package electrod

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file Smv.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
(*******************************************************************************
 * electrod - a model finder for relational first-order linear temporal logic
 * 
 * Copyright (C) 2016-2020 ONERA
 * Authors: Julien Brunel (ONERA), David Chemouil (ONERA)
 * 
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 * 
 * SPDX-License-Identifier: MPL-2.0
 * License-Filename: LICENSE.md
 ******************************************************************************)

open Containers

(* automatically generated by Dune *)
let nuXmv_default_script = Scripts.nuXmv_default_script

let nuSMV_default_script = Scripts.nuSMV_default_script

let nuXmv_default_bmc_script = Scripts.nuXmv_default_bmc_script

let nuSMV_default_bmc_script = Scripts.nuSMV_default_bmc_script

module Make_SMV_LTL (At : Solver.ATOMIC_PROPOSITION) :
  Solver.LTL with module Atomic = At = struct
  module I = Solver.LTL_from_Atomic (At)
  include I

  module PP = struct
    open Fmtc

    let rainbow =
      let r = ref 0 in
      fun () ->
        let cur = !r in
        incr r;
        match cur with
        | 0 ->
            `Magenta
        | 1 ->
            `Yellow
        | 2 ->
            `Cyan
        | 3 ->
            `Green
        | 4 ->
            `Red
        | 5 ->
            r := 0;
            `Blue
        | _ ->
            assert false


    (* [upper] is the precedence of the context we're in, [this] is the priority
       for printing to do, [pr] is the function to make the printing of the
       expression *)
    let rainbow_paren ?(paren = false) ?(align_par = true) upper this out pr =
      (* parenthesize if specified so or if  forced by the current context*)
      let par = paren || this < upper in
      (* if parentheses are specified, they'll be numerous so avoid alignment of
         closing parentheses *)
      (* let align_par = not paren && align_par in *)
      if par
      then (
        (* add parentheses *)
        let color = rainbow () in
        if align_par then Format.pp_open_box out 0 else Format.pp_open_box out 2;
        styled color string out "(";
        if align_par then Format.pp_open_box out 2;
        (* we're adding parentheses so precedence goes back to 0 inside of
           them *)
        pr 0;
        if align_par
        then (
          Format.pp_close_box out ();
          cut out () );
        styled color string out ")";
        Format.pp_close_box out () )
      else (* no paremtheses *)
           (* so keep [this] precedence *)
        pr this


    let infixl
        ?(paren = false)
        ?(align_par = true)
        upper
        this
        middle
        left
        right
        out
        (m, l, r) =
      rainbow_paren ~paren ~align_par upper this out
      @@ fun new_this ->
      (* new_this is this or 0 if parentheses were added *)
      left new_this out l;
      sp out ();
      styled `Bold middle out m;
      sp out ();
      right (new_this + 1) out r


    (* left associativity => increment the precedence *)

    let infixr
        ?(paren = false)
        ?(align_par = true)
        upper
        this
        middle
        left
        right
        out
        (m, l, r) =
      rainbow_paren ~paren ~align_par upper this out
      @@ fun new_this ->
      left (new_this + 1) out l;
      sp out ();
      styled `Bold middle out m;
      sp out ();
      right new_this out r


    let infixn
        ?(paren = false)
        ?(align_par = true)
        upper
        this
        middle
        left
        right
        out
        (m, l, r) =
      rainbow_paren ~paren ~align_par upper this out
      @@ fun new_this ->
      left (new_this + 1) out l;
      sp out ();
      styled `Bold middle out m;
      sp out ();
      right (new_this + 1) out r


    let prefix
        ?(paren = false)
        ?(align_par = true)
        upper
        this
        pprefix
        pbody
        out
        (prefix, body) =
      rainbow_paren ~paren ~align_par upper this out
      @@ fun new_this ->
      styled `Bold pprefix out prefix;
      pbody (new_this + 1) out body


    let pp_atomic = At.pp

    let pp_tcomp out (t : tcomp) =
      pf out "%s"
      @@
      match t with
      | Lte ->
          "<="
      | Lt ->
          "<"
      | Gte ->
          ">="
      | Gt ->
          ">"
      | Eq ->
          "="
      | Neq ->
          "!="


    (* From NuXmv documentation, from high to low (excerpt, some precedences are ignored because they are not used)

       !

       - (unary minus)

       + -

       = != < > <= >=

       &

       | xor xnor

       (... ? ... : ...)

