mk_arg (n+d)::mk_interval d argsno (n+1) in
let rec keep_cst_for_lvl = function
| [] ->
mk_interval (d + if left then a else b) w 0
| (i,mm) :: rest ->
if i < lvl then (
mk_arg i :: keep_cst_for_lvl rest
) else
(try
let nn = List.assoc i args in
(mkConst (lvl+nn), mkConst mm) :: keep_cst_for_lvl rest
with Not_found -> keep_cst_for_lvl rest) in
List.split (keep_cst_for_lvl (List.sort Stdlib.compare l)) in
let r' = oref C.dummy in
r @:= mknLam n_args (mkAppUVar r' gamma args_gamma_lvl_abs);
mkAppUVar r' gamma args_gamma_lvl_here
else
let args = List.sort Stdlib.compare args in
let args_lvl, args_here =
List.fold_right (fun (c, c_p) (a_lvl, a_here as acc) ->
try
let i =
if c < gamma then c
else if c >= (if left then b else a) + d then c + new_lams - (a+d - gamma)
else pos c + gamma in
mkConst (c_p + lvl) :: a_lvl,
mkConst i :: a_here
with RestrictionFailure -> acc) args ([],[]) in
if n_args = List.length args_here then
mkAppUVar r lvl (smart_map (bind b delta w) orig_args)
else
let r' = oref C.dummy in
let v = mkAppUVar r' lvl args_lvl in
r @:= mknLam n_args v;
mkAppUVar r' lvl args_here
end else begin
mkAppUVar r lvl (smart_map (bind b delta w) orig_args)
end
end] in
let v = mknLam new_lams (bind b delta 0 t) in
[%spy "user:assign:HO" ~rid (fun fmt () -> Fmt.fprintf fmt "%a := %a"
(uppterm gamma [] ~argsdepth e) (UVar(r,gamma,0))
(uppterm gamma [] ~argsdepth e) v) ()];
r @:= v;
true
;;
let rec list_to_lp_list = function
| [] -> Nil
| x::xs -> Cons(x,list_to_lp_list xs)
;;
let delay_hard_unif_problems = Fork.new_local false
let error_msg_hard_unif a b =
"Unification problem outside the pattern fragment. ("^
show_term a^
" == " ^
show_term b^
") Pass -delay-problems-outside-pattern-fragment (elpi command line utility) "^
"or set delay_outside_fragment to true (Elpi_API) in order to delay "^
"(deprecated, for Teyjus compatibility)."
let rec deref_head ~depth = function
| UVar ({ contents = t }, from, ano)
when t != C.dummy ->
deref_head ~depth (deref_uv ~from ~to_:depth ano t)
| AppUVar ({contents = t}, from, args)
when t != C.dummy ->
deref_head ~depth (deref_appuv ~from ~to_:depth args t)
| x -> x
let occurs x d adepth e t =
let rec aux d t = match deref_head ~depth:d t with
| Const c -> c = x
| Lam t -> aux (d+1) t
| App (c, v, vs) -> c = x || aux d v || auxs d vs
| UVar (r, lvl, ano) ->
let t, assignment = expand_uv ~depth:d r ~lvl ~ano in
option_iter (fun (r,_,assignment) -> r @:= assignment) assignment;
aux d t
| AppUVar (_, _, args) -> auxs d args
| Builtin (_, vs) -> auxs d vs
| Cons (v1, v2) -> aux d v1 || aux d v2
| Arg(i,args) when e.(i) != C.dummy ->
aux d (deref_uv ~from:adepth ~to_:d args e.(i))
| AppArg(i,args) when e.(i) != C.dummy ->
aux d (deref_appuv ~from:adepth ~to_:d args e.(i))
| Nil | CData _ | Discard | Arg _ | AppArg _ -> false
and auxs d = function
| [] -> false
| t :: ts -> aux d t || auxs d ts
in
x < d && aux d t
let rec eta_contract_args ~orig_depth ~depth r args eat ~argsdepth e =
match args, eat with
| _, [] -> [%spy "eta_contract_flex" ~rid (fun fmt () -> Fmt.fprintf fmt "all eaten") ()];
begin
try Some (AppUVar(r,0,smart_map (move ~argsdepth ~from:depth ~to_:orig_depth e) (List.rev args)))
with RestrictionFailure -> None
end
| Const x::xs, y::ys when x == y && not (List.exists (occurs y depth argsdepth e) xs) ->
[%spy "eta_contract_flex" ~rid (fun fmt -> Fmt.fprintf fmt "eat %d") y];
eta_contract_args ~orig_depth ~depth r xs ys ~argsdepth e
| _, y::_ ->
[%spy "eta_contract_flex" ~rid (fun fmt -> Fmt.fprintf fmt "cannot eat %d") y];
None
;;
let rec eta_contract_flex orig_depth depth xdepth ~argsdepth e t eat =
[%trace "eta_contract_flex" ~rid ("@[<hov 2>eta_contract_flex %d+%d:%a <- [%a]%!"
xdepth depth (ppterm (xdepth+depth) [] ~argsdepth e) t
(pplist (fun fmt i -> Fmt.fprintf fmt "%d" i) " ") eat) begin
match deref_head ~depth:(xdepth+depth) t with
| AppUVar(r,0,args) ->
eta_contract_args ~orig_depth:(xdepth+orig_depth) ~depth:(xdepth+depth) r (List.rev args) eat ~argsdepth e
| Lam t -> eta_contract_flex orig_depth (depth+1) xdepth ~argsdepth e t (depth+xdepth::eat)
| UVar(r,lvl,ano) ->
let t, assignment = expand_uv ~depth r ~lvl ~ano in
option_iter (fun (r,_,assignment) -> r @:= assignment) assignment;
eta_contract_flex orig_depth depth xdepth ~argsdepth e t eat
| AppUVar(r,lvl,args) ->
let t, assignment = expand_appuv ~depth r ~lvl ~args in
option_iter (fun (r,_,assignment) -> r @:= assignment) assignment;
eta_contract_flex orig_depth depth xdepth ~argsdepth e t eat
| Arg (i, args) when e.(i) != C.dummy ->
eta_contract_flex orig_depth depth xdepth ~argsdepth e
(deref_uv ~from:argsdepth ~to_:(xdepth+depth) args e.(i)) eat
| AppArg(i, args) when e.(i) != C.dummy ->
eta_contract_flex orig_depth depth xdepth ~argsdepth e
(deref_appuv ~from:argsdepth ~to_:(xdepth+depth) args e.(i)) eat
| Arg (i, args) ->
let to_ = argsdepth in
let r = oref C.dummy in
let v = UVar(r,to_,0) in
e.(i) <- v;
eta_contract_flex orig_depth depth xdepth ~argsdepth e
(if args == 0 then v else UVar(r,to_,args)) eat
| AppArg(i, args) ->
let to_ = argsdepth in
let r = oref C.dummy in
let v = UVar(r,to_,0) in
e.(i) <- v;
eta_contract_flex orig_depth depth xdepth ~argsdepth e
(mkAppUVar r to_ args) eat
| _ -> None
end]
;;
let eta_contract_flex depth xdepth ~argsdepth e t =
eta_contract_flex depth depth xdepth ~argsdepth e t []
[@@inline]
let isLam = function Lam _ -> true | _ -> false
let rec unif argsdepth matching depth adepth a bdepth b e =
[%trace "unif" ~rid ("@[<hov 2>^%d:%a@ =%d%s= ^%d:%a@]%!"
adepth (ppterm (adepth+depth) [] ~argsdepth empty_env) a
depth (if matching then "m" else "")
bdepth (ppterm (bdepth+depth) [] ~argsdepth:bdepth e) b)
begin
let delta = adepth - bdepth in
(delta = 0 && a == b) || match a,b with
| (Discard, _ | _, Discard) -> true
| _, App(c,arg,[as_this]) when c == Global_symbols.asc ->
unif argsdepth matching depth adepth a bdepth arg e &&
unif argsdepth matching depth adepth a bdepth as_this e
| _, App(c,arg,_) when c == Global_symbols.asc -> error "syntax error in as"
| App(c,arg,_), _ when c == Global_symbols.asc ->
unif argsdepth matching depth adepth arg bdepth b e
| UVar(r1,_,args1), UVar(r2,_,args2)
when r1 == r2 && !!r1 == C.dummy -> args1 == args2
| UVar(r1,vd,xs), AppUVar(r2,_,ys)
when r1 == r2 && !!r1 == C.dummy -> unif argsdepth matching depth adepth (AppUVar(r1,vd,C.mkinterval vd xs 0)) bdepth b e
| AppUVar(r1,vd,xs), UVar(r2,_,ys)
when r1 == r2 && !!r1 == C.dummy -> unif argsdepth matching depth adepth a bdepth (AppUVar(r1,vd,C.mkinterval vd ys 0)) e
| AppUVar(r1,vd,xs), AppUVar(r2,_,ys)
when r1 == r2 && !!r1 == C.dummy ->
let pruned = ref false in
let filtered_args_rev = fold_left2i (fun i args x y ->
let b = unif argsdepth matching depth adepth x bdepth y e in
if not b then (pruned := true; args)
else x :: args
) [] xs ys in
if !pruned then begin
let len = List.length xs in
let r = oref C.dummy in
r1 @:= mknLam len (mkAppUVar r vd (List.rev filtered_args_rev));
end;
true
| UVar ({ contents = t }, from, args), _ when t != C.dummy ->
unif argsdepth matching depth adepth (deref_uv ~from ~to_:(adepth+depth) args t) bdepth b e
| AppUVar ({ contents = t }, from, args), _ when t != C.dummy ->
unif argsdepth matching depth adepth (deref_appuv ~from ~to_:(adepth+depth) args t) bdepth b e
| _, UVar ({ contents = t }, from, args) when t != C.dummy ->
unif argsdepth matching depth adepth a bdepth (deref_uv ~from ~to_:(bdepth+depth) args t) empty_env
| _, AppUVar ({ contents = t }, from, args) when t != C.dummy ->
unif argsdepth matching depth adepth a bdepth (deref_appuv ~from ~to_:(bdepth+depth) args t) empty_env
| _, Arg (i,args) when e.(i) != C.dummy ->
unif argsdepth matching depth adepth a adepth
(deref_uv ~from:argsdepth ~to_:(adepth+depth) args e.(i)) empty_env
| _, AppArg (i,args) when e.(i) != C.dummy ->
let args =
smart_map (move ~argsdepth ~from:bdepth ~to_:adepth e) args in
unif argsdepth matching depth adepth a adepth
(deref_appuv ~from:argsdepth ~to_:(adepth+depth) args e.(i)) empty_env
| (UVar _ | AppUVar _), Const c when c == Global_symbols.uvarc && matching -> true
| UVar(r,vd,ano), App(c,hd,[]) when c == Global_symbols.uvarc && matching ->
unif argsdepth matching depth adepth (UVar(r,vd,ano)) bdepth hd e
| AppUVar(r,vd,_), App(c,hd,[]) when c == Global_symbols.uvarc && matching ->
unif argsdepth matching depth adepth (UVar(r,vd,0)) bdepth hd e
| UVar(r,vd,ano), App(c,hd,[arg]) when c == Global_symbols.uvarc && matching ->
let r_exp = oref C.dummy in
let exp = UVar(r_exp,0,0) in
r @:= UVar(r_exp,0,vd);
unif argsdepth matching depth adepth exp bdepth hd e &&
let args = list_to_lp_list (C.mkinterval 0 (vd+ano) 0) in
unif argsdepth matching depth adepth args bdepth arg e
| AppUVar(r,vd,args), App(c,hd,[arg]) when c == Global_symbols.uvarc && matching ->
let r_exp = oref C.dummy in
let exp = UVar(r_exp,0,0) in
r @:= UVar(r_exp,0,vd);
unif argsdepth matching depth adepth exp bdepth hd e &&
let args = list_to_lp_list (C.mkinterval 0 vd 0 @ args) in
unif argsdepth matching depth adepth args bdepth arg e
| Lam _, (Const c | App(c,_,_)) when c == Global_symbols.uvarc && matching ->
begin match eta_contract_flex depth adepth ~argsdepth:adepth e a with
| None -> false
| Some a -> unif argsdepth matching depth adepth a bdepth b e
end
| (App _ | Const _ | Builtin _ | Nil | Cons _ | CData _), (Const c | App(c,_,[])) when c == Global_symbols.uvarc && matching -> false
| _, Arg (i,0) ->
begin try
let v = hmove ~from:(adepth+depth) ~to_:argsdepth a in
[%spy "user:assign" ~rid (fun fmt () -> Fmt.fprintf fmt "%a := %a"
(uppterm adepth [] ~argsdepth e) b (uppterm adepth [] ~argsdepth e) v) ()];
e.(i) <- v;
true
with RestrictionFailure -> false end
| UVar(r1,_,0), UVar (r2,_,0) when uvar_isnt_a_blocker r1 && uvar_is_a_blocker r2 -> unif argsdepth matching depth bdepth b adepth a e
| AppUVar(r1,_,_), UVar (r2,_,0) when uvar_isnt_a_blocker r1 && uvar_is_a_blocker r2 -> unif argsdepth matching depth bdepth b adepth a e
| _, UVar (r,origdepth,0) ->
begin try
let t =
if depth = 0 then
hmove ~avoid:r ~from:adepth ~to_:origdepth a
else
let a = hmove ~avoid:r ~from:(adepth+depth) ~to_:(bdepth+depth) a in
hmove ~from:(bdepth+depth) ~to_:origdepth a in
[%spy "user:assign" ~rid (fun fmt () -> Fmt.fprintf fmt "%a := %a"
(uppterm depth [] ~argsdepth e) b
(uppterm depth [] ~argsdepth e) t) ()];
r @:= t;
true
with RestrictionFailure when isLam a ->
let b = (mkLam @@ mkAppUVar r origdepth [mkConst @@ depth + bdepth]) in
let a = hmove ~from:(adepth+depth) ~to_:(bdepth+depth) a in
unif argsdepth matching depth bdepth a bdepth b e
| RestrictionFailure -> false
end
| UVar (r,origdepth,0), _ when not matching ->
begin try
let t =
if depth=0 then
move ~avoid:r ~argsdepth ~from:bdepth ~to_:origdepth e b
else
let b = move ~avoid:r ~argsdepth ~from:(bdepth+depth) ~to_:(adepth+depth) e b in
hmove ~from:(adepth+depth) ~to_:origdepth b in
[%spy "user:assign" ~rid (fun fmt () -> Fmt.fprintf fmt "%a := %a"
(uppterm origdepth [] ~argsdepth:0 empty_env) a
(uppterm origdepth [] ~argsdepth:0 empty_env) t) ()];
r @:= t;
true
with RestrictionFailure when isLam b ->
let a = (mkLam @@ mkAppUVar r origdepth [mkConst @@ depth + adepth]) in
let b = move ~argsdepth ~from:(bdepth+depth) ~to_:(adepth+depth) e b in
unif argsdepth matching depth adepth a adepth b e
| RestrictionFailure -> false
end
| _, Arg (i,args) ->
let v = make_lambdas adepth (args - depth) in
[%spy "user:assign:simplify:stack:arg" ~rid (fun fmt () -> Fmt.fprintf fmt "%a := %a"
(uppterm depth [] ~argsdepth e) (Arg(i,0))
(uppterm depth [] ~argsdepth e) v) ()];
e.(i) <- v;
let bdepth = adepth in
let b = deoptimize_uv_w_args @@ deref_uv ~from:argsdepth ~to_:(bdepth+depth) args v in
unif argsdepth matching depth adepth a bdepth b e
| UVar(r1,_,a1), UVar (r2,_,a2) when uvar_isnt_a_blocker r1 && uvar_is_a_blocker r2 && a1 + a2 > 0 -> unif argsdepth matching depth bdepth b adepth a e
| AppUVar(r1,_,_), UVar (r2,_,a2) when uvar_isnt_a_blocker r1 && uvar_is_a_blocker r2 && a2 > 0 -> unif argsdepth matching depth bdepth b adepth a e
| _, UVar (r,origdepth,args) when args > 0 && match a with UVar(r1,_,_) | AppUVar(r1,_,_) -> r != r1 | _ -> true ->
let v = make_lambdas origdepth (args - depth) in
[%spy "user:assign:simplify:stack:uvar" ~rid (fun fmt () -> Fmt.fprintf fmt "%a := %a"
(uppterm depth [] ~argsdepth e) (UVar(r,origdepth,0))
(uppterm depth [] ~argsdepth e) v) ()];
r @:= v;
let b = deoptimize_uv_w_args @@ deref_uv ~from:origdepth ~to_:(bdepth+depth) args v in
unif argsdepth matching depth adepth a bdepth b e
| UVar (r,origdepth,args), _ when args > 0 && match b with UVar(r1,_,_) | AppUVar(r1,_,_) -> r != r1 | _ -> true ->
let v = make_lambdas origdepth (args - depth) in
[%spy "user:assign:simplify:heap" ~rid (fun fmt () -> Fmt.fprintf fmt "%a := %a"
(uppterm depth [] ~argsdepth e) (UVar(r,origdepth,0))
(uppterm depth [] ~argsdepth e) v) ()];
r @:= v;
let a = deoptimize_uv_w_args @@ deref_uv ~from:origdepth ~to_:(adepth+depth) args v in
unif argsdepth matching depth adepth a bdepth b e
| other, AppArg(i,args) ->
let is_llam, args = is_llam adepth args adepth bdepth depth false e in
if is_llam then
let r = oref C.dummy in
e.(i) <- UVar(r,adepth,0);
try bind ~argsdepth r adepth args adepth depth delta bdepth false other e
with RestrictionFailure -> false
else if !delay_hard_unif_problems then begin
Fmt.fprintf Fmt.std_formatter "HO unification delayed: %a = %a\n%!"
