package elpi

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file type_checker.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
(* elpi: embedded lambda prolog interpreter                                  *)
(* license: GNU Lesser General Public License Version 2.1 or later           *)
(* ------------------------------------------------------------------------- *)

open Elpi_util
open Util
open Elpi_parser
open Ast
open Compiler_data

type type_abbrevs = (TypeAssignment.skema_w_id * Loc.t) F.Map.t
type arities = Arity.t F.Map.t

let check_disjoint ~type_abbrevs ~kinds =
  kinds |> F.Map.iter (fun k (_,lock) -> if F.Map.mem k type_abbrevs then
    let { ScopedTypeExpression.loc } = F.Map.find k type_abbrevs in
    error ~loc (Format.asprintf "Type abbreviations and types must be dijoint. Type %a declared in %a" F.pp k Loc.pp lock))

open ScopedTypeExpression

let check_param_unique ~loc c ctx =
  if F.Set.mem c ctx then
    error ~loc ("Duplicate type parameter " ^ F.show c)

let check_param_exists ~loc c ctx =
  if not @@ F.Set.mem c ctx then
    error ~loc (Format.asprintf "Unknown type parameter %a. Known parameters: %a" F.pp c (pplist F.pp ", ") (F.Set.elements ctx))

let check_global_exists ~loc c (type_abbrevs : type_abbrevs) arities nargs =
  if F.Map.mem c arities then begin
    let arity, _ = F.Map.find c arities in
    if arity != nargs then
      error ~loc (Format.asprintf "Type %a expects %d arguments but was given %d" F.pp c arity nargs)
  end else if F.Map.mem c type_abbrevs then begin
    let arity = TypeAssignment.nparams @@ fst @@ F.Map.find c type_abbrevs in
    if arity != nargs then
      error ~loc (Format.asprintf "Type %a expects %d arguments but was given %d" F.pp c arity nargs)
  end else
    error ~loc ("Unknown type " ^ F.show c)

let rec check_loc_tye ~type_abbrevs ~kinds ctx { loc; it } =
  check_tye ~loc ~type_abbrevs ~kinds ctx it
and check_tye ~loc ~type_abbrevs ~kinds ctx = function
  | Any -> TypeAssignment.Any
  | Const(Bound _,c) -> check_param_exists ~loc c ctx; UVar c
  | Const(Global _,c) -> check_global_exists ~loc c type_abbrevs kinds 0; Cons c
  | App(_,c,x,xs) ->
      check_global_exists ~loc c type_abbrevs kinds (1 + List.length xs);
      App(c,check_loc_tye ~type_abbrevs ~kinds ctx x, List.map (check_loc_tye ~type_abbrevs ~kinds ctx) xs)
  | Arrow(v,s,t) -> Arr(v,check_loc_tye ~type_abbrevs ~kinds ctx s,check_loc_tye ~type_abbrevs ~kinds ctx t)
  | Pred(_,[]) -> Prop
  | Pred(f,(_,x)::xs) -> Arr(NotVariadic,check_loc_tye ~type_abbrevs ~kinds ctx x,check_tye ~type_abbrevs ~kinds ~loc ctx (Pred(f,xs)))


let check_type ~type_abbrevs ~kinds ~loc ctx x : TypeAssignment.skema_w_id =
  (* Format.eprintf "check_type under %a\n%!" (F.Map.pp (fun fmt (n,_) -> ())) kinds;
  Format.eprintf "check_type %a\n%!" ScopedTypeExpression.pp_v_ x;  *)
  let rec aux_params ~loc ctx = function
    | Lam(c,t) ->
        check_param_unique ~loc c ctx;
        TypeAssignment.Lam(c,aux_params ~loc (F.Set.add c ctx) t)
    | Ty t -> TypeAssignment.Ty(check_loc_tye ~type_abbrevs ~kinds ctx t)
  in
    Scope.fresh_type_decl_id (), aux_params ~loc ctx x

let check_types  ~type_abbrevs ~kinds lst : TypeAssignment.overloaded_skema_with_id =
  match List.map (fun { value; loc } -> check_type ~type_abbrevs ~kinds ~loc F.Set.empty value) lst with
  | [] -> assert false
  | [x] -> TypeAssignment.Single x
  | xs -> TypeAssignment.Overloaded xs

let check_type  ~type_abbrevs ~kinds { value; loc } : (TypeAssignment.skema_w_id) =
  check_type ~type_abbrevs ~kinds ~loc F.Set.empty value

