package electrod

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file Solver.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
(*******************************************************************************
 * electrod - a model finder for relational first-order linear temporal logic
 * 
 * Copyright (C) 2016-2020 ONERA
 * Authors: Julien Brunel (ONERA), David Chemouil (ONERA)
 * 
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 * 
 * SPDX-License-Identifier: MPL-2.0
 * License-Filename: LICENSE.md
 ******************************************************************************)

open Containers

[@@@warning "-4"]

[@@@warning "-32"]

(* fragile patterns, lots of them as we short-circuit *)

module type ATOMIC_PROPOSITION = sig
  type t

  val make : Domain.t -> Name.t -> Tuple.t -> t

  val compare : t -> t -> int

  val compare_string : t -> t -> int

  val equal : t -> t -> bool

  val hash : t -> int

  (* None if non-enumerable; otw Some ar with ar >= 0  *)
  val domain_arity : t -> int option

  val is_const : t -> bool

  val is_partial : t -> bool

  val split_string : string -> (Name.t * Tuple.t) option

  val split : t -> (Name.t * Tuple.t) option

  val pp : Format.formatter -> t -> unit
end

module type LTL = sig
  module Atomic : ATOMIC_PROPOSITION

  type tcomp =
    | Lte
    | Lt
    | Gte
    | Gt
    | Eq
    | Neq

  type t = private
    | Comp of tcomp * term * term
    | True
    | False
    | Atomic of Atomic.t
    | Not of t
    | And of t * t
    | Or of t * t
    | Imp of t * t
    | Iff of t * t
    | Xor of t * t
    | Ite of t * t * t
    | X of t
    | F of t
    | G of t
    | Y of t
    | O of t
    | H of t
    | U of t * t
    | R of t * t
    | S of t * t
    | T of t * t

  and term = private
    | Num of int
    | Plus of term * term
    | Minus of term * term
    | Neg of term
    | Count of t list

  val true_ : t

  val false_ : t

  val atomic : Atomic.t -> t

  val not_ : t -> t

  val and_ : t -> t Lazy.t -> t

  val or_ : t -> t Lazy.t -> t

  val implies : t -> t Lazy.t -> t

  val xor : t -> t -> t

  val iff : t -> t -> t

  val conj : t list -> t

  val disj : t list -> t

  val wedge : range:'a Iter.t -> ('a -> t Lazy.t) -> t

  val vee : range:'a Iter.t -> ('a -> t Lazy.t) -> t

  val ifthenelse : t -> t -> t -> t

  val next : t -> t

  val always : t -> t

  val eventually : t -> t

  val yesterday : t -> t

  val once : t -> t

  val historically : t -> t

  val until : t -> t -> t

  val releases : t -> t -> t

  val since : t -> t -> t

  val triggered : t -> t -> t

  val num : int -> term

  val plus : term -> term -> term

  val minus : term -> term -> term

  val neg : term -> term

  val count : t list -> term

  val comp : tcomp -> term -> term -> t

  val lt : tcomp

  val lte : tcomp

  val gt : tcomp

  val gte : tcomp

  val eq : tcomp

  val neq : tcomp

  module Infix : sig
    (* precedence: from strongest to weakest *)
    (* 1 *)
    val ( !! ) : t -> t

    (* 2 *)
    val ( +|| ) : t -> t Lazy.t -> t

    val ( +&& ) : t -> t Lazy.t -> t

    (* 3 *)
    val ( @=> ) : t -> t Lazy.t -> t

    val ( @<=> ) : t -> t -> t
  end

  val pp : Format.formatter -> t -> unit

  val pp_gather_variables :
    ?next_is_X:bool -> Atomic.t Iter.t ref -> Format.formatter -> t -> unit
end

module LTL_from_Atomic (At : ATOMIC_PROPOSITION) : LTL with module Atomic = At =
struct
  module Atomic = At

  type tcomp =
    | Lte
    | Lt
    | Gte
    | Gt
    | Eq
    | Neq

  (* let hash_tcomp = function *)
  (*   | Lte -> 3 *)
  (*   | Lt -> 5 *)
  (*   | Gte -> 7 *)
  (*   | Gt -> 11 *)
  (*   | Eq -> 13 *)
  (*   | Neq -> 17 *)

  type t =
    | Comp of tcomp * term * term
    | True
    | False
    | Atomic of Atomic.t
    | Not of t
    | And of t * t
    | Or of t * t
    | Imp of t * t
    | Iff of t * t
    | Xor of t * t
    | Ite of t * t * t
    | X of t
    | F of t
    | G of t
    | Y of t
    | O of t
    | H of t
    | U of t * t
    | R of t * t
    | S of t * t
    | T of t * t

  and term =
    | Num of int
    | Plus of term * term
    | Minus of term * term
    | Neg of term
    | Count of t list

  let pp _ _ =
    (* default impl. for pp; to override later *)
    failwith "Solver.LTL_from_Atomic.pp not implemented (on purpose)"


  let pp_gather_variables ?(next_is_X = true) _ =
    let _ = next_is_X in
    pp


  (* default impl. for pp; to override later *)