       <->

       -> (the only right associative op)


       NOTE: precedences for LTL connectives are not specified, hence we force parenthesising of these.
    *)

    let pp ?(next_is_X = true) variables upper out f =
      let rec pp upper out f =
        assert (upper >= 0);
        match f with
        | True ->
            pf out "TRUE"
        | False ->
            pf out "FALSE"
        | Atomic at ->
            variables := Iter.cons at !variables;
            pf out "%a" pp_atomic at
        (* tweaks, here, to force parenthese around immediate subformulas of Imp
             and Iff as their precedence may not be easily remembered*)
        | Imp (p, q) ->
            infixr ~paren:true upper 1 string pp pp out ("->", p, q)
        | Iff (p, q) ->
            infixl ~paren:true upper 2 string pp pp out ("<->", p, q)
        | Ite (c, t, e) ->
            (* SMV's ...?...:... or case...esac expression cannot be
                 used as nuXmv does not accept these when subexpressions
                 are temporal (seen invarious tests). So we rewrite the formula into more basic terms. *)
            pp upper out
            @@ I.Infix.((c @=> lazy t) +&& lazy (I.not_ c @=> lazy e))
        | Or (p, q) ->
            infixl ~paren:true upper 4 string pp pp out ("|", p, q)
        (* force parenthses as we're not used to see the Xor connective and so its precedence may be unclear *)
        | Xor (p, q) ->
            infixl ~paren:true upper 4 string pp pp out ("xor", p, q)
        | And (p, q) ->
            infixl ~paren:true upper 5 string pp pp out ("&", p, q)
        | Comp (op, t1, t2) ->
            infixn upper 6 pp_tcomp pp_term pp_term out (op, t1, t2)
        | Not p ->
            prefix upper 9 string pp out ("!", p)
        (* no known precedence for temporal operators so we force parentheses and
             use as the "this" precedence that of the upper context*)
        | U (p, q) ->
            infixl ~paren:true upper upper string pp pp out ("U", p, q)
        | R (p, q) ->
            infixl ~paren:true upper upper string pp pp out ("V", p, q)
        | S (p, q) ->
            infixl ~paren:true upper upper string pp pp out ("S", p, q)
        | T (p, q) ->
            infixl ~paren:true upper upper string pp pp out ("T", p, q)
        | X p when next_is_X ->
            prefix ~paren:true upper upper string pp out ("X ", p)
        | X p ->
            (* next_is _X= false *)
            styled `Bold string out "next";
            pf out "@[(%a@])" (pp 0) p
        | F p ->
            prefix ~paren:true upper upper string pp out ("F ", p)
        | G p ->
            prefix ~paren:true upper upper string pp out ("G ", p)
        | Y p ->
            prefix ~paren:true upper upper string pp out ("Y ", p)
        | O p ->
            prefix ~paren:true upper upper string pp out ("O ", p)
        | H p ->
            prefix ~paren:true upper upper string pp out ("H ", p)
      and pp_term upper out (t : term) =
        match t with
        | Num n ->
            pf out "%d" n
        | Plus (t1, t2) ->
            infixl ~paren:true upper 7 string pp_term pp_term out ("+", t1, t2)
        | Minus (t1, t2) ->
            infixl ~paren:true upper 7 string pp_term pp_term out ("-", t1, t2)
        | Neg t ->
            prefix upper 8 string pp_term out ("- ", t)
        | Count ts ->
            styled `Bold string out "count";
            pf out "@[(%a@])" (list ~sep:(const string ", ") (pp 0)) ts
      in
      pp upper out f
  end

  let pp_gather_variables ?(next_is_X = true) variables out f =
    Fmtc.pf out "@[<hov2>%a@]" (PP.pp ~next_is_X variables 0) f