let arrow_of_args args ety =
  let rec aux = function
  | [] -> ety
  | x :: xs -> TypeAssignment.Arr(Ast.Structured.NotVariadic,ScopedTerm.type_of x,aux xs) in
  aux args

let arrow_of_tys tys ety =
  let rec aux = function
  | [] -> ety
  | x :: xs -> TypeAssignment.Arr(Ast.Structured.NotVariadic,x,aux xs) in
  aux tys

type env = TypeAssignment.overloaded_skema_with_id F.Map.t
type env_undeclared = (TypeAssignment.t * Scope.type_decl_id * Ast.Loc.t) F.Map.t

open ScopedTerm

let error_not_a_function ~loc c tyc args x =
  let t =
    if args = [] then ScopedTerm.Const(Scope.mkGlobal ~escape_ns:true (),c)
    else ScopedTerm.(App(Scope.mkGlobal ~escape_ns:true (),c,List.hd args, List.tl args)) in
  let msg = Format.asprintf "@[<hov>%a is not a function but it is passed the argument@ @[<hov>%a@].@ The type of %a is %a@]"
    ScopedTerm.pretty_ t ScopedTerm.pretty x F.pp c TypeAssignment.pretty tyc in
  error ~loc msg

let pp_tyctx fmt = function
  | None -> Format.fprintf fmt "its context"
  | Some c -> Format.fprintf fmt "%a" F.pp c

let error_bad_cdata_ety ~loc ~tyctx ~ety c tx =
  let msg = Format.asprintf "@[<hov>literal \"%a\" has type %a@ but %a expects a term of type@ %a@]"  CData.pp c TypeAssignment.pretty tx pp_tyctx tyctx TypeAssignment.pretty ety in
  error ~loc msg

let error_bad_ety ~loc ~tyctx ~ety pp c tx =
  let msg = Format.asprintf "@[<hov>%a has type %a@ but %a expects a term of type@ %a@]"  pp c TypeAssignment.pretty tx pp_tyctx tyctx TypeAssignment.pretty ety in
  error ~loc msg

let error_bad_ety2 ~loc ~tyctx ~ety1 ~ety2 pp c tx =
  let msg = Format.asprintf "@[<hov>%a has type %a@ but %a expects a term of type@ %a@ or %a@]"  pp c TypeAssignment.pretty tx pp_tyctx tyctx TypeAssignment.pretty ety1 TypeAssignment.pretty ety2 in
  error ~loc msg

let error_bad_function_ety ~loc ~tyctx ~ety c t =
  let msg = Format.asprintf "@[<hov>%a is a function@ but %a expects a term of type@ %a@]"  ScopedTerm.pretty_ ScopedTerm.(Lam(c,None,t)) pp_tyctx tyctx TypeAssignment.pretty ety in
  error ~loc msg

let error_bad_const_ety_l ~loc ~tyctx ~ety c txl =
  let msg = Format.asprintf "@[<hv>%a is overloaded but none of its types matches the type expected by %a:@,  @[<hov>%a@]@,Its types are:@,@[<v 2>  %a@]@]" F.pp c pp_tyctx tyctx TypeAssignment.pretty ety (pplist ~boxed:true (fun fmt (_,x)-> Format.fprintf fmt "%a" TypeAssignment.pretty x) ", ") txl in
  error ~loc msg

let error_overloaded_app ~loc ~ety c args alltys =
  let ty = arrow_of_args args ety in
  let msg = Format.asprintf "@[<v>%a is overloaded but none of its types matches:@,  @[<hov>%a@]@,Its types are:@,@[<v 2>  %a@]@]" F.pp c TypeAssignment.pretty ty (pplist (fun fmt (_,x)-> Format.fprintf fmt "%a" TypeAssignment.pretty x) ", ") alltys in
  error ~loc msg
  
let error_overloaded_app_tgt ~loc ~ety c =
  let msg = Format.asprintf "@[<v>%a is overloaded but none of its types matches make it build a term of type @[<hov>%a@]@]" F.pp c TypeAssignment.pretty ety in
  error ~loc msg


let error_not_poly ~loc c ty sk =
  error ~loc (Format.asprintf "@[<hv>this rule imposes on %a the type@ %a@ is less general than the declared one@ %a@]"
    F.pp c
    TypeAssignment.pretty ty
    TypeAssignment.pretty sk)

type ret = TypeAssignment.t MutableOnce.t TypeAssignment.t_
type ret_id = int * TypeAssignment.t MutableOnce.t TypeAssignment.t_
type spilled_phantoms = ScopedTerm.t list