(uppterm depth [] ~argsdepth empty_env) a (uppterm depth [] ~argsdepth e) b ;
let r = oref C.dummy in
e.(i) <- UVar(r,adepth,0);
let kind = Unification {adepth = adepth+depth; env = e; bdepth = bdepth+depth; a; b; matching} in
let blockers =
match is_flex ~depth:(adepth+depth) other with
| None -> [r]
| Some r' -> if r==r' then [r] else [r;r'] in
CS.declare_new { kind; blockers };
true
end else error (error_msg_hard_unif a b)
| AppUVar(r2,_,_), (AppUVar (r1,_,_) | UVar (r1,_,_)) when uvar_isnt_a_blocker r1 && uvar_is_a_blocker r2 ->
unif argsdepth matching depth bdepth b adepth a e
| AppUVar (r, lvl,(args as oargs)), other when not matching ->
let is_llam, args = is_llam lvl args adepth bdepth depth true e in
if is_llam then
try bind ~argsdepth r lvl args adepth depth delta bdepth true other e
with RestrictionFailure when isLam other ->
let a = mkLam @@ mkAppUVar r lvl (smart_map (move ~argsdepth e ~from:(depth+adepth) ~to_:(depth+adepth+1)) oargs @ [mkConst @@ depth + adepth]) in
let b = move ~from:(depth+bdepth) ~to_:(depth+adepth) ~argsdepth e b in
unif argsdepth matching depth adepth a adepth b e
| RestrictionFailure -> false
else if !delay_hard_unif_problems then begin
Fmt.fprintf Fmt.std_formatter "HO unification delayed: %a = %a\n%!"
(uppterm depth [] ~argsdepth empty_env) a (uppterm depth [] ~argsdepth empty_env) b ;
let kind = Unification {adepth = adepth+depth; env = e; bdepth = bdepth+depth; a; b; matching} in
let blockers = match is_flex ~depth:(bdepth+depth) other with | None -> [r] | Some r' -> [r;r'] in
CS.declare_new { kind; blockers };
true
end else error (error_msg_hard_unif a b)
| other, AppUVar (r, lvl,(args as oargs)) ->
let is_llam, args = is_llam lvl args adepth bdepth depth false e in
if is_llam then
try bind ~argsdepth r lvl args adepth depth delta bdepth false other e
with RestrictionFailure when isLam other ->
let b = mkLam @@ mkAppUVar r lvl (smart_map (move ~argsdepth e ~from:(depth+bdepth) ~to_:(depth+bdepth+1)) oargs @ [mkConst @@ depth + bdepth]) in
let a = hmove ~from:(depth+adepth) ~to_:(depth+bdepth) a in
unif argsdepth matching depth bdepth a bdepth b e
| RestrictionFailure -> false
else if !delay_hard_unif_problems then begin
Fmt.fprintf Fmt.std_formatter "HO unification delayed: %a = %a\n%!"
(uppterm depth [] ~argsdepth empty_env) a (uppterm depth [] ~argsdepth e) b ;
let kind = Unification {adepth = adepth+depth; env = e; bdepth = bdepth+depth; a; b; matching} in
let blockers =
match is_flex ~depth:(adepth+depth) other with
| None -> [r]
| Some r' -> if r==r' then [r] else [r;r'] in
CS.declare_new { kind; blockers };
true
end else error (error_msg_hard_unif a b)
| App (c1,x2,xs), App (c2,y2,ys) ->
((delta=0 || c1 < bdepth) && c1=c2
|| c1 >= adepth && c1 = c2 + delta)
&&
(delta=0 && x2 == y2 || unif argsdepth matching depth adepth x2 bdepth y2 e) &&
for_all2 (fun x y -> unif argsdepth matching depth adepth x bdepth y e) xs ys
| Builtin (c1,xs), Builtin (c2,ys) ->
c1 = c2 && for_all2 (fun x y -> unif argsdepth matching depth adepth x bdepth y e) xs ys
| Lam t1, Lam t2 -> unif argsdepth matching (depth+1) adepth t1 bdepth t2 e
| Const c1, Const c2 ->
if c1 < bdepth then c1=c2 else c1 >= adepth && c1 = c2 + delta
| CData d1, CData d2 -> CData.equal d1 d2
| Cons(hd1,tl1), Cons(hd2,tl2) ->
unif argsdepth matching depth adepth hd1 bdepth hd2 e && unif argsdepth matching depth adepth tl1 bdepth tl2 e
| Nil, Nil -> true
| Lam t, Const c ->
eta_expand_stack argsdepth matching depth adepth t bdepth b c [] e
| Const c, Lam t ->
eta_expand_heap argsdepth matching depth adepth c [] bdepth b t e
| Lam t, App (c,x,xs) ->
eta_expand_stack argsdepth matching depth adepth t bdepth b c (x::xs) e
| App (c,x,xs), Lam t ->
eta_expand_heap argsdepth matching depth adepth c (x::xs) bdepth b t e
| _ -> false
end]
and eta_expand_stack argsdepth matching depth adepth x bdepth b c args e =
let = mkConst (bdepth+depth) in
let motion = move ~argsdepth ~from:(bdepth+depth) ~to_:(bdepth+depth+1) e in
let args = smart_map motion args in
let eta = C.mkAppL c (args @ [extra]) in
unif argsdepth matching (depth+1) adepth x bdepth eta e
and eta_expand_heap argsdepth matching depth adepth c args bdepth b x e =
let = mkConst (adepth+depth) in
let motion = hmove ~from:(adepth+depth) ~to_:(adepth+depth+1) in
let args = smart_map motion args in
let eta= C.mkAppL c (args @ [extra]) in
unif argsdepth matching (depth+1) adepth eta bdepth x e
;;
let unif ~argsdepth ~matching (gid[@trace]) adepth e bdepth a b =
let res = unif argsdepth matching 0 adepth a bdepth b e in
[%spy "dev:unif:out" ~rid Fmt.pp_print_bool res];
[%spy "user:backchain:fail-to" ~rid ~gid ~cond:(not res) (fun fmt () ->
let op = if matching then "match" else "unify" in
Fmt.fprintf fmt "@[<hov 2>%s@ %a@ with@ %a@]" op
(uppterm (adepth) [] ~argsdepth:bdepth empty_env) a
(uppterm (bdepth) [] ~argsdepth:bdepth e) b) ()];
res
;;
let full_deref ~adepth env ~depth t =
let rec deref d = function
| Const _ as x -> x
| Lam r as orig ->
let r' = deref (d+1) r in
if r == r' then orig
else Lam r'
| App (n,x,xs) as orig ->
let x' = deref d x in
let xs' = smart_map (deref d) xs in
if x == x' && xs == xs' then orig
else App(n, x', xs')
| Cons(hd,tl) as orig ->
let hd' = deref d hd in
let tl' = deref d tl in
if hd == hd' && tl == tl' then orig
else Cons(hd', tl')
| Nil as x -> x
| Discard as x -> x
| Arg (i,ano) when env.(i) != C.dummy ->
deref d (deref_uv ~from:adepth ~to_:d ano env.(i))
| Arg _ as x -> x
| AppArg (i,args) when env.(i) != C.dummy ->
deref d (deref_appuv ~from:adepth ~to_:d args env.(i))
| AppArg (i,args) as orig ->
let args' = smart_map (deref d) args in
if args == args' then orig
else AppArg (i, args')
| UVar (r,lvl,ano) when !!r != C.dummy ->
deref d (deref_uv ~from:lvl ~to_:d ano !!r)
| UVar _ as x -> x
| AppUVar (r,lvl,args) when !!r != C.dummy ->
deref d (deref_appuv ~from:lvl ~to_:d args !!r)
| AppUVar (r,lvl,args) as orig ->
let args' = smart_map (deref d) args in
if args == args' then orig
else AppUVar (r,lvl,args')
| Builtin(c,xs) as orig ->
let xs' = smart_map (deref d) xs in
if xs == xs' then orig
else Builtin(c,xs')
| CData _ as x -> x
in
deref depth t
type assignment = uvar_body * int * term
let shift_bound_vars ~depth ~to_ t =
let shift_db d n =
if n < depth then n
else n + to_ - depth in
let rec shift d = function
| Const n as x -> let m = shift_db d n in if m = n then x else mkConst m
| Lam r as orig ->
let r' = shift (d+1) r in
if r == r' then orig
else Lam r'
| App (n,x,xs) as orig ->
let x' = shift d x in
let xs' = smart_map (shift d) xs in
if x == x' && xs == xs' then orig
else App(shift_db d n, x', xs')
| Cons(hd,tl) as orig ->
let hd' = shift d hd in
let tl' = shift d tl in
if hd == hd' && tl == tl' then orig
else Cons(hd', tl')
| Nil as x -> x
| Discard as x -> x
| Arg _ as x -> x
| AppArg (i,args) as orig ->
let args' = smart_map (shift d) args in
if args == args' then orig
else AppArg (i, args')
| (UVar (r,_,_) | AppUVar(r,_,_)) when !!r != C.dummy ->
anomaly "shift_bound_vars: non-derefd term"
| UVar _ as x -> x
| AppUVar (r,lvl,args) as orig ->
let args' = smart_map (shift d) args in
if args == args' then orig
else AppUVar (r,lvl,args')
| Builtin(c,xs) as orig ->
let xs' = smart_map (shift d) xs in
if xs == xs' then orig
else Builtin(c,xs')
| CData _ as x -> x
in
if depth = to_ then t else shift depth t
let map_free_vars ~map ~depth ~to_ t =
let shift_bound = depth - to_ in
let shift_db d n =
if n < 0 then n
else if n < depth then try C.Map.find n map with Not_found ->
error (Printf.sprintf "The term cannot be put in the desired context since it contains name: %s" @@ C.show n)
else if n >= depth && n - depth <= d then n - shift_bound
else
error (Printf.sprintf "The term cannot be put in the desired context since it contains name: %s" @@ C.show n)
in
let rec shift d = function
| Const n as x -> let m = shift_db d n in if m = n then x else mkConst m
| Lam r as orig ->
let r' = shift (d+1) r in
if r == r' then orig
else Lam r'
| App (n,x,xs) as orig ->
let x' = shift d x in
let xs' = smart_map (shift d) xs in
if x == x' && xs == xs' then orig
else App(shift_db d n, x', xs')
| Cons(hd,tl) as orig ->
let hd' = shift d hd in
let tl' = shift d tl in
if hd == hd' && tl == tl' then orig
else Cons(hd', tl')
| Nil as x -> x
| Discard as x -> x
| Arg _ as x -> x
| AppArg (i,args) as orig ->
let args' = smart_map (shift d) args in
if args == args' then orig
else AppArg (i, args')
| (UVar (r,_,_) | AppUVar(r,_,_)) when !!r != C.dummy ->
anomaly "map_free_vars: non-derefd term"
| UVar(r,lvl,ano) -> UVar(r,min lvl to_,ano)
| AppUVar (r,lvl,args) -> AppUVar (r,min lvl to_,smart_map (shift d) args)
| Builtin(c,xs) as orig ->
let xs' = smart_map (shift d) xs in
if xs == xs' then orig
else Builtin(c,xs')
| CData _ as x -> x
in
if depth = to_ && C.Map.is_empty map then t else shift 0 t
let eta_contract_flex ~depth t =
eta_contract_flex depth 0 ~argsdepth:0 empty_env t
[@@inline]
end
open HO
let _ = do_deref := deref_uv;;
let _ = do_app_deref := deref_appuv;;
module FFI = struct
let builtins : Data.BuiltInPredicate.builtin_table ref = Fork.new_local (Hashtbl.create 17)
let lookup c = Hashtbl.find !builtins c
let type_err ~depth bname n ty t =
type_error begin
"builtin " ^ bname ^ ": " ^
(if n = 0 then "" else string_of_int n ^ "th argument: ") ^
"expected " ^ ty ^ " got" ^
match t with
| None -> "_"
| Some t ->
match t with
| CData c -> Format.asprintf " %s: %a" (CData.name c) (Pp.uppterm depth [] ~argsdepth:0 empty_env) t
| _ -> Format.asprintf ":%a" (Pp.uppterm depth [] ~argsdepth:0 empty_env) t
end
let wrap_type_err bname n f x =
try f x
with Conversion.TypeErr(ty,depth,t) -> type_err ~depth bname n (Conversion.show_ty_ast ty) (Some t)
let arity_err ~depth bname n t =
type_error ("builtin " ^ bname ^ ": " ^
match t with
| None -> string_of_int n ^ "th argument is missing"
| Some t -> "too many arguments at: " ^
Format.asprintf "%a" (Pp.uppterm depth [] ~argsdepth:0 empty_env) t)
let out_of_term ~depth readback n bname state t =
match deref_head ~depth t with
| Discard -> Data.BuiltInPredicate.Discard
| _ -> Data.BuiltInPredicate.Keep
let in_of_term ~depth readback n bname state t =
wrap_type_err bname n (readback ~depth state) t
let inout_of_term ~depth readback n bname state t =
wrap_type_err bname n (readback ~depth state) t
let mk_out_assign ~depth embed bname state input v output =
match output, input with
| None, Data.BuiltInPredicate.Discard -> state, []
| Some _, Data.BuiltInPredicate.Discard -> state, []
| Some t, Data.BuiltInPredicate.Keep ->
let state, t, = embed ~depth state t in
state, extra @ [Conversion.Unify(v,t)]
| None, Data.BuiltInPredicate.Keep -> state, []
let mk_inout_assign ~depth embed bname state input v output =
match output with
| None -> state, []
| Some t ->
let state, t, = embed ~depth state (Data.BuiltInPredicate.Data t) in
state, extra @ [Conversion.Unify(v,t)]
let in_of_termC ~depth readback n bname hyps constraints state t =
wrap_type_err bname n (readback ~depth hyps constraints state) t
let inout_of_termC = in_of_termC
let mk_out_assignC ~depth embed bname hyps constraints state input v output =
match output, input with
| None, Data.BuiltInPredicate.Discard -> state, []
| Some _, Data.BuiltInPredicate.Discard -> state, []
| Some t, Data.BuiltInPredicate.Keep ->
let state, t, = embed ~depth hyps constraints state t in
state, extra @ [Conversion.Unify(v,t)]
| None, Data.BuiltInPredicate.Keep -> state, []
let mk_inout_assignC ~depth embed bname hyps constraints state input v output =
match output with
| Some t ->
let state, t, = embed ~depth hyps constraints state (Data.BuiltInPredicate.Data t) in
state, extra @ [Conversion.Unify(v,t)]
| None -> state, []
let map_acc f s l =
let rec aux acc s = function
| [] -> s, List.rev acc, List.(concat (rev extra))
| x :: xs ->
let s, x, gls = f s x in
aux (x :: acc) (gls :: extra) s xs
in
aux [] [] s l
let call (Data.BuiltInPredicate.Pred(bname,ffi,compute)) ~once ~depth hyps constraints state data =
let rec aux : type i o h c.
