Source file Exp_bounds.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
open Containers
module G = Elo
module TS = Tuple_set
type bounds =
{ must : TS.t
; sup : TS.t
; may : TS.t
}
let pp_subst out subst =
Fmtc.(brackets @@ list @@ parens @@ pair ~sep:comma int Tuple.pp)
out
(List.mapi (fun i tuple -> (i, tuple)) subst)
let rec alldiff (tuples : Tuple.t list) : bool =
match tuples with
| [] ->
true
| hd :: tl when List.mem ~eq:Tuple.equal hd tl ->
false
| _ :: tl ->
alldiff tl
let nproduct (n : int) (disj : bool) (set : Tuple.t list) : Tuple.t list list =
List.repeat n [ set ]
|> List.cartesian_product
|> if disj then List.filter alldiff else Fun.id
let sup_sim_binding fbounds_exp (subst : Tuple.t list) (disj, nbvars, range) :
Tuple.t list list =
let { sup; _ } = fbounds_exp (range, subst) in
let sup_as_list = TS.to_list sup in
nproduct nbvars disj sup_as_list
let rec sup_sim_bindings fbounds_exp (subst : Tuple.t list) sim_bindings :
Tuple.t list =
Msg.debug (fun m ->
m
"IN sup_sim_bindings %a %a"
pp_subst
subst
G.(pp_sim_bindings (List.length subst))
sim_bindings);
( match sim_bindings with
| [] ->
assert false
| [ sim_binding ] ->
sup_sim_binding fbounds_exp subst sim_binding
|> List.map Tuple.concat
| hd :: tl ->
let hd_sup = sup_sim_binding fbounds_exp subst hd in
List.fold_left
(fun acc line ->
acc @ product_for_one_hd_combination fbounds_exp subst tl line)
[]
hd_sup )
|> Fun.tap (fun res ->
Msg.debug (fun m ->
m
"OUT sup_sim_bindings %a %a = %a"
pp_subst
subst
G.(pp_sim_bindings (List.length subst))
sim_bindings
Fmtc.(braces @@ list ~sep:sp @@ Tuple.pp)
res))
and product_for_one_hd_combination
fbounds_exp
subst
(tl : (bool * int * G.exp) list)
(hd_combination : Tuple.t list) =
let tl_sup =
sup_sim_bindings fbounds_exp (List.rev hd_combination @ subst) tl
in
List.product Tuple.( @@@ ) [ Tuple.concat hd_combination ] tl_sup
let make_bounds_exp =
let return_bounds (exp, subst) must sup =
if not (TS.subset must sup)
then
Msg.err (fun m ->
m
"%s.bounds@ %a@ with@\n\
subst= %a@\n\
@\n\
must(%a)=@ %a@\n\
sup(%a)=@ %a@."
__MODULE__
(G.pp_exp @@ List.length subst)
exp
pp_subst
subst
(G.pp_exp @@ List.length subst)
exp
TS.pp
must
(G.pp_exp @@ List.length subst)
exp
TS.pp
sup);
{ must; sup; may = TS.diff sup must }
in
let eq x1 x2 = CCEqual.(pair physical (list Tuple.equal)) x1 x2 in
let hash x =
Hash.(pair (fun (G.Exp { hkey; _ }) -> hkey) (list Tuple.hash)) x
in
let cache = CCCache.unbounded ~eq ~hash 1793 in
fun domain ->
CCCache.with_cache_rec
cache
(fun
fbounds_exp
((G.Exp { node = { prim_exp = pe; _ }; _ }, subst) as args)
->
let open G in
match pe with
| Var v ->
( match List.get_at_idx v subst with
| None ->
Fmt.kstrf
failwith
"%s.bounds_prim_exp: no variable %d in substitution %a"
__MODULE__
v
pp_subst
subst
| Some tuple ->
let singleton = TS.singleton tuple in
return_bounds args singleton singleton )
| Name n ->
let rel = Domain.get_exn n domain in
return_bounds args (Relation.must rel) (Relation.sup rel)