let local_type ctx ~loc c : ret_id TypeAssignment.overloading =
  try TypeAssignment.Single (0, Scope.Map.find c ctx) (* local types have no id, 0 is given by default *)
  with Not_found -> anomaly ~loc "free variable"

type classification =
  | Simple of { srcs : ret list; tgt : ret }
  | Variadic of { srcs : ret list; tgt : ret }
  | Unknown

let rec classify_arrow = function
  | TypeAssignment.Arr(Variadic,x,tgt) -> Variadic { srcs = [x]; tgt }
  | UVar m when MutableOnce.is_set m -> classify_arrow (TypeAssignment.deref m)
  | (App _ | Prop | Cons _ | Any | UVar _) as tgt -> Simple { srcs = []; tgt }
  | TypeAssignment.Arr(NotVariadic,x,xs) ->
      match classify_arrow xs with
      | Simple {srcs; tgt } -> Simple { srcs = x :: srcs; tgt }
      | Unknown -> Unknown
      | Variadic { srcs; tgt } -> Variadic { srcs = x :: srcs; tgt }

let mk_uvar =
  let i = ref 0 in
  fun s -> incr i; TypeAssignment.UVar(MutableOnce.make (F.from_string (s ^ string_of_int !i)))

let unknown_type_assignment s = TypeAssignment.Val (mk_uvar s)

let rec extend l1 l2 =
  match l1, l2 with
  | [],_ -> assert false
  | _, [] -> []
  | [x], _:: ys -> x :: extend [x] ys
  | x::xs, _::ys -> x :: extend [x] ys

let is_spill { it } =
  match it with
  | Spill _ -> true
  | _ -> false

let rec any_arg_is_spill = function
  | [] -> false
  | x :: xs -> is_spill x || any_arg_is_spill xs

let silence_linear_warn f =
  let s = F.show f in
  let len = String.length s in
  len > 0 && (s.[0] = '_' || s.[len-1] = '_')

let check ~is_rule ~type_abbrevs ~kinds ~types:env ~unknown (t : ScopedTerm.t) ~(exp : TypeAssignment.t) =
  (* Format.eprintf "============================ checking %a\n" ScopedTerm.pretty t; *)
  let sigma : (TypeAssignment.t * int * Loc.t) F.Map.t ref = ref F.Map.empty in
  let unknown_global = ref unknown in
  let fresh_name = let i = ref 0 in fun () -> incr i; F.from_string ("%dummy"^ string_of_int !i) in
  (* let set_fresh_id = let i = ref 0 in fun x -> incr i; x := Some !i in *)

  let rec check (ctx : ret Scope.Map.t) ~loc ~tyctx x ety : spilled_phantoms =
    (* Format.eprintf "@[<hov 2>checking %a : %a@]\n" ScopedTerm.pretty_ x TypeAssignment.pretty ety; *)
    match x with
    | Impl(b,t1,t2) -> check_impl ctx ~loc ~tyctx b t1 t2 ety
    | Const(Global _ as gid,c) -> check_global ctx ~loc ~tyctx (gid,c) ety
    | Const(Bound lang,c) -> check_local ctx ~loc ~tyctx (c,lang) ety
    | CData c -> check_cdata ~loc ~tyctx kinds c ety
    | Spill(_,{contents = Phantom _}) -> assert false
    | Spill(sp,info) -> check_spill ctx ~loc ~tyctx sp info ety
    | App(Global _ as gid,c,x,xs) -> check_app ctx ~loc ~tyctx (c,gid) (global_type env ~loc c) (x::xs) ety 
    | App(Bound lang as gid,c,x,xs) -> check_app ctx ~loc ~tyctx (c,gid) (local_type ctx ~loc (c,lang)) (x::xs) ety
    | Lam(c,cty,t) -> check_lam ctx ~loc ~tyctx c cty t ety
    | Discard -> []
    | Var(c,args) -> check_app ctx ~loc ~tyctx (c, Bound elpi_language (*hack*)) (uvar_type ~loc c) args ety
    | Cast(t,ty) ->
        let ty = TypeAssignment.subst (fun f -> Some (TypeAssignment.UVar(MutableOnce.make f))) @@ check_loc_tye ~type_abbrevs ~kinds F.Set.empty ty in
        let spills = check_loc ctx ~tyctx:None t ~ety:ty in
        if unify ty ety then spills
        else error_bad_ety ~loc ~tyctx ScopedTerm.pretty_ x ty ~ety