(i,o,h,c) Data.BuiltInPredicate.ffi -> h -> c -> compute:i -> reduce:(State.t -> o -> State.t * Conversion.extra_goals) ->
term list -> int -> State.t -> Conversion.extra_goals list -> State.t * Conversion.extra_goals =
fun ffi ctx constraints ~compute ~reduce data n state ->
match ffi, data with
| Data.BuiltInPredicate.Easy _, [] ->
let result = wrap_type_err bname 0 (fun () -> compute ~depth) () in
let state, l = reduce state result in
state, List.(concat (rev extra) @ rev l)
| Data.BuiltInPredicate.Read _, [] ->
let result = wrap_type_err bname 0 (compute ~depth ctx constraints) state in
let state, l = reduce state result in
state, List.(concat (rev extra) @ rev l)
| Data.BuiltInPredicate.Full _, [] ->
let state, result, gls = wrap_type_err bname 0 (compute ~depth ctx constraints) state in
let state, l = reduce state result in
state, List.(concat (rev extra)) @ gls @ List.rev l
| Data.BuiltInPredicate.FullHO _, [] ->
let state, result, gls = wrap_type_err bname 0 (compute ~once ~depth ctx constraints) state in
let state, l = reduce state result in
state, List.(concat (rev extra)) @ gls @ List.rev l
| Data.BuiltInPredicate.VariadicIn(_,{ ContextualConversion.readback }, _), data ->
let state, i, gls =
map_acc (in_of_termC ~depth readback n bname ctx constraints) state data in
let state, rest = wrap_type_err bname 0 (compute i ~depth ctx constraints) state in
let state, l = reduce state rest in
state, List.(gls @ concat (rev extra) @ rev l)
| Data.BuiltInPredicate.VariadicOut(_,{ ContextualConversion.embed; readback }, _), data ->
let i = List.map (out_of_term ~depth readback n bname state) data in
let state, (rest, out) = wrap_type_err bname 0 (compute i ~depth ctx constraints) state in
let state, l = reduce state rest in
begin match out with
| Some out ->
let state, ass =
map_acc3 (mk_out_assignC ~depth embed bname ctx constraints) state i data out in
state, List.(concat (rev extra) @ rev (concat ass) @ l)
| None -> state, List.(concat (rev extra) @ rev l)
end
| Data.BuiltInPredicate.VariadicInOut(_,{ ContextualConversion.embed; readback }, _), data ->
let state, i, gls =
map_acc (inout_of_termC ~depth readback n bname ctx constraints) state data in
let state, (rest, out) = wrap_type_err bname 0 (compute i ~depth ctx constraints) state in
let state, l = reduce state rest in
begin match out with
| Some out ->
let state, ass =
map_acc3 (mk_inout_assignC ~depth embed bname ctx constraints) state i data out in
state, List.(gls @ concat (rev extra) @ rev (concat ass) @ l)
| None -> state, List.(gls @ concat (rev extra) @ rev l)
end
| Data.BuiltInPredicate.CIn({ ContextualConversion.readback }, _, ffi), t :: rest ->
let state, i, gls = in_of_termC ~depth readback n bname ctx constraints state t in
aux ffi ctx constraints ~compute:(compute i) ~reduce rest (n + 1) state (gls :: extra)
| Data.BuiltInPredicate.COut({ ContextualConversion.embed; readback }, _, ffi), t :: rest ->
let i = out_of_term ~depth readback n bname state t in
let reduce state (rest, out) =
let state, l = reduce state rest in
let state, ass = mk_out_assignC ~depth embed bname ctx constraints state i t out in
state, ass @ l in
aux ffi ctx constraints ~compute:(compute i) ~reduce rest (n + 1) state extra
| Data.BuiltInPredicate.CInOut({ ContextualConversion.embed; readback }, _, ffi), t :: rest ->
let state, i, gls = inout_of_termC ~depth readback n bname ctx constraints state t in
let reduce state (rest, out) =
let state, l = reduce state rest in
let state, ass = mk_inout_assignC ~depth embed bname ctx constraints state i t out in
state, ass @ l in
aux ffi ctx constraints ~compute:(compute i) ~reduce rest (n + 1) state (gls :: extra)
| Data.BuiltInPredicate.In({ Conversion.readback }, _, ffi), t :: rest ->
let state, i, gls = in_of_term ~depth readback n bname state t in
aux ffi ctx constraints ~compute:(compute i) ~reduce rest (n + 1) state (gls :: extra)
| Data.BuiltInPredicate.Out({ Conversion.embed; readback }, _, ffi), t :: rest ->
let i = out_of_term ~depth readback n bname state t in
let reduce state (rest, out) =
let state, l = reduce state rest in
let state, ass = mk_out_assign ~depth embed bname state i t out in
state, ass @ l in
aux ffi ctx constraints ~compute:(compute i) ~reduce rest (n + 1) state extra
| Data.BuiltInPredicate.InOut({ Conversion.embed; readback }, _, ffi), t :: rest ->
let state, i, gls = inout_of_term ~depth readback n bname state t in
let reduce state (rest, out) =
let state, l = reduce state rest in
let state, ass = mk_inout_assign ~depth embed bname state i t out in
state, ass @ l in
aux ffi ctx constraints ~compute:(compute i) ~reduce rest (n + 1) state (gls :: extra)
| _, t :: _ -> arity_err ~depth bname n (Some t)
| _, [] -> arity_err ~depth bname n None
in
let rec aux_ctx : type i o h c. (i,o,h,c) Data.BuiltInPredicate.ffi -> (h,c) ContextualConversion.ctx_readback = function
| Data.BuiltInPredicate.FullHO(f,_) -> f
| Data.BuiltInPredicate.Full(f,_) -> f
| Data.BuiltInPredicate.Read(f,_) -> f
| Data.BuiltInPredicate.VariadicIn(f,_,_) -> f
| Data.BuiltInPredicate.VariadicOut(f,_,_) -> f
| Data.BuiltInPredicate.VariadicInOut(f,_,_) -> f
| Data.BuiltInPredicate.Easy _ -> ContextualConversion.unit_ctx
| Data.BuiltInPredicate.In(_,_,rest) -> aux_ctx rest
| Data.BuiltInPredicate.Out(_,_,rest) -> aux_ctx rest
| Data.BuiltInPredicate.InOut(_,_,rest) -> aux_ctx rest
| Data.BuiltInPredicate.CIn(_,_,rest) -> aux_ctx rest
| Data.BuiltInPredicate.COut(_,_,rest) -> aux_ctx rest
| Data.BuiltInPredicate.CInOut(_,_,rest) -> aux_ctx rest
in
let reduce state _ = state, [] in
let state, ctx, csts, gls_ctx = aux_ctx ffi ~depth hyps constraints state in
let state, gls = aux ffi ctx csts ~compute ~reduce data 1 state [] in
state, gls_ctx @ gls
;;
end
module Indexing = struct
let lex_insertion l1 l2 =
let rec lex_insertion fst l1 l2 =
match l1, l2 with
| [], [] -> 0
| x :: l1, y :: l2 when not fst ->
let r =
if x < 0 && y < 0 || x > 0 && y > 0
then y - x else x - y in
if r = 0 then lex_insertion false l1 l2
else r
| x1 :: l1, x2 :: l2 ->
let x = x1 - x2 in
if x = 0 then lex_insertion false l1 l2
else x
| [], ys -> lex_insertion false [0] ys
| xs, [] -> lex_insertion false xs [0]
in
lex_insertion true l1 l2
let mustbevariablec = min_int
let ppclause f ~hd { depth; args = args; hyps = hyps } =
Fmt.fprintf f "@[<hov 1>%a :- %a.@]"
(uppterm ~min_prec:(Elpi_parser.Parser_config.appl_precedence+1) depth [] ~argsdepth:0 empty_env) (C.mkAppL hd args)
(pplist (uppterm ~min_prec:(Elpi_parser.Parser_config.appl_precedence+1) depth [] ~argsdepth:0 empty_env) ", ") hyps
(** [tail_opt L] returns: [match L with [] -> [] | x :: xs -> xs] *)
let tail_opt = function
| [] -> []
| _ :: xs -> xs
let hd_opt = function
| x :: _ -> get_arg_mode x
| _ -> Output
type clause_arg_classification =
| Variable
| MustBeVariable
| Rigid of constant * arg_mode
let rec classify_clause_arg ~depth matching t =
match deref_head ~depth t with
| Const k when k == Global_symbols.uvarc -> MustBeVariable
| Const k -> Rigid(k,matching)
| Nil -> Rigid (Global_symbols.nilc,matching)
| Cons _ -> Rigid (Global_symbols.consc,matching)
| App (k,_,_) when k == Global_symbols.uvarc -> MustBeVariable
| App (k,a,_) when k == Global_symbols.asc -> classify_clause_arg ~depth matching a
| (App (k,_,_) | Builtin (k,_)) -> Rigid (k,matching)
| Lam _ -> Variable
| Arg _ | UVar _ | AppArg _ | AppUVar _ | Discard -> Variable
| CData d ->
let hash = -(CData.hash d) in
if hash > mustbevariablec then Rigid (hash,matching)
else Rigid (hash+1,matching)
(**
[classify_clause_argno ~depth N mode L] where L is the arguments of the
clause. Returns the classification of the Nth element of L wrt to the Nth mode
for the TwoLevelIndex
*)
let rec classify_clause_argno ~depth argno mode = function
| [] -> Variable
| x :: _ when argno == 0 -> classify_clause_arg ~depth (hd_opt mode) x
| _ :: xs -> classify_clause_argno ~depth (argno-1) (tail_opt mode) xs
let dec_to_bin2 num =
let rec aux x =
if x==1 then ["1"] else
if x==0 then ["0"] else
if x mod 2 == 1 then "1" :: aux (x/2)
else "0" :: aux (x/2)
in
String.concat "" (List.rev (aux num))
let hash_bits = Sys.int_size - 1
(**
Hashing function for clause and queries depending on the boolean [is_goal].
This is done by hashing the parameters wrt to Sys.int_size - 1 (see [hash_bits])
*)
let hash_arg_list is_goal hd ~depth args mode spec =
let nargs = List.(length (filter (fun x -> x > 0) spec)) in
let arg_size = hash_bits / nargs in
let hash size k =
let modulus = 1 lsl size in
let kabs = Hashtbl.hash k in
let h = kabs mod modulus in
[%spy "dev:index:subhash-const" ~rid C.pp k pp_string (dec_to_bin2 h)];
h in
let all_1 size = max_int lsr (hash_bits - size) in
let all_0 size = 0 in
let shift slot_size position x = x lsl (slot_size * position) in
let rec aux off acc args mode spec =
match args, spec with
| _, [] -> acc
| [], _ -> acc
| x::xs, n::spec ->
let h = aux_arg arg_size (hd_opt mode) n x in
aux (off + arg_size) (acc lor (h lsl off)) xs (tail_opt mode) spec
and aux_arg size mode deep arg =
let h =
match deref_head ~depth arg with
| App (k,a,_) when k == Global_symbols.asc -> aux_arg size mode deep a
| Const k when k == Global_symbols.uvarc ->
hash size mustbevariablec
| App(k,_,_) when k == Global_symbols.uvarc && deep = 1 ->
hash size mustbevariablec
| Const k -> hash size k
| App(k,_,_) when deep = 1 -> hash size k
| App(k,x,xs) ->
let size = size / (List.length xs + 2) in
let self = aux_arg size mode (deep-1) in
let shift = shift size in
(hash size k) lor
(shift 1 (self x)) lor
List.(fold_left (lor) 0 (mapi (fun i x -> shift (i+2) (self x)) xs))
| (UVar _ | AppUVar _) when mode == Input && is_goal -> hash size mustbevariablec
| (UVar _ | AppUVar _) when mode == Input -> all_1 size
| (UVar _ | AppUVar _) -> if is_goal then all_0 size else all_1 size
| (Arg _ | AppArg _) -> all_1 size
| Nil -> hash size Global_symbols.nilc
| Cons (x,xs) ->
let size = size / 2 in
let self = aux_arg size mode (deep-1) in
let shift = shift size in
(hash size Global_symbols.consc) lor (shift 1 (self x))
| CData s -> hash size (CData.hash s)
| Lam _ -> all_1 size
| Discard -> all_1 size
| Builtin(k,xs) ->
let size = size / (List.length xs + 1) in
let self = aux_arg size mode (deep-1) in
let shift = shift size in
(hash size k) lor
List.(fold_left (lor) 0 (mapi (fun i x -> shift (i+1) (self x)) xs))
in
[%spy "dev:index:subhash" ~rid (fun fmt () ->
Fmt.fprintf fmt "%s: %d: %s: %a"
(if is_goal then "goal" else "clause")
size
(dec_to_bin2 h)
(uppterm depth [] ~argsdepth:0 empty_env) arg) ()];
h
in
let h = aux 0 0 args mode spec in
[%spy "dev:index:hash" ~rid (fun fmt () ->
Fmt.fprintf fmt "%s: %s: %a"
(if is_goal then "goal" else "clause")
(dec_to_bin2 h)
(pplist ~boxed:true (uppterm depth [] ~argsdepth:0 empty_env) " ")
(Const hd :: args)) ()];
h
let hash_clause_arg_list = hash_arg_list false
let hash_goal_arg_list = hash_arg_list true
let rec max_list_length acc = function
| Nil -> acc
| Cons (a, (UVar (_, _, _) | AppUVar (_, _, _) | Arg (_, _) | AppArg (_, _) | Discard)) ->
let alen = max_list_length 0 a in
max (acc+2) alen
| Cons (a, b)->
let alen = max_list_length 0 a in
let blen = max_list_length (acc+1) b in
max blen alen
| App (_,x,xs) -> List.fold_left (fun acc x -> max acc (max_list_length 0 x)) acc (x::xs)
| Builtin (_, xs) -> List.fold_left (fun acc x -> max acc (max_list_length 0 x)) acc xs
| Lam t -> max_list_length acc t
| Discard | Const _ |CData _ | UVar (_, _, _) | AppUVar (_, _, _) | Arg (_, _) | AppArg (_, _) -> acc
let max_lists_length = List.fold_left (fun acc e -> max (max_list_length 0 e) acc) 0
(**
[arg_to_trie_path ~safe ~depth ~is_goal args arg_depths arg_modes mp max_list_length]
returns the path represetation of a term to be used in indexing with trie.
args, args_depths and arg_modes are the lists of respectively the arguments, the
depths and the modes of the current term to be indexed.