  let pp out f = pp_gather_variables (ref Iter.empty) out f

  (* let () =  *)
  (*   begin *)
  (*     let p = atomic @@ make_atomic (Name.name "P") (Tuple.of_list1 [Atom.atom "p"]) in *)
  (*     let q = atomic @@ make_atomic (Name.name "Q") (Tuple.of_list1 [Atom.atom "q"]) in *)
  (*     let r = atomic @@ make_atomic (Name.name "R") (Tuple.of_list1 [Atom.atom "r"]) in *)
  (*     let s = atomic @@ make_atomic (Name.name "S") (Tuple.of_list1 [Atom.atom "s"]) in *)
  (*     let f1 = and_ (and_ p @@ lazy q) (lazy r) in *)
  (*     let f2 = implies (and_ p @@ lazy q) (lazy r) in *)
  (*     let f3 = implies r (lazy (and_ p @@ lazy q)) in *)
  (*     let f4 = implies (and_ p @@ lazy q) (lazy (and_ r (lazy s))) in *)
  (*     let f5 = and_ (implies p @@ lazy q) (lazy (implies r @@ lazy s)) in *)
  (*     let f6 = implies p (lazy (and_ (implies q @@ lazy r) (lazy (implies r @@ lazy s)))) in *)
  (*     let f7 = implies p (lazy (and_ (implies (and_ q (lazy p)) @@ lazy r) (lazy (implies r @@ lazy s)))) in *)
  (*     Fmt.epr "TEST PP@\n"; *)
  (*     Fmt.epr "and_ (and_ p @@ lazy q) (lazy r) -->@  %a@\n" pp f1; *)
  (*     Fmt.epr "implies (and_ p @@ lazy q) (lazy r) -->@  %a@\n" pp f2; *)
  (*     Fmt.epr "implies r (lazy (and_ p @@ lazy q)) -->@  %a@\n" pp f3; *)
  (*     Fmt.epr "implies (and_ p @@ lazy q) (lazy (and_ r (lazy s))) -->@  %a@\n" pp f4; *)
  (*     Fmt.epr "and_ (implies_ p @@ lazy q) (implies_ r @@ lazy s) -->@  %a@\n" pp f5; *)
  (*     Fmt.epr "implies p (lazy (and_ (implies q @@ lazy r) (lazy (implies r @@ lazy s)))) -->@  %a@\n" pp f6; *)
  (*     Fmt.epr "implies p (lazy (and_ (implies (and_ q (lazy p)) @@ lazy r) (lazy (implies r @@ lazy s)))) -->@  %a@\n" pp f7; *)

  (*     flush_all () *)
  (*   end *)
end

module Make_SMV_file_format (Ltl : Solver.LTL) :
  Solver.MODEL with type ltl = Ltl.t and type atomic = Ltl.Atomic.t = struct
  type ltl = Ltl.t

  type atomic = Ltl.Atomic.t

  type t =
    { elo : Elo.t
    ; init : (string * ltl) Iter.t
    ; invariant : (string * ltl) Iter.t
    ; trans : (string * ltl) Iter.t
    ; property : string * ltl
    }

  let make ~elo ~init ~invariant ~trans ~property =
    { elo; init; invariant; trans; property }


  let pp_plain_decl vartype out atomic =
    Fmtc.pf out "%s %a : boolean;" vartype Ltl.Atomic.pp atomic