  (* let equal_tcomp_node x y = match x, y with  *)
  (*   | Lte, Lte *)
  (*   | Lt, Lt *)
  (*   | Gte, Gte *)
  (*   | Gt, Gt *)
  (*   | Eq, Eq  *)
  (*   | Neq, Neq -> true *)
  (*   | _ -> false *)

  let lt = Lt

  let lte = Lte

  let gt = Gt

  let gte = Gte

  let eq = Eq

  let neq = Neq

  let atomic at = Atomic at

  let true_ = True

  let false_ = False

  let rec and_ p q =
    match (p, q) with
    | False, _ ->
        false_
    | True, (lazy q) ->
        q
    | Atomic at1, (lazy (Atomic at2)) when Atomic.equal at1 at2 ->
        p
    | _, (lazy q) ->
      (match q with False -> false_ | True -> p | _ -> And (p, q))


  and or_ p1 p2 =
    match (p1, p2) with
    | True, _ ->
        true_
    | False, (lazy p) ->
        p
    | Atomic at1, (lazy (Atomic at2)) when Atomic.equal at1 at2 ->
        p1
    | _, (lazy q) ->
      (match q with False -> p1 | True -> true_ | _ -> Or (p1, q))


  and not_ p =
    match p with
    | True ->
        false_
    | False ->
        true_
    (* | And (p, q) -> or_ (not_ p) (lazy (not_ q))
     * | Or (p, q) -> and_ (not_ p) (lazy (not_ q))
     * | Imp (p, q) -> and_ p (lazy (not_ q)) *)
    | Not q ->
        q
    | _ ->
        Not p


  and implies p q =
    match (p, q) with
    | False, _ ->
        true_
    | True, (lazy q2) ->
        q2
    | Atomic at1, (lazy (Atomic at2)) when Atomic.equal at1 at2 ->
        true_
    | _, (lazy q2) ->
      (match q2 with True -> true_ | False -> not_ p | _ -> Imp (p, q2))


  let xor p1 p2 = Xor (p1, p2)

  let iff p q =
    match (p, q) with
    | Atomic at1, Atomic at2 when Atomic.equal at1 at2 ->
        true_
    | False, False | True, True ->
        true_
    | False, True | True, False ->
        false_
    | _, _ ->
        Iff (p, q)


  let conj fmls = List.fold_left (fun a b -> and_ a (lazy b)) true_ fmls

  let disj fmls = List.fold_left (fun a b -> or_ a (lazy b)) false_ fmls

  let ifthenelse c t e =
    match c with True -> t | False -> e | _ -> Ite (c, t, e)


  let next p = X p

  let always p = G p

  let eventually p = F p

  let yesterday p = Y p

  let once p = O p

  let historically p = H p

  let until p1 p2 = U (p1, p2)

  let releases p1 p2 = R (p1, p2)

  let since p1 p2 = S (p1, p2)

  let triggered p1 p2 = T (p1, p2)

  let comp op t1 t2 =
    match (op, t1, t2) with
    | Eq, Num n, Num m when n = m ->
        true_
    | Lt, Num n, Num m when n < m ->
        true_
    | Lte, Num n, Num m when n <= m ->
        true_
    | Gt, Num n, Num m when n > m ->
        true_
    | Gte, Num n, Num m when n >= m ->
        true_
    | Neq, Num n, Num m when n <> m ->
        true_
    | (Lt | Lte | Gt | Gte | Neq), Num n, Num m when n = m ->
        false_
    | Eq, Num n, Num m when n <> m ->
        false_
    | _ ->
        Comp (op, t1, t2)


  (* OPTIMIZATIONS REMOVED *)
  (* let not_ p = Not p *)
  (* let and_ p (lazy q) = And (p, q) *)
  (* let or_ p (lazy q) = Or (p, q) *)
  (* let implies p (lazy q) = Imp (p, q) *)
  (* let iff p q = Iff (p, q) *)
  (* let plus t1 t2 = Plus (t1, t2) *)
  (* let minus t1 t2 = Minus (t1, t2) *)
  (* let neg t = Neg t *)
  (* let comp op t1 t2 = Comp (op, t1, t2) *)

  let num n = Num n

  let plus t1 t2 =
    match (t1, t2) with Num 0, _ -> t2 | _, Num 0 -> t1 | _ -> Plus (t1, t2)


  let minus t1 t2 = match t2 with Num 0 -> t1 | _ -> Minus (t1, t2)

  let neg t = match t with Neg _ -> t | _ -> Neg t

  let count ps =
    match List.filter (function False -> false | _ -> true) ps with
    | [] ->
        num 0
    | props ->
        Count props


  (* END term hashconsing *)

  let wedge ~range f =
    Iter.fold (fun fml tuple -> and_ fml @@ f tuple) true_ range


  let vee ~range f =
    Iter.fold (fun fml tuple -> or_ fml @@ f tuple) false_ range


  module Infix = struct
    (* precedence: from strongest to weakest *)
    (* 1 *)
    let ( !! ) x = not_ x

    (* 2 *)
    let ( +|| ) x y = or_ x y

    let ( +&& ) x y = and_ x y

    (* 3 *)
    let ( @=> ) x y = implies x y

    let ( @<=> ) x y = iff x y
  end
end

type script_type =
  | Default of string
  | File of string

module type MODEL = sig
  type ltl

  type atomic

  type t = private
    { elo : Elo.t
    ; init : (string * ltl) Iter.t
    ; invariant : (string * ltl) Iter.t
    ; trans : (string * ltl) Iter.t
    ; property : string * ltl
    }

  val make :
       elo:Elo.t
    -> init:(string * ltl) Iter.t
    -> invariant:(string * ltl) Iter.t
    -> trans:(string * ltl) Iter.t
    -> property:string * ltl
    -> t

  val analyze :
       conversion_time:Mtime.span
    -> cmd:string
    -> script:script_type
    -> keep_files:bool
    -> no_analysis:bool
    -> elo:Elo.t
    -> file:string
    -> bmc:int option
    -> pp_generated:bool
    -> t
    -> Outcome.t

  val pp : ?margin:int -> Format.formatter -> t -> unit
end
OCaml

Innovation. Community. Security.