~is_goal is used to know if we are encoding the path for instance retriaval or
for clause insertion in the trie.
In the former case, each argument we add a special mkInputMode/mkOutputMode
node before each argument to be indexed. This special node is used during
instance retrival to know the mode of the current argument
- mp is the max_path size of any path in the index used to truncate the goal
- max_list_length is the length of the longest sublist in each term of args
*)
let arg_to_trie_path ~safe ~depth ~is_goal args arg_depths args_depths_ar mode mp (max_list_length':int) : Discrimination_tree.Path.t =
let open Discrimination_tree in
let path_length = mp + Array.length args_depths_ar + 1 in
let path = Path.make path_length mkPathEnd in
let current_ar_pos = ref 0 in
let current_user_depth = ref 0 in
let current_min_depth = ref max_int in
let update_current_min_depth d = if not is_goal then current_min_depth := min !current_min_depth d in
let update_ar depth =
if not is_goal then begin
let old_max = Array.unsafe_get args_depths_ar !current_ar_pos in
let current_max = !current_user_depth - depth in
if old_max < current_max then
Array.unsafe_set args_depths_ar !current_ar_pos current_max
end
in
let rec list_to_trie_path ~safe ~depth ~h path_depth (len: int) (t: term) : unit =
match deref_head ~depth t with
| Nil -> Path.emit path mkListEnd; update_current_min_depth path_depth
| Cons (a, b) ->
if is_goal && h >= max_list_length' then (Path.emit path mkListTailVariableUnif; update_current_min_depth path_depth)
else
(main ~safe ~depth a path_depth;
list_to_trie_path ~depth ~safe ~h:(h+1) path_depth (len+1) b)
| UVar _ | AppUVar _ | Arg _ | AppArg _ | Discard -> Path.emit path mkListTailVariable; update_current_min_depth path_depth
| App _ | Const _ -> Path.emit path mkListTailVariable; update_current_min_depth path_depth
| Builtin _ | CData _ | Lam _ ->
type_error (Format.asprintf "[DT]: not a list: %a" (Pp.ppterm depth [] ~argsdepth:0 Data.empty_env) (deref_head ~depth t))
and emit_mode is_goal mode = if is_goal then Path.emit path mode
(** gives the path representation of a list of sub-terms *)
and arg_to_trie_path_aux ~safe ~depth t_list path_depth : unit =
if path_depth = 0 then update_current_min_depth path_depth
else
match t_list with
| [] -> update_current_min_depth path_depth
| hd :: tl ->
main ~safe ~depth hd path_depth;
arg_to_trie_path_aux ~safe ~depth tl path_depth
(** gives the path representation of a term *)
and main ~safe ~depth t path_depth : unit =
if path_depth = 0 then update_current_min_depth path_depth
else if is_goal && Path.get_builder_pos path >= path_length then
(Path.emit path mkAny; update_current_min_depth path_depth)
else
let path_depth = path_depth - 1 in
match deref_head ~depth t with
| Const k when k == Global_symbols.uvarc -> Path.emit path mkVariable; update_current_min_depth path_depth
| Const k when safe -> Path.emit path @@ mkConstant ~safe ~data:k ~arity:0; update_current_min_depth path_depth
| Const k -> Path.emit path @@ mkConstant ~safe ~data:k ~arity:0; update_current_min_depth path_depth
| CData d -> Path.emit path @@ mkPrimitive d; update_current_min_depth path_depth
| App (k,_,_) when k == Global_symbols.uvarc -> Path.emit path @@ mkVariable; update_current_min_depth path_depth
| App (k,a,_) when k == Global_symbols.asc -> main ~safe ~depth a (path_depth+1)
| Lam _ -> Path.emit path mkAny; update_current_min_depth path_depth
| Arg _ | UVar _ | AppArg _ | AppUVar _ | Discard -> Path.emit path @@ mkVariable; update_current_min_depth path_depth
| Builtin (k,tl) ->
Path.emit path @@ mkConstant ~safe ~data:k ~arity:(if path_depth = 0 then 0 else List.length tl);
arg_to_trie_path_aux ~safe ~depth tl path_depth
| App (k, x, xs) ->
let arg_length = if path_depth = 0 then 0 else List.length xs + 1 in
Path.emit path @@ mkConstant ~safe ~data:k ~arity:arg_length;
main ~safe ~depth x path_depth;
arg_to_trie_path_aux ~safe ~depth xs path_depth
| Nil -> Path.emit path mkListHead; Path.emit path mkListEnd; update_current_min_depth path_depth
| Cons (x,xs) ->
Path.emit path mkListHead;
main ~safe ~depth x (path_depth + 1);
list_to_trie_path ~safe ~depth ~h:1 (path_depth + 1) 0 xs
(** builds the sub-path of a sublist of arguments of the current clause *)
and make_sub_path arg_hd arg_tl arg_depth_hd arg_depth_tl mode_hd mode_tl =
emit_mode is_goal (match mode_hd with Input -> mkInputMode | _ -> mkOutputMode);
begin
if not is_goal then begin
current_user_depth := arg_depth_hd;
current_min_depth := max_int;
main ~safe ~depth arg_hd arg_depth_hd;
update_ar !current_min_depth;
end else main ~safe ~depth arg_hd (Array.unsafe_get args_depths_ar !current_ar_pos)
end;
incr current_ar_pos;
aux ~safe ~depth is_goal arg_tl arg_depth_tl mode_tl
(** main function: build the path of the arguments received in entry *)
and aux ~safe ~depth is_goal args arg_depths mode =
match args, arg_depths, mode with
| _, [], _ -> ()
| arg_hd :: arg_tl, arg_depth_hd :: arg_depth_tl, [] ->
make_sub_path arg_hd arg_tl arg_depth_hd arg_depth_tl Output []
| arg_hd :: arg_tl, arg_depth_hd :: arg_depth_tl, mode_hd :: mode_tl ->
make_sub_path arg_hd arg_tl arg_depth_hd arg_depth_tl (get_arg_mode mode_hd) mode_tl
| _, _ :: _,_ -> anomaly "Invalid Index length" in
begin
if args == [] then emit_mode is_goal mkOutputMode
else aux ~safe ~depth is_goal args (if is_goal then Array.to_list args_depths_ar else arg_depths) mode
end;
Path.stop path
let make_new_Map_snd_level_index argno mode =
TwoLevelIndex {
argno;
mode;
all_clauses = Bl.empty ();
flex_arg_clauses = Bl.empty ();
arg_idx = Ptmap.empty;
}
let add_clause_to_snd_lvl_idx ~depth ~insert predicate clause = function
| TwoLevelIndex { all_clauses; argno; mode; flex_arg_clauses; arg_idx; } ->
begin match classify_clause_argno ~depth argno mode clause.args with
| Variable ->
TwoLevelIndex {
argno; mode;
all_clauses = insert clause all_clauses;
flex_arg_clauses = insert clause flex_arg_clauses;
arg_idx = Ptmap.map (fun l_rev -> insert clause l_rev) arg_idx;
}
| MustBeVariable ->
let clauses =
try Ptmap.find mustbevariablec arg_idx
with Not_found -> flex_arg_clauses in
TwoLevelIndex {
argno; mode;
all_clauses = insert clause all_clauses;
flex_arg_clauses;
arg_idx = Ptmap.add mustbevariablec (insert clause clauses) arg_idx;
}
| Rigid (arg_hd,arg_mode) ->
let clauses =
try Ptmap.find arg_hd arg_idx
with Not_found -> flex_arg_clauses in
let all_clauses =
if arg_mode = Input then all_clauses else insert clause all_clauses in
TwoLevelIndex {
argno; mode;
all_clauses;
flex_arg_clauses;
arg_idx = Ptmap.add arg_hd (insert clause clauses) arg_idx;
}
end
| BitHash { mode; args; args_idx } ->
let hash = hash_clause_arg_list predicate ~depth clause.args mode args in
let clauses =
try Ptmap.find hash args_idx
with Not_found -> Bl.empty () in
BitHash {
mode; args;
args_idx = Ptmap.add hash (insert clause clauses) args_idx
}
| IndexWithDiscriminationTree {mode; arg_depths; args_idx; } ->
let max_depths = Discrimination_tree.max_depths args_idx in
let max_path = Discrimination_tree.max_path args_idx in
let max_list_length = max_lists_length clause.args in
let path = arg_to_trie_path ~depth ~safe:true ~is_goal:false clause.args arg_depths max_depths mode max_path max_list_length in
[%spy "dev:disc-tree:depth-path" ~rid pp_string "Inst: MaxDepths " (pplist pp_int "") (Array.to_list max_depths)];
let args_idx = Discrimination_tree.index args_idx path clause ~max_list_length in
IndexWithDiscriminationTree {
mode; arg_depths;
args_idx = args_idx
}
let compile_time_tick x = x + 1
let run_time_tick x = x - 1
let rec add1clause_runtime ~depth { idx; time; times } predicate clause =
try
let snd_lvl_idx = Ptmap.find predicate idx in
let time = run_time_tick time in
clause.timestamp <- [time];
let snd_lvl_idx = add_clause_to_snd_lvl_idx ~depth ~insert:Bl.cons predicate clause snd_lvl_idx in
{ times; time; idx = Ptmap.add predicate snd_lvl_idx idx }
with
| Not_found ->
let idx = Ptmap.add predicate (make_new_Map_snd_level_index 0 []) idx in
add1clause_runtime ~depth { idx; time; times } predicate clause
let add_clauses ~depth clauses idx =
let idx = List.fold_left (fun m (p,c) -> add1clause_runtime ~depth m p c) idx clauses in
idx
let add_clauses ~depth clauses clauses_src { index; src } =
{ index = add_clauses ~depth clauses index; src = List.rev clauses_src @ src }
let add_to_times loc name time predicate times =
match name with
| None -> times
| Some id ->
if StrMap.mem id times then
error ?loc ("duplicate clause name " ^ id)
else
StrMap.add id (time,predicate) times
let time_of loc x times =
try StrMap.find x times
with Not_found -> error ?loc ("cannot graft, clause " ^ x ^ " not found")
let remove_from_times id times = StrMap.remove id times
let remove_clause_in_snd_lvl_idx p = function
| TwoLevelIndex { argno; mode; all_clauses; flex_arg_clauses; arg_idx; } ->
TwoLevelIndex {
argno; mode;
all_clauses = Bl.remove p all_clauses;
flex_arg_clauses = Bl.remove p flex_arg_clauses;
arg_idx = Ptmap.map (Bl.remove p) arg_idx;
}
| BitHash { mode; args; args_idx } ->
BitHash {
mode; args;
args_idx = Ptmap.map (Bl.remove p) args_idx
}
| IndexWithDiscriminationTree {mode; arg_depths; args_idx; } ->
IndexWithDiscriminationTree {
mode; arg_depths;
args_idx = Discrimination_tree.remove p args_idx;
}
let rec add1clause_compile_time ~depth { idx; time; times } ~graft predicate clause name =
try
let snd_lvl_idx = Ptmap.find predicate idx in
let time = compile_time_tick time in
match graft with
| None ->
let timestamp = [time] in
let times = add_to_times clause.loc name timestamp predicate times in
clause.timestamp <- timestamp;
let snd_lvl_idx = add_clause_to_snd_lvl_idx ~depth ~insert:Bl.rcons predicate clause snd_lvl_idx in
{ times; time; idx = Ptmap.add predicate snd_lvl_idx idx }
| Some (Ast.Structured.Remove x) ->
let reference, predicate1 = time_of clause.loc x times in
if predicate1 <> predicate then
error ?loc:clause.loc ("cannot remove a clause for another predicate");
let times = remove_from_times x times in
clause.timestamp <- reference;
let snd_lvl_idx = remove_clause_in_snd_lvl_idx (fun x -> x.timestamp = reference) snd_lvl_idx in
{ times; time; idx = Ptmap.add predicate snd_lvl_idx idx }
| Some (Ast.Structured.Replace x) ->
let reference, predicate1 = time_of clause.loc x times in
if predicate1 <> predicate then
error ?loc:clause.loc ("cannot replace a clause for another predicate");
let times = remove_from_times x times in
clause.timestamp <- reference;
let snd_lvl_idx = remove_clause_in_snd_lvl_idx (fun x -> x.timestamp = reference) snd_lvl_idx in
let snd_lvl_idx = add_clause_to_snd_lvl_idx ~depth ~insert:Bl.(insert (fun x -> lex_insertion x.timestamp reference)) predicate clause snd_lvl_idx in
{ times; time; idx = Ptmap.add predicate snd_lvl_idx idx }
| Some (Ast.Structured.Insert gr) ->
let timestamp =
match gr with
| Ast.Structured.Before x -> (fst @@ time_of clause.loc x times) @ [-time]
| Ast.Structured.After x -> (fst @@ time_of clause.loc x times) @ [+time] in
let times = add_to_times clause.loc name timestamp predicate times in
clause.timestamp <- timestamp;
let snd_lvl_idx = add_clause_to_snd_lvl_idx ~depth ~insert:Bl.(insert (fun x -> lex_insertion x.timestamp timestamp)) predicate clause snd_lvl_idx in
{ times; time; idx = Ptmap.add predicate snd_lvl_idx idx }
with Not_found ->
let idx = Ptmap.add predicate (make_new_Map_snd_level_index 0 []) idx in
add1clause_compile_time ~depth { idx; time; times } ~graft predicate clause name
let update_indexing (indexing : (mode * indexing) Constants.Map.t) (index : index) : index =
let idx =
C.Map.fold (fun predicate (mode, indexing) m ->
Ptmap.add predicate
begin
match indexing with
| Hash args -> BitHash {
args;
mode;
args_idx = Ptmap.empty;
}
| MapOn argno -> make_new_Map_snd_level_index argno mode
| DiscriminationTree arg_depths -> IndexWithDiscriminationTree {
arg_depths; mode;
args_idx = Discrimination_tree.empty_dt arg_depths;
}
end m) indexing index.idx
in
{ index with idx }