  and resolve_gid id _ = ()
  (*function
    | Scope.Global x -> x.decl_id <- id
    | _ -> ()*)

  and global_type env ~loc c : ret_id TypeAssignment.overloading =
    try TypeAssignment.fresh_overloaded @@ F.Map.find c env
    with Not_found ->
      (* Printf.eprintf "%s\n" F.(show c);
      assert false; *)
      try
        let ty,id,_ = F.Map.find c !unknown_global in
        Single (id,TypeAssignment.unval ty)
      with Not_found ->
        let ty = TypeAssignment.Val (mk_uvar (Format.asprintf "Unknown_type_of_%a_" F.pp c)) in
        let id = Scope.fresh_type_decl_id () in
        unknown_global := F.Map.add c (ty,id,loc) !unknown_global;
        Single (id,TypeAssignment.unval ty)
      
  and check_impl ctx ~loc ~tyctx b t1 t2 ety =
    if not @@ unify (ety) Prop then error_bad_ety ~loc ~tyctx ~ety:Prop ScopedTerm.pretty_ (Impl(b,t1,t2)) (ety)
    else
      let lhs, rhs,c (* of => *) = if b then t1,t2,F.implf else t2,t1,F.rimplf in
      let spills = check_loc ~tyctx:(Some c) ctx rhs ~ety:Prop in
      let lhs_ty = mk_uvar "Src" in
      let more_spills = check_loc ~tyctx:None ctx ~ety:lhs_ty lhs in
      let ety1 = TypeAssignment.Prop in
      let ety2 = TypeAssignment.App(F.from_string "list",Prop,[]) in
      if try_unify lhs_ty ety1 then spills @ more_spills (* probably an error if not empty *)
      else if unify lhs_ty (ety2) then spills @ more_spills (* probably an error if not empty *)
      else error_bad_ety2 ~tyctx:(Some c) ~loc ~ety1 ~ety2  ScopedTerm.pretty lhs lhs_ty

  and check_global ctx ~loc ~tyctx (gid,c) ety =
    match global_type env ~loc c with
    | Single (id,ty) ->
        if unify ty ety then (resolve_gid id gid; [])
        else error_bad_ety ~tyctx ~loc ~ety F.pp c ty
    | Overloaded l ->
        if unify_first gid l ety then []
        else error_bad_const_ety_l ~tyctx ~loc ~ety c l

  and check_local ctx ~loc ~tyctx c ety =
    match local_type ctx ~loc c with
    | Single (id,ty) ->
        if unify ty ety then []
        else error_bad_ety ~tyctx ~loc ~ety F.pp (fst c) ty
    | Overloaded _ -> assert false

  and check_cdata ~loc ~tyctx kinds c ety =
    let name = F.from_string @@ CData.name c in
    check_global_exists ~loc name type_abbrevs kinds 0;
    let ty = TypeAssignment.Cons name in
    if unify ty ety then []
    else error_bad_cdata_ety ~tyctx ~loc c ty ~ety

  and check_lam ctx ~loc ~tyctx c cty t ety =
    let name_lang = match c with Some c -> c | None -> fresh_name (), elpi_language in
    let src = match cty with
      | None -> mk_uvar "Src"
      | Some x -> 
          TypeAssignment.subst (fun f -> Some (TypeAssignment.UVar(MutableOnce.make f))) @@ check_loc_tye ~type_abbrevs ~kinds F.Set.empty x in
    let tgt = mk_uvar "Tgt" in
    (* let () = Format.eprintf "lam ety %a\n" TypeAssignment.pretty ety in *)
    if unify (TypeAssignment.Arr(Ast.Structured.NotVariadic,src,tgt)) ety then
      (* let () = Format.eprintf "add to ctx %a : %a\n" F.pp name TypeAssignment.pretty src in *)
      check_loc ~tyctx (Scope.Map.add name_lang src ctx) t ~ety:tgt
    else
      error_bad_function_ety ~loc ~tyctx ~ety c t

  and check_spill ctx ~loc ~tyctx sp info ety =
    let inner_spills = check_spill_conclusion_loc ~tyctx:None ctx sp ~ety:(TypeAssignment.Arr(Ast.Structured.NotVariadic,ety,mk_uvar "Spill")) in
    assert(inner_spills = []);
    let phantom_of_spill_ty i ty =
      { loc; it = Spill(sp,ref (Phantom(i+1))); ty = MutableOnce.create (TypeAssignment.Val ty) } in
    match classify_arrow (ScopedTerm.type_of sp) with
    | Simple { srcs; tgt } ->
        if not @@ unify tgt Prop then error ~loc "only predicates can be spilled";
        let spills = srcs in
        if spills = [] then
          error ~loc "nothing to spill, the expression lacks no arguments";
        let (first_spill) = List.hd spills in
        if unify first_spill ety then begin
          info := Main (List.length spills);
          List.mapi phantom_of_spill_ty @@ List.tl spills
        end
        else error_bad_ety ~tyctx ~loc ~ety ScopedTerm.pretty_ (Spill(sp,info)) first_spill
    | _ -> error ~loc "hard spill"