  (* for an enumerated declaration, all the may corresponding to the name must
     be created, even if some cases were cancelled out when printing
     formulas. Indeed, the enumeration also represents a typing invariant which
     would have been a formula too, one that would have spoken about all the
     part. Besides, for 'lone' relations a special value representing the
     absence must be added. *)
  let pp_enum_decl elo vartype out atoms =
    let module S = Iter in
    let tuple_to_string tuple =
      Fmtc.(strf "%a" @@ list ~sep:minus Atom.pp) (Tuple.to_list tuple)
    in
    let atom_name at = Option.get_exn @@ Ltl.Atomic.split at in
    let pp_one_decl atom =
      let name, _ = atom_name atom in
      let name_str = Name.to_string name in
      (* To avoid changin the generation of LTL formulas, we generate DEFINEs of
         the form `DEFINE x_a1_b1 := x_a1 = b1` (for x of domain arity 1) *)
      let may = Domain.may name elo.Elo.domain |> Tuple_set.to_iter in
      (* where to split tuples (if necessary)? *)
      let dom_ar = Ltl.Atomic.domain_arity atom in
      match dom_ar with
      | None ->
          assert false
      | Some n when n < 0 ->
          assert false
      | Some 0 ->
          (* an enumerated set *)
          let may_strings = S.map tuple_to_string may in
          (* add a value for none? *)
          let may_strings_with_empty =
            if Ltl.Atomic.is_partial atom
            then
              (* add __NONE__ at the end (better for SMV boolean encoding) *)
              S.snoc may_strings "__NONE__"
            else may_strings
          in
          S.iter
            (fun tuple_str ->
              Fmtc.(
                pf
                  out
                  "DEFINE %s-%s := __%s = %s;@\n"
                  name_str
                  tuple_str
                  name_str
                  tuple_str))
            may_strings;
          Fmtc.(
            pf
              out
              "%s __%s : %a;@\n"
              vartype
              name_str
              (braces_ @@ S.pp_seq string)
              may_strings_with_empty)
      | Some n ->
          (* a partial or total function with domain arity n > 0 *)
          (* first we split all tuples depending on the arity, and regroup
               them in lists of pairs (dom, range) with the same dom *)
          let domains_ranges =
            may
            |> S.map (fun tuple ->
                   Pair.map_same tuple_to_string @@ Tuple.split tuple n)
            |> S.group_by
                 ~hash:(fun (dom, _) -> Hash.string dom)
                 ~eq:(fun (dom1, _) (dom2, _) -> String.equal dom1 dom2)
          in
          (* Msg.debug (fun m ->
           *       m "domains_Ranges = @[<v>%a@]"
           *         Fmtc.(brackets_ @@ S.pp_seq
           *               @@ brackets @@ list ~sep:comma
           *               @@ pair string string) domains_ranges
           *     ); *)
          (* print the DEFINEs *)
          S.iter
            (fun pairs ->
              List.iter
                (fun (dom_str, range_str) ->
                  Fmtc.(
                    pf
                      out
                      "DEFINE %s-%s-%s := __%s-%s = %s;@\n"
                      name_str
                      dom_str
                      range_str
                      name_str
                      dom_str
                      range_str))
                pairs)
            domains_ranges;
          (* now print the vars: we walk along the lists of pairs (dom,
               range) (where every dom is the same) and we use the range to create
               `VAR x_dom : { ... range ...}` *)
          S.iter
            (fun pairs ->
              let dom_str = fst @@ List.hd pairs in
              Fmtc.(
                pf
                  out
                  "%s __%s-%s : %a;@\n"
                  vartype
                  name_str
                  dom_str
                  (braces_ @@ box @@ list ~sep:(sp **> comma) string)
                  ( if Ltl.Atomic.is_partial atom
                  then List.rev ("__NONE__" :: List.rev_map snd pairs)
                  else List.map snd pairs )))
            domains_ranges
    in
    atoms
    |> S.sort_uniq (* keep only atoms with different relation names *)
         ~cmp:(fun at1 at2 ->
           Name.compare (fst @@ atom_name at1) (fst @@ atom_name at2))
    |> S.iter (fun at ->
           Fmtc.hardline out ();
           pp_one_decl at)


  let pp_count_variables
      ?(margin = 80) out { elo; init; invariant; trans; property } =
    let open Fmtc in
    let module S = Iter in
    (* to gather the variables along printing in the buffer *)
    let variables = ref S.empty in
    let old_margin = Format.pp_get_margin out () in
    Format.pp_set_margin out margin;
    pf
      out
      "-- Generated by electrod (C) ONERA 2016-2020@\n\
       MODULE main@\n\
       JUSTICE TRUE;@\n\
       @\n";
    (* INIT *)
    Format.pp_open_vbox out 0;
    S.iter
      (fun (elo_str, fml) ->
        pf
          out
          "%s@\nINIT@\n@[<hv2>%a@];@\n@\n"
          elo_str
          (Ltl.pp_gather_variables variables)
          fml)
      init;
    Format.pp_close_box out ();
    (* INVAR *)
    Format.pp_open_vbox out 0;
    S.iter
      (fun (elo_str, fml) ->
        pf
          out
          "%s@\nINVAR@\n@[<hv2>%a@];@\n@\n"
          elo_str
          (Ltl.pp_gather_variables variables)
          fml)
      invariant;
    Format.pp_close_box out ();
    (* TRANS *)
    Format.pp_open_vbox out 0;
    S.iter
      (fun (elo_str, fml) ->
        pf
          out
          "%s@\nTRANS@\n@[<hv2>%a@];@\n@\n"
          elo_str
          (Ltl.pp_gather_variables ~next_is_X:false variables)
          fml)
      trans;
    Format.pp_close_box out ();
    (* SPEC *)
    Format.pp_open_vbox out 0;
    let prop_str, ltlspec = property in
    pf
      out
      "%s@\nLTLSPEC@\n@[<hv2>%a@];@\n@\n"
      prop_str
      (Ltl.pp_gather_variables variables)
      ltlspec;
    Format.pp_close_box out ();
    (* HANDLING VARIABLES *)
    (* sorting before filtering (even when sorting after again) is more
       efficient on a few tests *)
    let sort_atomics atoms = S.sort_uniq ~cmp:Ltl.Atomic.compare atoms in
    variables := sort_atomics !variables;
    (* filter variables on frozen/var and plain/enum *)
    let r_plain, r_enum, f_plain, f_enum =
      S.fold
        (fun (acc_rp, acc_re, acc_fp, acc_fe) at ->
          if Ltl.Atomic.is_const at
          then
            (* rigid *)
            if Option.is_none @@ Ltl.Atomic.domain_arity at
            then (* plain *)
              (S.cons at acc_rp, acc_re, acc_fp, acc_fe)
            else (* enumerable *)
              (acc_rp, S.cons at acc_re, acc_fp, acc_fe)
          else if (* flexible *)
                  Option.is_none @@ Ltl.Atomic.domain_arity at
          then (* plain *)
            (acc_rp, acc_re, S.cons at acc_fp, acc_fe)
          else (* enumerable *)
            (acc_rp, acc_re, acc_fp, S.cons at acc_fe))
        (S.empty, S.empty, S.empty, S.empty)
        !variables
      |> fun (res_rp, res_re, res_fp, res_fe) ->
      (sort_atomics res_rp, res_re, sort_atomics res_fp, res_fe)
    in
    (* FROZENVAR / PLAIN *)
    S.iter (fun at -> pf out "%a@\n" (pp_plain_decl "FROZENVAR") at) r_plain;
    (* FROZENVAR / ENUM *)
    pp_enum_decl elo "FROZENVAR" out r_enum;
    (* VAR / PLAIN *)
    if not (S.is_empty r_plain || S.is_empty f_plain) then hardline out ();
    S.iter (fun at -> pf out "%a@\n" (pp_plain_decl "VAR") at) f_plain;
    (* VAR / ENUM *)
    pp_enum_decl elo "VAR" out f_enum;
    (* close printing *)
    Format.pp_print_flush out ();
    Format.pp_set_margin out old_margin;
    (* return the number of variables *)
    S.length !variables