let add_to_index ~depth ~predicate ~graft clause name index : index =
add1clause_compile_time ~depth ~graft index predicate clause name
let make_empty_index ~depth ~indexing =
let index = update_indexing indexing { idx = Ptmap.empty; time = 0; times = StrMap.empty } in
let index = close_index index in
{ index; src = [] }
type goal_arg_classification =
| Variable
| Rigid of constant
let rec classify_goal_arg ~depth t =
match deref_head ~depth t with
| Const k when k == Global_symbols.uvarc -> Rigid mustbevariablec
| Const k -> Rigid(k)
| Nil -> Rigid (Global_symbols.nilc)
| Cons _ -> Rigid (Global_symbols.consc)
| App (k,_,_) when k == Global_symbols.uvarc -> Rigid mustbevariablec
| App (k,a,_) when k == Global_symbols.asc -> classify_goal_arg ~depth a
| (App (k,_,_) | Builtin (k,_)) -> Rigid (k)
| Lam t -> classify_goal_arg ~depth:(depth+1) t
| Arg _ | UVar _ | AppArg _ | AppUVar _ | Discard -> Variable
| CData d ->
let hash = -(CData.hash d) in
if hash > mustbevariablec then Rigid (hash)
else Rigid (hash+1)
let classify_goal_argno ~depth argno = function
| Const _ -> Variable
| App(_,x,_) when argno == 0 -> classify_goal_arg ~depth x
| App(_,_,xs) ->
let x =
try List.nth xs (argno-1)
with Invalid_argument _ ->
type_error ("The goal is not applied enough")
in
classify_goal_arg ~depth x
| _ -> assert false
let hash_goal_args ~depth mode args goal = match goal with
| Const _ -> 0
| App(k,x,xs) -> hash_goal_arg_list k ~depth (x::xs) mode args
| _ -> assert false
let rec nth_not_found l n = match l with
| [] -> raise Not_found
| x :: _ when n = 0 -> x
| _ :: l -> nth_not_found l (n-1)
let rec nth_not_bool_default l n = match l with
| [] -> Output
| x :: _ when n = 0 -> x
| _ :: l -> nth_not_bool_default l (n - 1)
let trie_goal_args goal : term list = match goal with
| Const _ -> []
| App(_, x, xs) -> x :: xs
| _ -> assert false
let cmp_timestamp { timestamp = tx } { timestamp = ty } = lex_insertion tx ty
let get_clauses ~depth predicate goal { index = { idx = m } } =
let rc =
try
match Ptmap.find predicate m with
| TwoLevelIndex { all_clauses; argno; mode; flex_arg_clauses; arg_idx } ->
begin match classify_goal_argno ~depth argno goal with
| Variable -> all_clauses
| Rigid arg_hd ->
try Ptmap.find arg_hd arg_idx
with Not_found -> flex_arg_clauses
end |> Bl.to_scan
| BitHash { args; mode; args_idx } ->
let hash = hash_goal_args ~depth mode args goal in
let cl = Ptmap.find_unifiables hash args_idx |> List.map Bl.to_scan |> List.map Bl.to_list |> List.flatten in
Bl.of_list @@ List.sort cmp_timestamp cl
| IndexWithDiscriminationTree {arg_depths; mode; args_idx} ->
let max_depths = Discrimination_tree.max_depths args_idx in
let max_path = Discrimination_tree.max_path args_idx in
let max_list_length = Discrimination_tree.max_list_length args_idx in
let path = arg_to_trie_path ~safe:false ~depth ~is_goal:true (trie_goal_args goal) arg_depths max_depths mode max_path max_list_length in
[%spy "dev:disc-tree:depth-path" ~rid pp_string "Goal: MaxDepths " (pplist pp_int ";") (Array.to_list max_depths)];
[%spy "dev:disc-tree:list-size-path" ~rid pp_string "Goal: MaxListSize " pp_int max_list_length];
[%spy "dev:disc-tree:path" ~rid
Discrimination_tree.Path.pp path
(pplist pp_int ";") arg_depths
];
let candidates = Discrimination_tree.retrieve cmp_timestamp path args_idx in
[%spy "dev:disc-tree:candidates" ~rid
pp_int (Bl.length candidates)];
candidates
with Not_found -> Bl.of_list []
in
[%log "get_clauses" ~rid (C.show predicate) (Bl.length rc)];
[%spy "dev:get_clauses" ~rid C.pp predicate pp_int (Bl.length rc)];
rc
let rec flatten_snd =
function
[] -> []
| (_,(hd,_,_))::tl -> hd @ flatten_snd tl
let close_with_pis depth vars t =
if vars = 0 then t
else
let fix_const c = if c < depth then c else c + vars in
let rec aux =
function
| Const c -> mkConst (fix_const c)
| Arg (i,argsno) ->
(match C.mkinterval (depth+vars) argsno 0 with
| [] -> Const(i+depth)
| [x] -> App(i+depth,x,[])
| x::xs -> App(i+depth,x,xs))
| AppArg (i,args) ->
(match List.map aux args with
| [] -> anomaly "AppArg to 0 args"
| [x] -> App(i+depth,x,[])
| x::xs -> App(i+depth,x,xs))
| App(c,x,xs) -> App(fix_const c,aux x,List.map aux xs)
| Builtin(c,xs) -> Builtin(c,List.map aux xs)
| UVar(_,_,_) as orig ->
hmove ~from:depth ~to_:(depth+vars) orig
| AppUVar(r,vardepth,args) ->
assert false
| Cons(hd,tl) -> Cons(aux hd, aux tl)
| Nil as x -> x
| Discard as x -> x
| Lam t -> Lam (aux t)
| CData _ as x -> x
in
let rec add_pis n t =
if n = 0 then t else App(Global_symbols.pic,Lam (add_pis (n-1) t),[]) in
add_pis vars (aux t)
let local_prog { src } = src
end
open Indexing
let orig_prolog_program = Fork.new_local (make_empty_index ~depth:0 ~indexing:C.Map.empty)
module Clausify : sig
val clausify : loc:Loc.t option -> prolog_prog -> depth:int -> term -> (constant*clause) list * clause_src list * int
val clausify1 : loc:Loc.t -> modes:(constant -> mode) -> nargs:int -> depth:int -> term -> (constant*clause) * clause_src * int
val lp_list_to_list : depth:int -> term -> term list
val get_lambda_body : depth:int -> term -> term
val split_conj : depth:int -> term -> term list
end = struct
let rec term_map m = function
| Const x when List.mem_assoc x m -> mkConst (List.assoc x m)
| Const _ as x -> x
| App(c,x,xs) when List.mem_assoc c m ->
App(List.assoc c m,term_map m x, smart_map2 term_map m xs)
| App(c,x,xs) -> App(c,term_map m x, smart_map2 term_map m xs)
| Lam x -> Lam (term_map m x)
| UVar _ as x -> x
| AppUVar(r,lvl,xs) -> AppUVar(r,lvl,smart_map2 term_map m xs)
| Arg _ as x -> x
| AppArg(i,xs) -> AppArg(i,smart_map2 term_map m xs)
| Builtin(c,xs) -> Builtin(c,smart_map2 term_map m xs)
| Cons(hd,tl) -> Cons(term_map m hd, term_map m tl)
| Nil as x -> x
| Discard as x -> x
| CData _ as x -> x
let rec split_conj ~depth = function
| App(c, hd, args) when c == Global_symbols.andc ->
split_conj ~depth hd @ List.(flatten (map (split_conj ~depth) args))
| Nil -> []
| Cons(x,xs) -> split_conj ~depth x @ split_conj ~depth xs
| UVar ({ contents=g },from,args) when g != C.dummy ->
split_conj ~depth (deref_uv ~from ~to_:depth args g)
| AppUVar ({contents=g},from,args) when g != C.dummy ->
split_conj ~depth (deref_appuv ~from ~to_:depth args g)
| Discard -> []
| _ as f -> [ f ]
;;
let rec lp_list_to_list ~depth = function
| Cons(hd, tl) -> hd :: lp_list_to_list ~depth tl
| Nil -> []
| UVar ({ contents=g },from,args) when g != C.dummy ->
lp_list_to_list ~depth (deref_uv ~from ~to_:depth args g)
| AppUVar ({contents=g},from,args) when g != C.dummy ->
lp_list_to_list ~depth (deref_appuv ~from ~to_:depth args g)
| x -> error (Fmt.sprintf "%s is not a list" (show_term x))
;;
let rec get_lambda_body ~depth = function
| UVar ({ contents=g },from,args) when g != C.dummy ->
get_lambda_body ~depth (deref_uv ~from ~to_:depth args g)
| AppUVar ({contents=g},from,args) when g != C.dummy ->
get_lambda_body ~depth (deref_appuv ~from ~to_:depth args g)
| Lam b -> b
| _ -> error "pi/sigma applied to something that is not a Lam"
;;
let rec claux1 loc get_mode vars depth hyps ts lts lcs t =
[%trace "clausify" ~rid ("%a %d %d %d %d\n%!"
(ppterm (depth+lts) [] ~argsdepth:0 empty_env) t depth lts lcs (List.length ts)) begin
match t with
| Discard -> error ?loc "ill-formed hypothetical clause: discard in head position"
| App(c, g2, [g1]) when c == Global_symbols.rimplc ->
claux1 loc get_mode vars depth ((ts,g1)::hyps) ts lts lcs g2
| App(c, _, _) when c == Global_symbols.rimplc -> error ?loc "ill-formed hypothetical clause"
| App(c, g1, [g2]) when c == Global_symbols.implc ->
claux1 loc get_mode vars depth ((ts,g1)::hyps) ts lts lcs g2
| App(c, _, _) when c == Global_symbols.implc -> error ?loc "ill-formed hypothetical clause"
| App(c, arg, []) when c == Global_symbols.sigmac ->
let b = get_lambda_body ~depth:(depth+lts) arg in
let args =
List.rev (List.filter (function (Arg _) -> true | _ -> false) ts) in
let cst =
match args with
[] -> Const (depth+lcs)
| hd::rest -> App (depth+lcs,hd,rest) in
claux1 loc get_mode vars depth hyps (cst::ts) (lts+1) (lcs+1) b
| App(c, arg, []) when c == Global_symbols.pic ->
let b = get_lambda_body ~depth:(depth+lts) arg in
claux1 loc get_mode (vars+1) depth hyps (Arg(vars,0)::ts) (lts+1) lcs b
| App(c, _, _) when c == Global_symbols.andc ->
error ?loc "Conjunction in the head of a clause is not supported"
| Const _
| App _ as g ->
let hyps =
List.(flatten (rev_map (fun (ts,g) ->
let g = hmove ~from:(depth+lts) ~to_:(depth+lts+lcs) g in
let g = subst depth ts g in
split_conj ~depth:(depth+lcs) g
) hyps)) in
let g = hmove ~from:(depth+lts) ~to_:(depth+lts+lcs) g in
let g = subst depth ts g in
let hd, args =
match g with
Const h -> h, []
| App(h,x,xs) -> h, x::xs
| UVar _ | AppUVar _
| Arg _ | AppArg _ | Discard ->
error ?loc "The head of a clause cannot be flexible"
| Lam _ ->
type_error ?loc "The head of a clause cannot be a lambda abstraction"
| Builtin _ ->
error ?loc "The head of a clause cannot be a builtin predicate"
| CData _ ->
type_error ?loc "The head of a clause cannot be a builtin data type"
| Cons _ | Nil -> assert false
in
let c = { depth = depth+lcs; args; hyps; mode = get_mode hd; vars; loc; timestamp = [] } in
[%spy "dev:claudify:extra-clause" ~rid (ppclause ~hd) c];
(hd,c), { hdepth = depth; hsrc = g }, lcs
| UVar ({ contents=g },from,args) when g != C.dummy ->
claux1 loc get_mode vars depth hyps ts lts lcs
(deref_uv ~from ~to_:(depth+lts) args g)
| AppUVar ({contents=g},from,args) when g != C.dummy ->
claux1 loc get_mode vars depth hyps ts lts lcs
(deref_appuv ~from ~to_:(depth+lts) args g)
| Arg _ | AppArg _ ->
error ?loc "The head of a clause cannot be flexible"
| Builtin (c,_) -> raise @@ CannotDeclareClauseForBuiltin(loc,c)
| (Lam _ | CData _ ) as x ->
type_error ?loc ("Assuming a string or int or float or function:" ^ show_term x)
| UVar _ | AppUVar _ -> error ?loc "Flexible hypothetical clause"
| Nil | Cons _ -> error ?loc "ill-formed hypothetical clause"
end]
let clausify ~loc { index = { idx = index } } ~depth t =
let get_mode x =
match Ptmap.find x index with
| TwoLevelIndex { mode } -> mode
| BitHash { mode } -> mode
| IndexWithDiscriminationTree { mode } -> mode
| exception Not_found -> [] in
let l = split_conj ~depth t in
let clauses, program, lcs =
List.fold_left (fun (clauses, programs, lcs) t ->
let clause, program, lcs =
try claux1 loc get_mode 0 depth [] [] 0 lcs t
with CannotDeclareClauseForBuiltin(loc,c) ->
error ?loc ("Declaring a clause for built in predicate " ^ C.show c)
in
clause :: clauses, program :: programs, lcs) ([],[],0) l in
clauses, program, lcs
;;
let clausify1 ~loc ~modes ~nargs ~depth t =
claux1 (Some loc) modes nargs depth [] [] 0 0 t
end
open Clausify
type goal = { depth : int; program : prolog_prog; goal : term; gid : UUID.t [@trace] }
let make_subgoal_id ogid ((depth,goal)[@trace]) =
let gid = UUID.make () in
[%spy "user:subgoal" ~rid ~gid: ogid UUID.pp gid];
[%spy "user:newgoal" ~rid ~gid (uppterm depth [] ~argsdepth:0 empty_env) goal];
gid
[@@inline]
let make_subgoal (gid[@trace]) ~depth program goal =
let gid[@trace] = make_subgoal_id gid ((depth,goal)[@trace]) in
{ depth ; program ; goal ; gid = gid [@trace] }
[@@inline]
let repack_goal (gid[@trace]) ~depth program goal =
{ depth ; program ; goal ; gid = gid [@trace] }
[@@inline]
type frame =
| FNil
| FCons of alternative * goal list * frame
and alternative = {
cutto_alts : alternative;
program : prolog_prog;
adepth : int;
agoal_hd : constant;
ogoal_arg : term;
ogoal_args : term list;
agid : UUID.t; [@trace]
goals : goal list;
stack : frame;
trail : T.trail;
state : State.t;
clauses : clause Bl.scan;
next : alternative;
}
let noalts : alternative = Obj.magic (Sys.opaque_identity 0)
type runtime = {
search : unit -> alternative;
next_solution : alternative -> alternative;
destroy : unit -> unit;
exec : 'a 'b. ('a -> 'b) -> 'a -> 'b;
get : 'a. 'a Fork.local_ref -> 'a;
}
let do_make_runtime : (?max_steps:int -> ?delay_outside_fragment:bool -> executable -> runtime) ref =