  and unify_tgt_ety n ety (_,t) = 
    match classify_arrow t with
    | Unknown -> true
    | Simple { srcs; tgt } ->
        let nsrcs = List.length srcs in
        if n > nsrcs then false
        else
          let rec drop i l = if i = 0 then l else drop (i-1) (List.tl l) in
          let srcs = drop n srcs in unify_then_undo (arrow_of_tys srcs tgt) ety
    | Variadic _ -> true (* TODO *)

  and check_app ctx ~loc ~tyctx (c,cid) cty args ety =
    match cty with
    | Overloaded l ->
      (* Format.eprintf "@[options %a %a %d:@ %a@]\n" F.pp c TypeAssignment.pretty ety (List.length args) (pplist (fun fmt (_,x) -> TypeAssignment.pretty fmt x) "; ") l; *)
      let l = List.filter (unify_tgt_ety (List.length args) ety) l in
      begin match l with
      | [] -> error_overloaded_app_tgt ~loc ~ety c
      | [ty] -> 
      (* Format.eprintf "1option left: %a\n" TypeAssignment.pretty (snd ty); *)
        check_app ctx ~loc ~tyctx (c,cid) (Single ty) args ety
      | l ->
      (* Format.eprintf "newoptions: %a\n" (pplist (fun fmt (_,x) -> TypeAssignment.pretty fmt x) "; ") l; *)
          let args = List.concat_map (fun x -> x :: check_loc ~tyctx:None ctx ~ety:(mk_uvar (Format.asprintf "Ety_%a" F.pp c)) x) args in
          let targs = List.map ScopedTerm.type_of args in
          check_app_overloaded ctx ~loc (c,cid) ety args targs l l
      end
    | Single (id,ty) ->
      (* Format.eprintf "%a: 1 option: %a\n" F.pp c TypeAssignment.pretty ty; *)
        let err ty =
          if args = [] then error_bad_ety ~loc ~tyctx ~ety F.pp c ty (* uvar *)
          else error_bad_ety ~loc ~tyctx ~ety ScopedTerm.pretty_ (App(Scope.mkGlobal ~escape_ns:true ()(* sucks *),c,List.hd args,List.tl args)) ty in
        let monodirectional () =
          (* Format.eprintf "checking app mono %a\n" F.pp c; *)
          let tgt = check_app_single ctx ~loc (c,cid) ty [] args in
          if unify tgt ety then (resolve_gid id cid; [])
          else err tgt in
        let bidirectional srcs tgt =
          (* Format.eprintf "checking app bidi %a\n" F.pp c; *)
          let rec consume args srcs =
            match args, srcs with
            | [], srcs -> arrow_of_tys srcs tgt
            | _ :: args, _ :: srcs -> consume args srcs
            | _ :: _, [] -> assert false
          in
          let rest_tgt = consume args srcs in
          if unify rest_tgt ety then
            let _ = check_app_single ctx ~loc (c,cid) ty [] args in (resolve_gid id cid; [])
          else err rest_tgt in
        match classify_arrow ty with
        | Unknown | Variadic _ -> monodirectional ()
        | Simple { srcs; tgt } ->
          if List.length args > List.length srcs then monodirectional () (* will error *)
          else
            if any_arg_is_spill args then monodirectional ()
            else bidirectional srcs tgt