| None_ ->
return_bounds args TS.empty TS.empty
| Univ ->
let univ = Domain.univ_atoms domain in
return_bounds args univ univ
| Iden ->
let iden = Domain.get_exn Name.iden domain in
return_bounds args (Relation.must iden) (Relation.sup iden)
| RUn (Transpose, e) ->
let b = fbounds_exp (e, subst) in
return_bounds args (TS.transpose b.must) (TS.transpose b.sup)
| RUn (TClos, e) ->
let b = fbounds_exp (e, subst) in
return_bounds
args
(TS.transitive_closure b.must)
(TS.transitive_closure b.sup)
|> Fun.tap (fun res ->
Msg.debug (fun m ->
m
"bounds_prim_exp(TClos):@\n\
must(%a) = %a@\n\
may(%a) = %a"
(G.pp_prim_exp @@ List.length subst)
pe
TS.pp
res.must
(G.pp_prim_exp @@ List.length subst)
pe
TS.pp
res.may))
| RUn (RTClos, e) ->
let iden = Domain.get_exn Name.iden domain in
let b = fbounds_exp (e, subst) in
return_bounds
args
(TS.union (TS.transitive_closure b.must) @@ Relation.must iden)
(TS.union (TS.transitive_closure b.sup) @@ Relation.sup iden)
|> Fun.tap (fun res ->
Msg.debug (fun m ->
m
"bounds_prim_exp(TClos):@\n\
must(%a) = %a@\n\
may(%a) = %a"
(G.pp_prim_exp @@ List.length subst)
pe
TS.pp
res.must
(G.pp_prim_exp @@ List.length subst)
pe
TS.pp
res.may))
| RBin (e1, Union, e2) ->
let b1 = fbounds_exp (e1, subst) in
let b2 = fbounds_exp (e2, subst) in
return_bounds
args
(TS.union b1.must b2.must)
(TS.union b1.sup b2.sup)
| RBin (e1, Inter, e2) ->
let b1 = fbounds_exp (e1, subst) in
let b2 = fbounds_exp (e2, subst) in
return_bounds
args
(TS.inter b1.must b2.must)
(TS.inter b1.sup b2.sup)
| RBin (e1, Over, e2) ->
let b1 = fbounds_exp (e1, subst) in
let b2 = fbounds_exp (e2, subst) in
return_bounds
args
(TS.override b1.must b2.must)
(TS.override b1.sup b2.sup)
| RBin (e1, LProj, e2) ->
let b1 = fbounds_exp (e1, subst) in
let b2 = fbounds_exp (e2, subst) in
return_bounds
args
(TS.lproj b1.must b2.must)
(TS.lproj b1.sup b2.sup)
| RBin (e1, RProj, e2) ->
let b1 = fbounds_exp (e1, subst) in
let b2 = fbounds_exp (e2, subst) in
return_bounds
args
(TS.rproj b1.must b2.must)
(TS.rproj b1.sup b2.sup)
| RBin (e1, Prod, e2) ->
let b1 = fbounds_exp (e1, subst) in
let b2 = fbounds_exp (e2, subst) in
return_bounds
args
(TS.product b1.must b2.must)
(TS.product b1.sup b2.sup)
| RBin (e1, Diff, e2) ->
let b1 = fbounds_exp (e1, subst) in
let b2 = fbounds_exp (e2, subst) in
let must_diff =
TS.filter (fun tup -> not (TS.mem tup b2.sup)) b1.must
in
return_bounds args must_diff (TS.diff b1.sup b2.must)
| RBin (e1, Join, e2) ->
let b1 = fbounds_exp (e1, subst) in
let b2 = fbounds_exp (e2, subst) in
return_bounds args (TS.join b1.must b2.must) (TS.join b1.sup b2.sup)
| RIte (_, e1, e2) ->
let b1 = fbounds_exp (e1, subst) in
let b2 = fbounds_exp (e2, subst) in
return_bounds
args
(TS.inter b1.must b2.must)
(TS.union b1.sup b2.sup)
| Prime e ->
fbounds_exp (e, subst)
| Compr (sim_bindings, _) ->
let sup_list = sup_sim_bindings fbounds_exp subst sim_bindings in
return_bounds args TS.empty (TS.of_tuples sup_list))