ref (fun ?max_steps ?delay_outside_fragment _ -> anomaly "do_make_runtime not initialized")
module Constraints : sig
type new_csts = {
new_goals : goal list;
some_rule_was_tried : bool; [@trace]
}
val propagation : unit -> new_csts
val resumption : constraint_def list -> goal list
val chrules : CHR.t Fork.local_ref
val exect_builtin_predicate :
once:(depth:int -> term -> State.t -> State.t) ->
constant -> depth:int -> prolog_prog -> (UUID.t[@trace]) -> term list -> term list
end = struct
type new_csts = {
new_goals : goal list;
some_rule_was_tried : bool; [@trace]
}
exception NoMatch
module Ice : sig
type freezer
val empty_freezer : freezer
val freeze :
depth:int -> term -> ground:int -> newground:int -> maxground:int ->
freezer -> freezer * term
val defrost :
from:int -> term -> env -> to_:int -> map:constant C.Map.t -> freezer -> term
val assignments : freezer -> assignment list
end = struct
type freezer = {
c2uv : uvar_body C.Map.t;
uv2c : (uvar_body * term) list;
assignments : assignment list;
}
let empty_freezer = { c2uv = C.Map.empty; uv2c = []; assignments = [] }
let freeze ~depth t ~ground ~newground ~maxground f =
let f = ref f in
let log_assignment = function
| t, None -> t
| t, Some (r,_,nt as s) ->
f := { !f with assignments = s :: !f.assignments };
r @::== nt;
t in
let freeze_uv r =
try List.assq r !f.uv2c
with Not_found ->
let n, c = C.fresh_global_constant () in
[%spy "dev:freeze_uv:new" ~rid (fun fmt () -> let tt = UVar (r,0,0) in
Fmt.fprintf fmt "%s == %a" (C.show n) (ppterm 0 [] ~argsdepth:0 empty_env) tt) ()];
f := { !f with c2uv = C.Map.add n r !f.c2uv;
uv2c = (r,c) :: !f.uv2c };
c in
let rec faux d = function
| (Const _ | CData _ | Nil | Discard) as x -> x
| Cons(hd,tl) as orig ->
let hd' = faux d hd in
let tl' = faux d tl in
if hd == hd' && tl == tl' then orig
else Cons(hd',tl')
| App(c,x,xs) as orig ->
let x' = faux d x in
let xs' = smart_map (faux d) xs in
if x == x' && xs == xs' then orig
else App(c,x',xs')
| Builtin(c,args) as orig ->
let args' = smart_map (faux d) args in
if args == args' then orig
else Builtin(c,args')
| (Arg _ | AppArg _) -> error "only heap terms can be frozen"
| Lam t as orig ->
let t' = faux (d+1) t in
if t == t' then orig
else Lam t'
| AppUVar(r,0,args) when !!r == C.dummy ->
let args = smart_map (faux d) args in
App(Global_symbols.uvarc, freeze_uv r, [list_to_lp_list args])
| UVar(r,lvl,ano) when !!r == C.dummy ->
faux d (log_assignment(expand_uv ~depth:d r ~lvl ~ano))
| AppUVar(r,lvl,args) when !!r == C.dummy ->
faux d (log_assignment(expand_appuv ~depth:d r ~lvl ~args))
| UVar(r,lvl,ano) -> faux d (deref_uv ~from:lvl ~to_:d ano !!r)
| AppUVar(r,lvl,args) -> faux d (deref_appuv ~from:lvl ~to_:d args !!r)
in
[%spy "dev:freeze:in" ~rid (fun fmt () ->
Fmt.fprintf fmt "depth:%d ground:%d newground:%d maxground:%d %a"
depth ground newground maxground (uppterm depth [] ~argsdepth:0 empty_env) t) ()];
let t = faux depth t in
[%spy "dev:freeze:after-faux" ~rid (uppterm depth [] ~argsdepth:0 empty_env) t];
let t = shift_bound_vars ~depth ~to_:ground t in
[%spy "dev:freeze:after-shift->ground" ~rid (uppterm ground [] ~argsdepth:0 empty_env) t];
let t = shift_bound_vars ~depth:0 ~to_:(newground-ground) t in
[%spy "dev:freeze:after-reloc->newground" ~rid (uppterm newground [] ~argsdepth:0 empty_env) t];
let t = shift_bound_vars ~depth:newground ~to_:maxground t in
[%spy "dev:freeze:out" ~rid (uppterm maxground [] ~argsdepth:0 empty_env) t];
!f, t
let defrost ~from t env ~to_ ~map f =
[%spy "dev:defrost:in" ~rid (fun fmt () ->
Fmt.fprintf fmt "from:%d to:%d %a" from to_
(uppterm from [] ~argsdepth:from env) t) ()];
let t = full_deref ~adepth:from env ~depth:from t in
[%spy "dev:defrost:fully-derefd" ~rid (fun fmt ()->
Fmt.fprintf fmt "from:%d to:%d %a" from to_
(uppterm from [] ~argsdepth:0 empty_env) t) ()];
let t = map_free_vars ~map ~depth:from ~to_ t in
[%spy "dev:defrost:shifted" ~rid (fun fmt () ->
Fmt.fprintf fmt "from:%d to:%d %a" from to_
(uppterm to_ [] ~argsdepth:0 empty_env) t) ()];
let rec daux d = function
| Const c when C.Map.mem c f.c2uv ->
UVar(C.Map.find c f.c2uv,0,0)
| (Const _ | CData _ | Nil | Discard) as x -> x
| Cons(hd,tl) as orig ->
let hd' = daux d hd in
let tl' = daux d tl in
if hd == hd' && tl == tl' then orig
else Cons(hd',tl')
| App(c,UVar(r,lvl,ano),a) when !!r != C.dummy ->
daux d (App(c,deref_uv ~to_:d ~from:lvl ano !!r,a))
| App(c,AppUVar(r,lvl,args),a) when !!r != C.dummy ->
daux d (App(c,deref_appuv ~to_:d ~from:lvl args !!r,a))
| App(c,Const x,[args]) when c == Global_symbols.uvarc ->
let r = C.Map.find x f.c2uv in
let args = lp_list_to_list ~depth:d args in
mkAppUVar r 0 (smart_map (daux d) args)
| App(c,UVar(r,_,_),[args]) when c == Global_symbols.uvarc ->
let args = lp_list_to_list ~depth:d args in
mkAppUVar r 0 (smart_map (daux d) args)
| App(c,AppUVar(r,_,_),[args]) when c == Global_symbols.uvarc ->
let args = lp_list_to_list ~depth:d args in
mkAppUVar r 0 (smart_map (daux d) args)
| App(c,x,xs) as orig ->
let x' = daux d x in
let xs' = smart_map (daux d) xs in
if x == x' && xs == xs' then orig
else App(c,x', xs')
| Builtin(c,args) as orig ->
let args' = smart_map (daux d) args in
if args == args' then orig
else Builtin(c,args')
| Arg(i,ano) when env.(i) != C.dummy ->
daux d (deref_uv ~from:to_ ~to_:d ano env.(i))
| AppArg (i,args) when env.(i) != C.dummy ->
daux d (deref_appuv ~from:to_ ~to_:d args env.(i))
| (Arg(i,_) | AppArg(i,_)) as x ->
env.(i) <- UVar(oref C.dummy, to_, 0);
daux d x
| Lam t as orig ->
let t' = daux (d+1) t in
if t == t' then orig
else Lam t'
| UVar _ as x -> x
| AppUVar(r,lvl,args) as orig ->
let args' = smart_map (daux d) args in
if args == args' then orig
else AppUVar(r,lvl,args')
in
daux to_ t
let assignments { assignments } = assignments
let replace_const m t =
let rec rcaux = function
| Const c as x -> (try mkConst (List.assoc c m) with Not_found -> x)
| Lam t -> Lam (rcaux t)
| App(c,x,xs) ->
App((try List.assoc c m with Not_found -> c),
rcaux x, smart_map rcaux xs)
| Builtin(c,xs) -> Builtin(c,smart_map rcaux xs)
| Cons(hd,tl) -> Cons(rcaux hd, rcaux tl)
| (CData _ | UVar _ | Nil | Discard) as x -> x
| Arg _ | AppArg _ -> assert false
| AppUVar(r,lvl,args) -> AppUVar(r,lvl,smart_map rcaux args) in
[%spy "dev:replace_const:in" ~rid (uppterm 0 [] ~argsdepth:0 empty_env) t];
let t = rcaux t in
[%spy "dev:replace_const:out" ~rid (uppterm 0 [] ~argsdepth:0 empty_env) t];
t
;;
let ppmap fmt (g,l) =
let aux fmt (c1,c2) = Fmt.fprintf fmt "%s -> %s" (C.show c1) (C.show c2) in
Fmt.fprintf fmt "%d = %a" g (pplist aux ",") l
;;
end
let match_goal (gid[@trace]) goalno maxground env freezer (newground,depth,t) pattern =
let freezer, t =
Ice.freeze ~depth t ~ground:depth ~newground ~maxground freezer in
[%trace "match_goal" ~rid ("@[<hov>%a ===@ %a@]"
(uppterm maxground [] ~argsdepth:maxground env) t
(uppterm 0 [] ~argsdepth:maxground env) pattern) begin
if unif ~argsdepth:maxground ~matching:false (gid[@trace]) maxground env 0 t pattern then freezer
else raise NoMatch
end]
let match_context (gid[@trace]) goalno maxground env freezer (newground,ground,lt) pattern =
if pattern == Discard then freezer else
let freezer, lt =
map_acc (fun freezer { hdepth = depth; hsrc = t } ->
Ice.freeze ~depth t ~ground ~newground ~maxground freezer)
freezer lt in
let t = list_to_lp_list lt in
[%trace "match_context" ~rid ("@[<hov>%a ===@ %a@]"
(uppterm maxground [] ~argsdepth:maxground env) t
(uppterm 0 [] ~argsdepth:maxground env) pattern) begin
if unif ~argsdepth:maxground ~matching:false (gid[@trace]) maxground env 0 t pattern then freezer
else raise NoMatch
end]
type chrattempt = {
propagation_rule : CHR.rule;
constraints : constraint_def list
}
module HISTORY = Hashtbl.Make(struct
type t = chrattempt
let hash = Hashtbl.hash
let equal { propagation_rule = p ; constraints = lp }
{ propagation_rule = p'; constraints = lp'} =
p == p' && for_all2 (==) lp lp'
end)
let chrules = Fork.new_local CHR.empty
let make_constraint_def ~rid ~gid:(gid[@trace]) depth prog pdiff conclusion =
{ cdepth = depth; prog = prog; context = pdiff; cgid = gid [@trace]; conclusion }
let delay_goal ?(filter_ctx=fun _ -> true) ~depth prog ~goal:g (gid[@trace]) ~on:keys =
let pdiff = local_prog prog in
let pdiff = List.filter filter_ctx pdiff in
let gid[@trace] = make_subgoal_id gid (depth,g) in
let kind = Constraint (make_constraint_def ~rid ~gid:(gid[@trace]) depth prog pdiff g) in
CS.declare_new { kind ; blockers = keys }
;;
let rec head_of = function
| Const x -> x
| App(x,Lam f,_) when x == Global_symbols.pic -> head_of f
| App(x,hd,_) when x == Global_symbols.rimplc -> head_of hd
| App(x,hd,_) when x == Global_symbols.andc -> head_of hd
| App(x,_,_) -> x
| Builtin(x,_) -> x
| AppUVar(r,_,_)
| UVar(r,_,_) when !!r != C.dummy -> head_of !!r
| CData _ -> type_error "A constraint cannot be a primitive data"
| Cons(x,_) -> head_of x
| Nil -> type_error "A constraint cannot be a list"
| (UVar _ | AppUVar _) -> type_error "A constraint cannot have flexible head"
| (Arg _ | AppArg _) -> anomaly "head_of on non-heap term"
| Discard -> type_error "A constraint cannot be _"
| Lam _ -> type_error "A constraint cannot be a function"
let declare_constraint ~depth prog (gid[@trace]) args =
let g, keys =
match args with
| t1 :: more ->
let err =
"the Key arguments of declare_constraint must be variables or list of variables"
in
let rec collect_keys t = match deref_head ~depth t with
| UVar (r, _, _) | AppUVar (r, _, _) -> [r]
| Discard -> [dummy_uvar_body]
| Lam _ ->
begin match HO.eta_contract_flex ~depth t with
| None -> type_error err
| Some t -> collect_keys t
end
| _ -> type_error err
and collect_keys_list t = match deref_head ~depth t with
| Nil -> []
| Cons(hd,tl) -> collect_keys hd @ collect_keys_list tl
| x -> collect_keys x
in
t1, List.flatten (List.map collect_keys_list more)
| _ -> type_error "declare_constraint takes at least one argument"
in
match CHR.clique_of (head_of g) !chrules with
| Some (clique, ctx_filter) ->
delay_goal ~filter_ctx:(fun { hsrc = x } ->
C.Set.mem (head_of x) clique || C.Set.mem (head_of x) ctx_filter)
~depth prog ~goal:g (gid[@trace]) ~on:keys
| None -> delay_goal ~depth prog ~goal:g (gid[@trace]) ~on:keys
let exect_builtin_predicate ~once c ~depth idx (gid[@trace]) args =
if c == Global_symbols.declare_constraintc then begin
declare_constraint ~depth idx (gid[@trace]) args; [] end
else if c == Global_symbols.print_constraintsc then begin
printf "@[<hov 0>%a@]\n%!" (CS.print ?pp_ctx:None) (CS.contents ());
[]
end else
let b =
try FFI.lookup c
with Not_found ->
anomaly ("no built-in predicated named " ^ C.show c) in
let constraints = !CS.Ugly.delayed in
let state = !CS.state in
let state, gs = FFI.call b ~once ~depth (local_prog idx) constraints state args in
let state, gs = State.get Data.Conversion.extra_goals_postprocessing state gs state in
CS.state := state;
List.map Data.Conversion.term_of_extra_goal gs
;;
let match_head { conclusion = x; cdepth } p =
match deref_head ~depth:cdepth x with
| Const x -> x == p
| App(x,_,_) -> x == p
| _ -> false
;;
let pp_opt start f fmt = function
| None -> ()
| Some x -> Fmt.fprintf fmt "%s%a" start f x
let pp_optl start f fmt = function
| [] -> ()
| x -> Fmt.fprintf fmt "%s%a" start (pplist f " ") x
let pp_optterm stop fmt x =
match deref_head ~depth:0 x with
| Discard -> ()
| _ -> Fmt.fprintf fmt "%a%s" (uppterm 0 [] ~argsdepth:0 empty_env) x stop
let pp_sequent fmt { CHR.eigen; context; conclusion } =
Fmt.fprintf fmt "@[<hov 2>(%a%a%a)@]"
(pp_optterm " : ") eigen
(pp_optterm " ?- ") context
(uppterm 0 [] ~argsdepth:0 empty_env) conclusion
let pp_urule fmt { CHR. to_match; to_remove; new_goal; guard } =
Fmt.fprintf fmt "@[<hov 2>%a@ %a@ %a@ %a@]"
(pplist pp_sequent " ") to_match
(pp_optl "\\ " pp_sequent) to_remove
(pp_opt "| " (uppterm ~min_prec:Elpi_parser.Parser_config.inf_precedence 0 [] ~argsdepth:0 empty_env)) guard
(pp_opt "<=> " pp_sequent) new_goal
let try_fire_rule (gid[@trace]) rule (constraints as orig_constraints) =
let { CHR.