  (* REDO PROCESSING ONE SRC at a time *)
  and check_app_overloaded ctx ~loc (c, cid as c_w_id) ety args targs alltys = function
    | [] -> error_overloaded_app ~loc c args ~ety alltys
    | (id,t)::ts ->
        (* Format.eprintf "checking overloaded app %a\n" F.pp c; *)
        match classify_arrow t with
        | Unknown -> error ~loc (Format.asprintf "Type too ambiguous to be assigned to the overloaded constant: %s for type %a" (F.show c) TypeAssignment.pretty t)
        | Simple { srcs; tgt } ->
          (* Format.eprintf "argsty : %a\n" TypeAssignment.pretty (arrow_of_tys targs ety); *)
            if try_unify (arrow_of_tys srcs tgt) (arrow_of_tys targs ety) then (resolve_gid id cid;[]) (* TODO: here we should something ? *)
            else check_app_overloaded ctx ~loc c_w_id ety args targs alltys ts
        | Variadic { srcs ; tgt } ->
            let srcs = extend srcs targs in
            if try_unify (arrow_of_tys srcs tgt) (arrow_of_tys targs ety) then (resolve_gid id cid;[]) (* TODO: here we should something ? *)
            else check_app_overloaded ctx ~loc c_w_id ety args targs alltys ts

  and check_app_single ctx ~loc c ty consumed args =
    match args with
    | [] -> ty
    | x :: xs ->
      (* Format.eprintf "checking app %a against %a\n" ScopedTerm.pretty_ (ScopedTerm.App(snd c, fst c,x,xs)) TypeAssignment.pretty ty; *)
      match ty with
        | TypeAssignment.Arr(Variadic,s,t) ->
            let xs = check_loc_if_not_phantom ~tyctx:(Some (fst c)) ctx x ~ety:s @ xs in
            if xs = [] then t else check_app_single ctx ~loc c ty (x::consumed) xs
        | Arr(NotVariadic,s,t) ->
            let xs = check_loc_if_not_phantom ~tyctx:(Some (fst c)) ctx x ~ety:s @ xs in
            check_app_single ctx ~loc c t (x::consumed) xs
        | Any -> check_app_single ctx ~loc c ty (x::consumed) xs
        | UVar m when MutableOnce.is_set m ->
            check_app_single ctx ~loc c (TypeAssignment.deref m) consumed (x :: xs)
        | UVar m ->
            let s = mk_uvar "Src" in
            let t = mk_uvar "Tgt" in
            let _ = unify ty (TypeAssignment.Arr(Ast.Structured.NotVariadic,s,t)) in
            check_app_single ctx ~loc c ty consumed (x :: xs)
        | Cons a when F.Map.mem a type_abbrevs ->
            let ty = TypeAssignment.apply (fst @@ F.Map.find a type_abbrevs) [] in
            check_app_single ctx ~loc c ty consumed args
        | App(a,x,xs) when F.Map.mem a type_abbrevs ->
            let ty = TypeAssignment.apply (fst @@ F.Map.find a type_abbrevs) (x::xs) in
            check_app_single ctx ~loc c ty consumed args
        | _ -> error_not_a_function ~loc:x.loc (fst c) ty (List.rev consumed) x (* TODO: trim loc up to x *)

  and check_loc ~tyctx ctx { loc; it; ty } ~ety : spilled_phantoms =
    (* if MutableOnce.is_set ty then []
    else *)
      begin
        (* assert (not @@ MutableOnce.is_set ty); *)
        let extra_spill = check ~tyctx ctx ~loc it ety in
        if not @@ MutableOnce.is_set ty then MutableOnce.set ty (Val ety);
        extra_spill
      end

  and check_loc_if_not_phantom ~tyctx ctx x ~ety : spilled_phantoms =
    match x.it with
    | Spill(_,{ contents = Phantom _}) -> []
    | _ -> check_loc ~tyctx ctx x ~ety

  and check_spill_conclusion_loc ~tyctx ctx { loc; it; ty } ~ety : spilled_phantoms =
    (* A spill can be duplicate by a macro for example *)
    let already_typed = MutableOnce.is_set ty in
    let extra_spill = check_spill_conclusion ~tyctx ctx ~loc it ety in
    if not already_typed then MutableOnce.set ty (Val ety);
    extra_spill

  (* This descent to find the spilled term is a bit ad hoc, since it
  inlines => and , typing... but leaves the rest of the code clean *)
  and check_spill_conclusion ~tyctx ctx ~loc it ety =
    match it with
    | Impl(true,x,y) ->
        let lhs = mk_uvar "LHS" in
        let spills = check_loc ~tyctx ctx x ~ety:lhs in
        if spills <> [] then error ~loc "Hard spill";
        if try_unify lhs Prop || try_unify lhs (App(F.from_string "list",Prop,[]))
        then check_spill_conclusion_loc ~tyctx ctx y ~ety
        else error ~loc "Bad impl in spill"
    | App(Global _ as g,c,x,xs) when F.equal c F.andf ->
        let spills = check_loc ~tyctx ctx x ~ety:Prop in
        if spills <> [] then error ~loc "Hard spill";
        begin match xs with
        | [] -> assert false
        | [x] -> check_loc ~tyctx ctx x ~ety
        | x::xs -> check_spill_conclusion ~tyctx ctx ~loc (App(g,c,x,xs)) ety
        end
    | _ -> check ~tyctx ctx ~loc it ety