  let pp ?(margin = 80) out { elo; init; invariant; trans; property } =
    ignore
      (pp_count_variables ~margin out { elo; init; invariant; trans; property })


  (* write in temp file *)
  let make_model_file dir infile model =
    let src_file = Filename.basename infile in
    let tgt = Filename.temp_file ~temp_dir:dir (src_file ^ "-") ".smv" in
    let nbvars = ref 0 in
    IO.with_out tgt (fun out ->
        nbvars := pp_count_variables (Format.formatter_of_out_channel out) model);
    (tgt, !nbvars)


  let make_script_file bmc dir script =
    let tgt = Filename.temp_file ~temp_dir:dir "electrod-" ".scr" in
    let first_line =
      match bmc with
      | None ->
          ""
      | Some length ->
          "set bmc_length " ^ string_of_int length ^ "; "
    in
    ( match script with
    | Solver.File filename ->
        (* script given on the command line *)
        (* prepend first line then append given script *)
        IO.with_out tgt (fun out ->
            IO.write_line out first_line;
            IO.with_in filename (fun inp ->
                let chunks = IO.read_chunks_gen inp in
                IO.write_gen out chunks))
    | Solver.Default default ->
        IO.with_out tgt (fun out -> IO.write_line out (first_line ^ default)) );
    tgt