to_match = pats_to_match;
to_remove = pats_to_remove;
patsno;
new_goal; guard; nargs;
pattern = quick_filter;
rule_name } = rule in
if patsno < 1 then
error "CHR propagation must mention at least one constraint";
if not(List.for_all2 match_head constraints quick_filter) then None else
let max_depth, constraints =
let max_depth,constraints =
List.fold_left (fun (md,res) c ->
let md = md + c.cdepth in
md, (md,c)::res)
(0,[]) constraints in
max_depth, List.rev constraints
in
let constraints_depts, constraints_contexts, constraints_goals =
List.fold_right
(fun (dto,{context = c; cdepth = d; conclusion = g})
(ds, ctxs, gs) ->
(dto,d,d) :: ds, (dto,d,c) :: ctxs, (dto,d,g) :: gs)
constraints ([],[],[]) in
let env = Array.make nargs C.dummy in
let patterns_eigens, patterns_contexts, patterns_goals =
List.fold_right (fun { CHR.eigen; context; conclusion } (es, cs, gs) ->
eigen :: es, context :: cs, conclusion :: gs)
(pats_to_match @ pats_to_remove) ([],[],[]) in
let match_eigen i m (dto,d,eigen) pat =
match_goal (gid[@trace]) i max_depth env m (dto,d,list_to_lp_list @@ C.mkinterval 0 eigen 0) pat in
let match_conclusion i m g pat =
match_goal (gid[@trace]) i max_depth env m g pat in
let match_context i m ctx pctx =
match_context (gid[@trace]) i max_depth env m ctx pctx in
let guard =
match guard with
| Some g -> g
| None -> mkConst Global_symbols.truec
in
let initial_program = !orig_prolog_program in
let executable = {
compiled_program = initial_program;
chr = CHR.empty;
initial_goal =
move ~argsdepth:max_depth ~from:max_depth ~to_:max_depth env
(shift_bound_vars ~depth:0 ~to_:max_depth guard);
assignments = StrMap.empty;
initial_depth = max_depth;
initial_runtime_state = !CS.initial_state;
symbol_table = !C.table;
builtins = !FFI.builtins;
} in
let { search; get; exec; destroy } = !do_make_runtime executable in
let check_guard () =
try
let _ = search () in
if get CS.Ugly.delayed <> [] then
error "propagation rules must not declare constraint(s)"
with No_clause -> raise NoMatch in
let result = try
let m = exec (fun m ->
[%spy "dev:CHR:candidate" ~rid
(pplist (fun f x ->
let dto,dt,t = x in
Format.fprintf f "(lives-at:%d, to-be-lifted-to:%d) %a"
dt dto (uppterm dt [] ~argsdepth:0 empty_env) t) ";") constraints_goals];
let m = fold_left2i match_conclusion m
constraints_goals patterns_goals in
let m = fold_left2i match_context m
constraints_contexts patterns_contexts in
let m = fold_left2i match_eigen m
constraints_depts patterns_eigens in
[%spy "dev:CHR:matching-assignments" ~rid
(pplist (uppterm max_depth [] ~argsdepth:0 empty_env) ~boxed:false ",") (Array.to_list env)];
T.to_resume := [];
assert(!T.new_delayed = []);
m) Ice.empty_freezer in
[%spy "dev:CHR:maxdepth" ~rid Fmt.pp_print_int max_depth];
check_guard ();
let _, constraints_to_remove =
let len_pats_to_match = List.length pats_to_match in
partition_i (fun i _ -> i < len_pats_to_match) orig_constraints in
let new_goals =
match new_goal with
| None -> None
| Some { CHR.eigen; context; conclusion } ->
let eigen =
match full_deref ~adepth:max_depth env ~depth:max_depth eigen with
| (Nil | Cons _) as x -> lp_list_to_list ~depth:max_depth x
| Discard -> C.mkinterval 0 max_depth 0
| _ -> error "eigen not resolving to a list of names"
in
let max_eigen,map = List.fold_left (fun (i,m) c ->
i+1,C.Map.add (Data.destConst c) i m)
(0,C.Map.empty) eigen in
let conclusion =
Ice.defrost ~from:max_depth ~to_:max_eigen ~map
(App(Global_symbols.implc,context,[conclusion])) env m in
let prog = initial_program in
Some (make_constraint_def ~rid ~gid:((make_subgoal_id gid (max_eigen,conclusion))[@trace]) max_eigen prog [] conclusion) in
[%spy "dev:CHR:try-rule:success" ~rid];
Some(rule_name, constraints_to_remove, new_goals, Ice.assignments m)
with NoMatch ->
[%spy "dev:CHR:try-rule:fail" ~rid];
None
in
destroy ();
result
;;
let resumption to_be_resumed_rev =
List.map (fun { cdepth = d; prog; conclusion = g; cgid = gid [@trace] } ->
(repack_goal[@inlined]) ~depth:d (gid[@trace]) prog g)
(List.rev to_be_resumed_rev)
let mk_permutations len pivot pivot_position rest =
let open List in
let rec insert x = function
| [] -> [[x]]
| (hd::tl) as l -> (x::l) :: map (fun y -> hd :: y) (insert x tl) in
let rec aux n l =
if n = 0 then [[]] else
match l with
| [] -> []
| hd :: tl when hd == pivot -> aux n tl
| hd :: tl-> flatten (map (insert hd) (aux (n-1) tl)) @ aux n tl in
let permutations_no_pivot = aux (len - 1) rest in
permutations_no_pivot |> map begin fun l ->
let before, after = partition_i (fun i _ -> i < pivot_position) l in
before @ pivot :: after
end
;;
let propagation () =
let to_be_resumed_rev = ref [] in
let removed = ref [] in
let outdated cs = List.exists (fun x -> List.memq x !removed) cs in
let some_rule_fired[@trace] = ref false in
let some_rule_was_tried[@trace] = ref false in
let orig_store_contents[@trace] = CS.contents () in
while !CS.new_delayed <> [] do
match !CS.new_delayed with
| [] -> anomaly "Empty list"
| { CS.cstr = active; cstr_blockers = overlapping } :: rest ->
CS.new_delayed := rest;
let rules = CHR.rules_for (head_of active.conclusion) !chrules in
rules |> List.iter (fun rule ->
for position = 0 to rule.CHR.patsno - 1 do
if not (match_head active (List.nth rule.CHR.pattern position))
then ()
else
let permutations =
mk_permutations rule.CHR.patsno active position
(List.map fst (CS.contents ~overlapping ())) in
permutations |> List.iter (fun constraints ->
if outdated constraints then ()
else begin
let ()[@trace] = some_rule_was_tried := true in
[%spy "user:CHR:try" ~rid ~gid:active.cgid Loc.pp rule.rule_loc pp_urule rule];
match try_fire_rule (active.cgid[@trace]) rule constraints with
| None -> [%spy "user:CHR:rule-failed" ~rid ]
| Some (rule_name, to_be_removed, to_be_added, assignments) ->
let ()[@trace] = some_rule_fired := true in
[%spy "user:CHR:rule-fired" ~rid ~gid: (active.cgid[@trace]) pp_string rule_name];
[%spyl "user:CHR:rule-remove-constraints" ~rid ~gid: (active.cgid[@trace]) (fun fmt { cgid } -> UUID.pp fmt cgid) to_be_removed];
removed := to_be_removed @ !removed;
List.iter CS.remove_old_constraint to_be_removed;
List.iter (fun (r,_lvl,t) -> r @:= t) assignments;
match to_be_added with
| None -> ()
| Some to_be_added -> to_be_resumed_rev := to_be_added :: !to_be_resumed_rev
end)
done);
done;
let ()[@trace] =
if !some_rule_fired then begin
orig_store_contents |> List.iter (fun it ->
[%spy "user:CHR:store:before" ~rid CS.print_gid it CS.print1 it]
);
CS.contents () |> List.iter (fun it ->
[%spy "user:CHR:store:after" ~rid CS.print_gid it CS.print1 it]
);
end;
in
{ new_goals = resumption !to_be_resumed_rev;
some_rule_was_tried = !some_rule_was_tried [@trace] }
end
module Mainloop : sig
val make_runtime : ?max_steps:int -> ?delay_outside_fragment:bool -> executable -> runtime
end = struct
let steps_bound = Fork.new_local None
let steps_made = Fork.new_local 0
let pred_of g =
match g with
| App(c,_,_) -> Some(C.show c)
| Const c -> Some(C.show c)
| Builtin(c,_) -> Some(C.show c)
| _ -> None
let pp_candidate ~depth ~k fmt ({ loc } as cl) =
match loc with
| Some x -> Util.CData.pp fmt (Ast.cloc.Util.CData.cin x)
| None -> Fmt.fprintf fmt "hypothetical clause: %a" (ppclause ~hd:k) cl
let hd_c_of = function
| Const _ as x -> x
| App(x,_,_) -> C.mkConst x
| Builtin(x,_) -> C.mkConst x
| _ -> C.dummy
let pp_resumed_goal { depth; program; goal; gid = gid[@trace] } =
[%spy "user:rule:resume:resumed" ~rid ~gid (uppterm depth [] ~argsdepth:0 empty_env) goal]
;;
let pp_CHR_resumed_goal { depth; program; goal; gid = gid[@trace] } =
[%spy "user:CHR:resumed" ~rid ~gid (uppterm depth [] ~argsdepth:0 empty_env) goal]
;;
let make_runtime : ?max_steps: int -> ?delay_outside_fragment: bool -> executable -> runtime =
let rec run depth p g (gid[@trace]) gs (next : frame) alts cutto_alts =
[%cur_pred (pred_of g)];
[%trace "run" ~rid begin
begin match !steps_bound with
| Some bound ->
incr steps_made; if !steps_made > bound then raise No_more_steps
| None -> ()
end;
match resume_all () with
| None ->
[%tcall next_alt alts]
| Some ({ depth = ndepth; program; goal; gid = ngid [@trace] } :: goals) ->
[%tcall run ndepth program goal (ngid[@trace]) (goals @ (repack_goal[@inlined]) (gid[@trace]) ~depth p g :: gs) next alts cutto_alts]
| Some [] ->
[%spyl "user:curgoal" ~rid ~gid (uppterm depth [] ~argsdepth:0 empty_env) [hd_c_of g;g]];
match g with
| Builtin(c,[]) when c == Global_symbols.cutc ->
[%tcall cut (gid[@trace]) gs next (alts[@trace]) cutto_alts]
| Builtin(c,[q;sol]) when c == Global_symbols.findall_solutionsc ->
[%tcall findall depth p q sol (gid[@trace]) gs next alts cutto_alts]
| App(c, g, gs') when c == Global_symbols.andc -> [%spy "user:rule" ~rid ~gid pp_string "and"];
let gid'[@trace] = make_subgoal_id gid ((depth,g)[@trace]) in
let gs' = List.map (fun x -> (make_subgoal[@inlined]) ~depth (gid[@trace]) p x) gs' in
[%spy "user:rule:and" ~rid ~gid pp_string "success"];
[%tcall run depth p g (gid'[@trace]) (gs' @ gs) next alts cutto_alts]
| Cons (g,gs') -> [%spy "user:rule" ~rid ~gid pp_string "and"];
let gid'[@trace] = make_subgoal_id gid ((depth,g)[@trace]) in
let gs' = (make_subgoal[@inlined]) ~depth (gid[@trace]) p gs' in
[%spy "user:rule:and" ~rid ~gid pp_string "success"];
[%tcall run depth p g (gid'[@trace]) (gs' :: gs) next alts cutto_alts]
| Nil -> [%spy "user:rule" ~rid ~gid pp_string "true"]; [%spy "user:rule:true" ~rid ~gid pp_string "success"];
begin match gs with
| [] -> [%tcall pop_andl alts next cutto_alts]
| { depth; program; goal; gid = gid [@trace] } :: gs ->
[%tcall run depth program goal (gid[@trace]) gs next alts cutto_alts]
end
| Builtin(c,[l;r]) when c == Global_symbols.eqc -> [%spy "user:rule" ~rid ~gid pp_string "eq"]; [%spy "user:rule:builtin:name" ~rid ~gid pp_string (C.show c)];
if unif ~argsdepth:depth ~matching:false (gid[@trace]) depth empty_env depth l r then begin
[%spy "user:rule:eq" ~rid ~gid pp_string "success"];
match gs with
| [] -> [%tcall pop_andl alts next cutto_alts]
| { depth; program; goal; gid = gid [@trace] } :: gs ->
[%tcall run depth program goal (gid[@trace]) gs next alts cutto_alts]
end else begin
[%spy "user:rule:eq" ~rid ~gid pp_string "fail"];
[%tcall next_alt alts]
end
| App(c, g2, [g1]) when c == Global_symbols.rimplc -> [%spy "user:rule" ~rid ~gid pp_string "implication"];
let [@warning "-26"]loc = None in
let loc[@trace] = Some (Loc.initial ("(context step_id:" ^ string_of_int (Trace_ppx_runtime.Runtime.get_cur_step ~runtime_id:!rid "run") ^")")) in
let clauses, pdiff, lcs = clausify ~loc p ~depth g1 in
let g2 = hmove ~from:depth ~to_:(depth+lcs) g2 in
let gid[@trace] = make_subgoal_id gid ((depth,g2)[@trace]) in
[%spy "user:rule:implication" ~rid ~gid pp_string "success"];
[%tcall run (depth+lcs) (add_clauses ~depth clauses pdiff p) g2 (gid[@trace]) gs next alts cutto_alts]
| App(c, g1, [g2]) when c == Global_symbols.implc -> [%spy "user:rule" ~rid ~gid pp_string "implication"];
let [@warning "-26"]loc = None in
let loc[@trace] = Some (Loc.initial ("(context step_id:" ^ string_of_int (Trace_ppx_runtime.Runtime.get_cur_step ~runtime_id:!rid "run") ^")")) in
let clauses, pdiff, lcs = clausify ~loc p ~depth g1 in
let g2 = hmove ~from:depth ~to_:(depth+lcs) g2 in
let gid[@trace] = make_subgoal_id gid ((depth,g2)[@trace]) in
[%spy "user:rule:implication" ~rid ~gid pp_string "success"];
[%tcall run (depth+lcs) (add_clauses ~depth clauses pdiff p) g2 (gid[@trace]) gs next alts cutto_alts]
| App(c, arg, []) when c == Global_symbols.pic -> [%spy "user:rule" ~rid ~gid pp_string "pi"];
let f = get_lambda_body ~depth arg in
let gid[@trace] = make_subgoal_id gid ((depth+1,f)[@trace]) in
[%spy "user:rule:pi" ~rid ~gid pp_string "success"];
[%tcall run (depth+1) p f (gid[@trace]) gs next alts cutto_alts]
| App(c, arg, []) when c == Global_symbols.sigmac -> [%spy "user:rule" ~rid ~gid pp_string "sigma"];
let f = get_lambda_body ~depth arg in
let v = UVar(oref C.dummy, depth, 0) in
let fv = subst depth [v] f in
let gid[@trace] = make_subgoal_id gid ((depth,fv)[@trace]) in
[%spy "user:rule:sigma" ~rid ~gid pp_string "success"];
[%tcall run depth p fv (gid[@trace]) gs next alts cutto_alts]
| UVar ({ contents = g }, from, args) when g != C.dummy -> [%spy "user:rule" ~rid ~gid pp_string "deref"]; [%spy "user:rule:deref" ~rid ~gid pp_string "success"];
[%tcall run depth p (deref_uv ~from ~to_:depth args g) (gid[@trace]) gs next alts cutto_alts]
| AppUVar ({contents = t}, from, args) when t != C.dummy -> [%spy "user:rule" ~rid ~gid pp_string "deref"]; [%spy "user:rule:deref" ~rid ~gid pp_string "success"];
[%tcall run depth p (deref_appuv ~from ~to_:depth args t) (gid[@trace]) gs next alts cutto_alts]
| Const k ->
let clauses = get_clauses ~depth k g p in
[%spy "user:rule" ~rid ~gid pp_string "backchain"];
[%spyl "user:rule:backchain:candidates" ~rid ~gid (pp_candidate ~depth ~k) (Bl.to_list clauses)];
[%tcall backchain depth p (k, C.dummy, [], gs) (gid[@trace]) next alts cutto_alts clauses]
| App (k,x,xs) ->
let clauses = get_clauses ~depth k g p in
[%spy "user:rule" ~rid ~gid pp_string "backchain"];
[%spyl "user:rule:backchain:candidates" ~rid ~gid (pp_candidate ~depth ~k) (Bl.to_list clauses)];