  and check_matches_poly_skema_loc ~unknown { loc; it } =
    let c, args =
      let rec head it =
        match it with
        | App(Global _,f,{ it = Lam(_,_,x) },[]) when F.equal F.pif f -> head x.it
        | Impl(false,{ it = App(Global _,c',x,xs) },_) -> c', x :: xs
        | Impl(false,{ it = Const(Global _,c') },_) -> c', []
        | App(Global _,c,x,xs) -> c, x :: xs
        | Const(Global _,c) -> c, []
        | _ ->
          (* Format.eprintf "%a" ScopedTerm.pretty_ it; *)
          assert false in
      head it in
    (* Format.eprintf "Checking %a\n" F.pp c; *)
    match F.Map.find c env with
    | Single (_id,Ty _) -> () (* TODO: Should use id? *)
    | Single (_id, Lam _ as sk) -> check_matches_poly_skema ~loc ~pat:(TypeAssignment.fresh sk) c (arrow_of_args args Prop) (* TODO: should use id? *)
    | Overloaded _ -> ()
    | exception Not_found -> assert(F.Map.mem c unknown)

  and check_matches_poly_skema ~loc ~pat c ty =
    if try_matching ~pat ty then () else error_not_poly ~loc c ty (fst pat |> snd)

  and try_unify x y =
    let vx = TypeAssignment.vars_of (Val x) in
    let vy = TypeAssignment.vars_of (Val y) in
    let b = unify x y in
    if not b then (undo vx; undo vy);
    b

  and unify_then_undo x y =
    let vx = TypeAssignment.vars_of (Val x) in
    let vy = TypeAssignment.vars_of (Val y) in
    let b = unify x y in
    undo vx; undo vy;
    b
    
  and unify_first gid l ety =
    let vars = TypeAssignment.vars_of (Val ety) in
    let rec aux = function
      | [] -> false
      | (id, x)::xs -> if unify x ety then (resolve_gid id gid; true) else (undo vars; aux xs)
    in
      aux l

  and undo = function
    | [] -> ()
    | m :: ms -> MutableOnce.unset m; undo ms

  and uvar_type ~loc c =
    try
      let ty, nocc, loc = F.Map.find c !sigma in
      sigma := F.Map.add c (ty,nocc+1,loc) !sigma;
      Single (0, TypeAssignment.unval @@ ty) (* TODO: not sure of this... *)
    with Not_found ->
      let ty = TypeAssignment.UVar (MutableOnce.make c) in
      sigma := F.Map.add c (TypeAssignment.Val ty,1,loc) !sigma;
      Single (0, ty) (* TODO: not sure of this... *)
  and unif ~matching t1 t2 =
    (* Format.eprintf "%a = %a\n" TypeAssignment.pretty t1 TypeAssignment.pretty t2; *)
    let open TypeAssignment in
    match t1, t2 with
    | Any, _ -> true
    | _, Any -> true
    | UVar m, _ when MutableOnce.is_set m -> unif ~matching (TypeAssignment.deref m) t2
    | _, UVar m when MutableOnce.is_set m -> unif ~matching t1 (TypeAssignment.deref m)
    | App(c1,x,xs), App(c2,y,ys) when F.equal c1 c2 ->
        unif ~matching x y && Util.for_all2 (unif ~matching) xs ys
    | Cons c1, Cons c2 when F.equal c1 c2 -> true
    | Prop, Prop -> true
    | Arr(b1,s1,t1), Arr(b2,s2,t2) -> b1 == b2 && unif ~matching s1 s2 && unif ~matching t1 t2      
    | Arr(Variadic,_,t), _ -> unif ~matching t t2
    | _, Arr(Variadic,_,t) -> unif ~matching t1 t
    | UVar m, UVar n when matching -> assign m t2
    | UVar m, _ when not matching -> assign m t2
    | _, UVar m -> assign m t1
    | Cons c, _ when F.Map.mem c type_abbrevs ->
        let t1 = apply (fst @@ F.Map.find c type_abbrevs) [] in
        unif ~matching t1 t2
    | _, Cons c when F.Map.mem c type_abbrevs ->
        let t2 = apply (fst @@ F.Map.find c type_abbrevs) [] in
        unif ~matching t1 t2
    | App(c,x,xs), _ when F.Map.mem c type_abbrevs ->
        let t1 = apply (fst @@ F.Map.find c type_abbrevs) (x::xs) in
        unif ~matching t1 t2
    | _, App(c,x,xs) when F.Map.mem c type_abbrevs ->
        let t2 = apply (fst @@ F.Map.find c type_abbrevs) (x::xs) in
        unif ~matching t1 t2
    | _,_ -> false