  let analyze
      ~conversion_time
      ~cmd
      ~script
      ~keep_files
      ~no_analysis
      ~elo
      ~file
      ~bmc
      model : Outcome.t =
    let keep_or_remove_files scr smv =
      if keep_files
      then
        if no_analysis
        then
          Logs.app (fun m ->
              m "@[<hv2>Keeping the script and SMV files at:@ %s@\n%s@]" scr smv)
        else Logs.app (fun m -> m "@[<hv2>Keeping the script and SMV files@]")
      else (
        Logs.info (fun m -> m "@[<hv2>Removing files:@ %s@\n%s@]" scr smv);
        ( match script with
        | Solver.Default _ ->
            IO.File.remove_noerr scr
        | Solver.File _ ->
            () );
        IO.File.remove_noerr smv )
    in
    (* TODO check whether nuXmv is installed first *)
    let dir = Filename.dirname file in
    let scr = make_script_file bmc dir script in
    let before_generation = Mtime_clock.now () in
    let smv, nbvars = make_model_file dir file model in
    let after_generation = Mtime_clock.now () in
    Msg.info (fun m ->
        let size, unit_ =
          let s = float_of_int @@ Unix.((stat smv).st_size) in
          if Float.(s < 1_024.)
          then (s, "B")
          else if Float.(s < 1_048_576.)
          then (s /. 1_024., "KB")
          else if Float.(s < 1_073_741_824.)
          then (s /. 1_048_576., "MB")
          else (s /. 1_073_741_824., "GB")
        in
        m
          "SMV file (size: %.0f%s) generated in %a"
          (Float.round size)
          unit_
          Mtime.Span.pp
          (Mtime.span before_generation after_generation));
    if no_analysis
    then (
      keep_or_remove_files scr smv;
      Outcome.no_trace nbvars conversion_time Mtime.Span.zero )
    else
      (* Inspired by nunchaku-inria/logitest/src/Misc.ml (BSD licence). *)
      let sigterm_handler =
        Sys.Signal_handle
          (fun _ ->
            print_endline "Received termination signal!";
            keep_or_remove_files scr smv;
            print_endline "Exiting";
            Unix.kill 0 Sys.sigterm;
            (* kill children *)
            exit 1)
      in
      let previous_handler = Sys.signal Sys.sigterm sigterm_handler in
      (* TODO make things s.t. it's possible to set a time-out *)
      let to_call = Fmt.strf "%s -source %s %s" cmd scr smv in
      Logs.info (fun m -> m "Starting analysis:@[<h2>@ %s@]" to_call);
      let before_run = Mtime_clock.now () in
      let okout, errout, errcode = CCUnix.call "%s" to_call in
      let after_run = Mtime_clock.now () in
      (* go back to default behavior *)
      Sys.set_signal Sys.sigterm previous_handler;
      let analysis_time = Mtime.span before_run after_run in
      if errcode <> 0
      then Msg.Fatal.solver_failed (fun args -> args cmd scr smv errcode errout)
      else
        (* running nuXmv goes well: parse its output *)
        Msg.info (fun m -> m "Analysis done in %a" Mtime.Span.pp analysis_time);
      (* check for the "UNSAT" problems when relying on UMC or BMC  *)
      let validity_check line =
        match bmc with
        | None ->
            String.suffix ~suf:"is true" line
        | Some length ->
            let valid_bmc_string =
              "-- no counterexample found with bound " ^ string_of_int length
            in
            String.equal valid_bmc_string line
      in
      let spec =
        String.lines_gen okout
        |> Gen.drop_while (fun line ->
               (not @@ String.suffix ~suf:"is false" line)
               && (not @@ validity_check line))
      in
      keep_or_remove_files scr smv;
      let spec_s =
        match Gen.get spec with
        | None ->
            failwith
              ( "Incorrectly handled SMV string:"
              ^ Fmt.to_to_string (Gen.pp String.pp) spec )
        | Some s ->
            s
      in
      if validity_check spec_s
      then Outcome.no_trace nbvars conversion_time analysis_time
      else
        (* nuXmv says there is a counterexample so we parse it on the standard
           output *)
        (* first create a trace parser (it is parameterized by [base] below
           which tells the parser the "must" associated to every relation in the
           domain, even the ones not present in the SMV file because they have
           been simplified away in the translation. This goes this way because
           the trace to return should reference all relations, not just the ones
           grounded in the SMV file.). NOTE: the parser expects a nuXmv trace
           using the "trace plugin" number 1 (classical output (i.e. no XML, no
           table) with information on all variables, not just the ones that have
           changed w.r.t. the previous state.). *)
        let module P =
          Smv_trace_parser.Make (struct
            let base = Domain.musts ~with_univ_and_ident:false elo.Elo.domain
          end)
        in
        let trace =
          spec
          (* With this trace output, nuXmv shows a few uninteresting lines first,
             that we have to gloss over *)
          |> Gen.drop_while (fun line -> not @@ String.prefix ~pre:"Trace" line)
          |> Gen.drop_while (String.prefix ~pre:"Trace")
          |> String.unlines_gen
          (* |> Fun.tap print_endline *)
          |> fun trace_str ->
          let lexbuf = Lexing.from_string trace_str in
          P.trace (Smv_trace_scanner.main Ltl.Atomic.split_string) lexbuf
        in
        if not @@ Outcome.loop_is_present trace
        then
          Msg.Fatal.solver_bug (fun args ->
              args cmd "trace is missing a loop state.")
        else
          let atom_back_renaming =
            List.map (fun (x, y) -> (y, x)) elo.atom_renaming
          in
          let name_back_renaming =
            List.map (fun (x, y) -> (y, x)) elo.name_renaming
          in
          Outcome.trace
            (atom_back_renaming, name_back_renaming)
            nbvars
            conversion_time
            analysis_time
            trace
end
OCaml

Innovation. Community. Security.