[%tcall backchain depth p (k, x, xs, gs) (gid[@trace]) next alts cutto_alts clauses]
| Builtin(c, args) -> [%spy "user:rule" ~rid ~gid pp_string "builtin"]; [%spy "user:rule:builtin:name" ~rid ~gid pp_string (C.show c)];
let once ~depth g state =
CS.state := state;
let { depth; program; goal; gid = gid [@trace] } = (make_subgoal[@inlined]) (gid[@trace]) ~depth p g in
let _alts = run depth program goal (gid[@trace]) [] FNil noalts noalts in
!CS.state in
begin match Constraints.exect_builtin_predicate ~once c ~depth p (gid[@trace]) args with
| gs' ->
[%spy "user:rule:builtin" ~rid ~gid pp_string "success"];
(match List.map (fun g -> (make_subgoal[@inlined]) (gid[@trace]) ~depth p g) gs' @ gs with
| [] -> [%tcall pop_andl alts next cutto_alts]
| { depth; program; goal; gid = gid [@trace] } :: gs -> [%tcall run depth program goal (gid[@trace]) gs next alts cutto_alts])
| exception No_clause ->
[%spy "user:rule:builtin" ~rid ~gid pp_string "fail"];
[%tcall next_alt alts]
end
| Arg _ | AppArg _ -> anomaly "The goal is not a heap term"
| Lam _ | CData _ ->
type_error ("The goal is not a predicate:" ^ (show_term g))
| UVar _ | AppUVar _ | Discard ->
error "The goal is a flexible term"
end]
and backchain depth p (k, arg, args_of_g, gs) (gid[@trace]) next alts cutto_alts cp = [%trace "select" ~rid begin
if Bl.is_empty cp then begin
[%spy "user:rule:backchain" ~rid ~gid pp_string "fail"];
[%tcall next_alt alts]
end else
let { depth = c_depth; mode = c_mode; args = c_args; hyps = c_hyps; vars = c_vars; loc }, cs = Bl.next cp in
[%spy "user:rule:backchain:try" ~rid ~gid (pp_option Util.CData.pp) (Util.option_map Ast.cloc.Util.CData.cin loc) (ppclause ~hd:k) { depth = c_depth; mode = c_mode; args = c_args; hyps = c_hyps; vars = c_vars; loc; timestamp = [] }];
let old_trail = !T.trail in
T.last_call := alts == noalts && Bl.is_empty cs;
let env = Array.make c_vars C.dummy in
match
match c_args with
| [] -> arg == C.dummy && args_of_g == []
| x :: xs -> arg != C.dummy &&
match c_mode with
| [] -> unif ~argsdepth:depth ~matching:false (gid[@trace]) depth env c_depth arg x && for_all23 ~argsdepth:depth (unif (gid[@trace])) depth env c_depth args_of_g xs
| arg_mode :: ms -> unif ~argsdepth:depth ~matching:(get_arg_mode arg_mode == Input) (gid[@trace]) depth env c_depth arg x && for_all3b3 ~argsdepth:depth (unif (gid[@trace])) depth env c_depth args_of_g xs ms false
with
| false ->
T.undo ~old_trail (); [%tcall backchain depth p (k, arg, args_of_g, gs) (gid[@trace]) next alts cutto_alts cs]
| true ->
let oldalts = alts in
let alts = if Bl.is_empty cs then alts else
{ program = p; adepth = depth; agoal_hd = k; ogoal_arg = arg; ogoal_args = args_of_g; agid = gid[@trace]; goals = gs; stack = next;
trail = old_trail;
state = !CS.state;
clauses = cs; cutto_alts = cutto_alts ; next = alts} in
begin match c_hyps with
| [] ->
[%spy "user:rule:backchain" ~rid ~gid pp_string "success"];
begin match gs with
| [] -> [%tcall pop_andl alts next cutto_alts]
| { depth ; program; goal; gid = gid [@trace] } :: gs -> [%tcall run depth program goal (gid[@trace]) gs next alts cutto_alts] end
| h::hs ->
let next = if gs = [] then next else FCons (cutto_alts,gs,next) in
let h = move ~argsdepth:depth ~from:c_depth ~to_:depth env h in
let gid[@trace] = make_subgoal_id gid ((depth,h)[@trace]) in
let hs =
List.map (fun x->
(make_subgoal[@inlined]) (gid[@trace]) ~depth p (move ~argsdepth:depth ~from:c_depth ~to_:depth env x))
hs in
[%spy "user:rule:backchain" ~rid ~gid pp_string "success"];
[%tcall run depth p h (gid[@trace]) hs next alts oldalts] end
end]
and cut (gid[@trace]) gs next (alts[@trace]) cutto_alts =
[%spy "user:rule" ~rid ~gid pp_string "cut"];
let ()[@trace] =
let rec prune ({ agid = agid[@trace]; clauses; adepth = depth; agoal_hd = hd } as alts) =
if alts != cutto_alts then begin
List.iter (fun c ->
[%spy "user:rule:cut:branch" ~rid UUID.pp agid (pp_option Util.CData.pp) (Util.option_map Ast.cloc.Util.CData.cin c.loc) (ppclause ~hd) c])
(clauses |> Bl.to_list);
prune alts.next
end
in
prune alts in
if cutto_alts == noalts then (T.cut_trail[@inlined]) ();
[%spy "user:rule:cut" ~rid ~gid pp_string "success"];
match gs with
| [] -> pop_andl cutto_alts next cutto_alts
| { depth; program; goal; gid = gid [@trace] } :: gs -> run depth program goal (gid[@trace]) gs next cutto_alts cutto_alts
and findall depth p g s (gid[@trace]) gs next alts cutto_alts =
[%spy "user:rule" ~rid ~gid pp_string "findall"];
let avoid = oref C.dummy in
let copy = move ~argsdepth:depth ~from:depth ~to_:depth empty_env ~avoid in
let g = copy g in
[%trace "findall" ~rid ("@[<hov 2>query: %a@]" (uppterm depth [] ~argsdepth:0 empty_env) g) begin
let executable = {
compiled_program = p;
chr = CHR.empty;
initial_goal = g;
assignments = StrMap.empty;
initial_depth = depth;
initial_runtime_state = !CS.initial_state;
symbol_table = !C.table;
builtins = !FFI.builtins;
} in
let { search; next_solution; destroy; get; _ } = !do_make_runtime executable in
let solutions = ref [] in
let add_sol () =
if get CS.Ugly.delayed <> [] then
error "findall search must not declare constraint(s)";
let sol = copy g in
[%spy "findall solution:" ~rid ~gid (ppterm depth [] ~argsdepth:0 empty_env) g];
solutions := sol :: !solutions in
let alternatives = ref noalts in
try
alternatives := search ();
add_sol ();
while true do
alternatives := next_solution !alternatives;
add_sol ();
done;
raise No_clause
with No_clause ->
destroy ();
let solutions = list_to_lp_list (List.rev !solutions) in
[%spy "findall solutions:" ~rid ~gid (ppterm depth [] ~argsdepth:0 empty_env) solutions];
match unif ~argsdepth:depth ~matching:false (gid[@trace]) depth empty_env depth s solutions with
| false ->
[%spy "user:rule:findall" ~rid ~gid pp_string "fail"];
[%tcall next_alt alts]
| true ->
[%spy "user:rule:findall" ~rid ~gid pp_string "success"];
begin match gs with
| [] -> [%tcall pop_andl alts next cutto_alts]
| { depth ; program; goal; gid = gid [@trace] } :: gs -> [%tcall run depth program goal (gid[@trace]) gs next alts cutto_alts] end
end]
and pop_andl alts next cutto_alts =
match next with
| FNil ->
(match resume_all () with
None ->
Fmt.fprintf Fmt.std_formatter
"Undo triggered by goal resumption\n%!";
[%tcall next_alt alts]
| Some ({ depth; program; goal; gid = gid [@trace] } :: gs) ->
run depth program goal (gid[@trace]) gs FNil alts cutto_alts
| Some [] -> alts)
| FCons (_,[],_) -> anomaly "empty stack frame"
| FCons(cutto_alts, { depth; program; goal; gid = gid [@trace] } :: gs, next) ->
run depth program goal (gid[@trace]) gs next alts cutto_alts
and resume_all () : goal list option =
let ok = ref true in
let to_be_resumed = ref [] in
while !ok && !CS.to_resume <> [] do
match !CS.to_resume with
| { kind = Unification { adepth; bdepth; env; a; b; matching } } as dg :: rest ->
CS.remove_old dg;
CS.to_resume := rest;
[%spy "user:resume-unif" ~rid (fun fmt () -> Fmt.fprintf fmt
"@[<hov 2>^%d:%a@ == ^%d:%a@]\n%!"
adepth (uppterm adepth [] ~argsdepth:0 empty_env) a
bdepth (uppterm bdepth [] ~argsdepth:adepth env) b) ()];
ok := unif ~argsdepth:adepth ~matching ((UUID.make ())[@trace]) adepth env bdepth a b
| { kind = Constraint dpg } as c :: rest ->
CS.remove_old c;
CS.to_resume := rest;
to_be_resumed := dpg :: !to_be_resumed
| _ -> anomaly "Unknown constraint type"
done ;
if !ok then
let to_be_resumed = Constraints.resumption !to_be_resumed in
let ()[@trace] =
if to_be_resumed != [] then begin
[%spy "user:rule" ~rid pp_string "resume"];
List.iter pp_resumed_goal to_be_resumed;
[%spy "user:rule:resume" ~rid pp_string "success"];
end in
if !CS.new_delayed <> [] then begin
let ()[@trace] =
if to_be_resumed != [] then begin
Trace_ppx_runtime.Runtime.incr_cur_step ~runtime_id:!rid "run";
end in
let { Constraints.new_goals;
some_rule_was_tried = some_rule_was_tried[@trace] } =
Constraints.propagation () in
let ()[@trace] =
List.iter pp_CHR_resumed_goal new_goals;
if some_rule_was_tried && new_goals = [] then begin
Trace_ppx_runtime.Runtime.incr_cur_step ~runtime_id:!rid "run";
end in
Some (to_be_resumed @ new_goals)
end else
Some to_be_resumed
else begin
[%spy "user:rule" ~rid pp_string "constraint-failure"];
None
end
and next_alt alts =
if alts == noalts then raise No_clause
else
let { program = p; clauses; agoal_hd = k; ogoal_arg = arg; ogoal_args = args; agid = gid [@trace]; goals = gs; stack = next;
trail = old_trail; state = old_state;
adepth = depth; cutto_alts = cutto_alts; next = alts} = alts in
T.undo ~old_trail ~old_state ();
[%trace "run" ~rid begin
[%cur_pred (Some (C.show k))];
[%spyl "user:curgoal" ~rid ~gid (uppterm depth [] ~argsdepth:0 empty_env) [Const k;App(k,arg,args)]];
[%spy "user:rule" ~rid ~gid pp_string "backchain"];
[%spyl "user:rule:backchain:candidates" ~rid ~gid (pp_candidate ~depth ~k) (Bl.to_list clauses)];
[%tcall backchain depth p (k, arg, args, gs) (gid[@trace]) next alts cutto_alts clauses]
end]
in
fun ?max_steps ?(delay_outside_fragment = false) {
compiled_program;
chr;
initial_depth;
initial_goal;
initial_runtime_state;
assignments;
symbol_table;
builtins;
} ->
let { Fork.exec = exec ; get = get ; set = set } = Fork.fork () in
set orig_prolog_program compiled_program;
set Constraints.chrules chr;
set T.initial_trail T.empty;
set T.trail T.empty;
set T.last_call false;
set CS.new_delayed [];
set CS.to_resume [];
set CS.blockers_map IntMap.empty;
set CS.Ugly.delayed [];
set steps_bound max_steps;
set delay_hard_unif_problems delay_outside_fragment;
set steps_made 0;
set CS.state initial_runtime_state;
set CS.initial_state initial_runtime_state;
set C.table symbol_table;
set FFI.builtins builtins;
set rid !max_runtime_id;
let search = exec (fun () ->
[%spy "dev:trail:init" ~rid (fun fmt () -> T.print_trail fmt) ()];
let gid[@trace] = UUID.make () in
[%spy "user:newgoal" ~rid ~gid (uppterm initial_depth [] ~argsdepth:0 empty_env) initial_goal];
T.initial_trail := !T.trail;
run initial_depth !orig_prolog_program initial_goal (gid[@trace]) [] FNil noalts noalts) in
let destroy () = exec (fun () -> T.undo ~old_trail:T.empty ()) () in
let next_solution = exec next_alt in
incr max_runtime_id;
{ search; next_solution; destroy; exec; get }
;;
do_make_runtime := make_runtime;;
end
open Mainloop
let mk_outcome search get_cs assignments depth =
try
let alts = search () in
let syn_csts, reloc_state, final_state, pp_ctx = get_cs () in
let solution = {
assignments;
constraints = syn_csts;
state = final_state;
pp_ctx = pp_ctx;
state_for_relocation = reloc_state;
} in
Success solution, alts
with
| No_clause -> Failure, noalts
| No_more_steps -> NoMoreSteps, noalts
let execute_once ?max_steps ?delay_outside_fragment exec =
let { search; get } = make_runtime ?max_steps ?delay_outside_fragment exec in
try
let result = fst (mk_outcome search (fun () -> get CS.Ugly.delayed, (exec.initial_depth,get C.table), get CS.state |> State.end_execution, { Data.uv_names = ref (get Pp.uv_names); table = get C.table }) exec.assignments exec.initial_depth) in
[%end_trace "execute_once" ~rid];
result
with e ->
[%end_trace "execute_once" ~rid];
raise e
;;
let execute_loop ?delay_outside_fragment exec ~more ~pp =
let { search; next_solution; get; destroy = _ } = make_runtime ?delay_outside_fragment exec in
let k = ref noalts in
let do_with_infos f =
let time0 = Unix.gettimeofday() in
let o, alts = mk_outcome f (fun () -> get CS.Ugly.delayed, (exec.initial_depth,get C.table), get CS.state |> State.end_execution, { Data.uv_names = ref (get Pp.uv_names); table = get C.table }) exec.assignments exec.initial_depth in
let time1 = Unix.gettimeofday() in
k := alts;
pp (time1 -. time0) o in
do_with_infos search;
while !k != noalts do
if not(more()) then k := noalts else
try do_with_infos (fun () -> next_solution !k)
with
| No_clause -> pp 0.0 Failure; k := noalts; [%end_trace "execute_loop" ~rid]
| e -> pp 0.0 Failure; k := noalts; [%end_trace "execute_loop" ~rid]; raise e
done
;;
let print_constraints () = CS.print Fmt.std_formatter (CS.contents ())
let pp_stuck_goal ?pp_ctx fmt s = CS.pp_stuck_goal ?pp_ctx fmt s
let is_flex = HO.is_flex
let deref_uv = HO.deref_uv
let deref_appuv = HO.deref_appuv
let deref_head = HO.deref_head
let full_deref = HO.full_deref ~adepth:0 empty_env
let eta_contract_flex = HO.eta_contract_flex
let make_runtime = Mainloop.make_runtime
let lp_list_to_list = Clausify.lp_list_to_list
let list_to_lp_list = HO.list_to_lp_list
let split_conj = Clausify.split_conj
let mkAppArg = HO.mkAppArg
let subst ~depth = HO.subst depth
let move = HO.move
let hmove = HO.hmove
let mkinterval = C.mkinterval
let mkAppL = C.mkAppL
let lex_insertion = lex_insertion
let expand_uv ~depth r ~lvl ~ano =
let t, assignment = HO.expand_uv ~depth r ~lvl ~ano in
option_iter (fun (r,_,assignment) -> r @:= assignment) assignment;
t
let expand_appuv ~depth r ~lvl ~args =
let t, assignment = HO.expand_appuv ~depth r ~lvl ~args in
option_iter (fun (r,_,assignment) -> r @:= assignment) assignment;
t
module CompileTime = struct
let update_indexing = update_indexing
let add_to_index = add_to_index
let clausify1 = Clausify.clausify1
end