  and unify x (y: TypeAssignment.t MutableOnce.t TypeAssignment.t_) = unif ~matching:false x y
  and try_matching ~pat:((_,x),vars) y =
    let vars = F.Map.bindings vars |> List.map snd |> List.map cell_of in
    let deref x = cell_of (TypeAssignment.deref x) in
    if unif ~matching:true x y then
      if disjoint (List.map deref vars) then true
      else (undo vars; false)
    else
      (undo vars; false)

  and cell_of = function
    | TypeAssignment.UVar x -> x
    | _ -> assert false

  and disjoint = function
      | [] -> true
      | x :: xs -> not (List.exists (fun y -> same_var y (TypeAssignment.UVar x)) xs) && disjoint xs

  and assign m t = same_var m t || (oc m t && ((*Format.eprintf "%a := %a\n" MutableOnce.(pp TypeAssignment.pp) m TypeAssignment.(pp_t_ MutableOnce.(pp TypeAssignment.pp)) t;*)TypeAssignment.set m t; true))

  and same_var m = function
    | UVar n when n == m -> true
    | UVar n when MutableOnce.is_set n -> same_var m (TypeAssignment.deref n)
    | _ -> false

  and oc m = function
    | Prop -> true
    | Arr(_,x,y) -> oc m x && oc m y
    | App(_,x,xs) -> List.for_all (oc m) (x::xs)
    | Any -> true
    | Cons _ -> true
    | UVar n when m == n -> false
    | UVar n when MutableOnce.is_set n -> oc m (TypeAssignment.deref n)
    | UVar _ -> true

  in
    (* this is wrong, since the same unit may be checked against different contexts *)
    (* if MutableOnce.is_set t.ty then !unknown_global else *)

    let spills = check_loc ~tyctx:None Scope.Map.empty t ~ety:(TypeAssignment.unval exp) in
    if is_rule then check_matches_poly_skema_loc ~unknown:!unknown_global t;
    if spills <> [] then error ~loc:t.loc "cannot spill in head";
    F.Map.iter (fun k (_,n,loc) ->
      if n = 1 && not @@ silence_linear_warn k then
        warn ~loc (Format.asprintf "%a is linear: name it _%a (discard) or %a_ (fresh variable)"
        F.pp k F.pp k F.pp k))
      !sigma;
    !unknown_global

let check1_undeclared w f (t, id, loc) =
  match TypeAssignment.is_monomorphic t with
  | None -> error ~loc Format.(asprintf "@[Unable to infer a closed type for %a:@ %a@]" F.pp f TypeAssignment.pretty (TypeAssignment.unval t))
  | Some ty ->
      if not @@ Re.Str.(string_match (regexp "^\\(.*aux[0-9']*\\|main\\)$") (F.show f) 0) then
        w := Format.((f, loc), asprintf "type %a %a." F.pp f TypeAssignment.pretty (TypeAssignment.unval t)) :: !w;
      TypeAssignment.Single (id, ty)

let check_undeclared ~unknown =
  let w = ref [] in
  let env = F.Map.mapi (check1_undeclared w) unknown in
  if !w <> [] then begin
    let undeclared, types = List.split !w in
    warn Format.(asprintf "@[<v>Undeclared globals:@ @[<v>%a@].@ Please add the following text to your program:@\n%a@]" (pplist (fun fmt (f,loc) -> Format.fprintf fmt "- %a %a" Loc.pp loc F.pp f) ", ") undeclared
     (pplist pp_print_string "") types);
  end;
  env

(* let check ~type_abbrevs a b c =
  try check ~type_abbrevs a b c with
  | CompileError(_,"Unknown global: %spill") -> Printf.eprintf "SPILLING"; exit 1
  | CompileError(_,s) when Re.Str.(string_match (regexp "Unknown global: @")) s 0 -> Printf.eprintf "MACRO"; exit 1
  | CompileError(loc,msg) -> Format.eprintf "Ignoring type error: %a %s\n" (Util.pp_option Loc.pp) loc msg; TypeAssignment.(Val Prop) *)
OCaml

Innovation. Community. Security.