package electrod

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file Ast_to_elo.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
(*******************************************************************************
 * electrod - a model finder for relational first-order linear temporal logic
 * 
 * Copyright (C) 2016-2020 ONERA
 * Authors: Julien Brunel (ONERA), David Chemouil (ONERA)
 * 
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 * 
 * SPDX-License-Identifier: MPL-2.0
 * License-Filename: LICENSE.md
 ******************************************************************************)

open Containers

(* This module is supposed to happen after a simplification that addresses: 
   let bindings, *multiple* sim_bindings, quantified expressions, no lone/one quantifier; the input is also supposed to be arity-correct *)

module E = Elo

let convert_arity = function
  | None ->
      0
  | Some n when n > 0 ->
      n
  | Some _ ->
      assert false


(* The "convert_xxx" functions handle conversion from an AST with globally-unique variable names to a hashconsed-De Bruijn-encoded representation. Essentially, we keep a stack of bounded variables (in the current call context) and, if we meet a variable reference, we return its index in the stack. So a variable equal to 0 represents a variable bound by the last binder met.  *)

let get_var x stack =
  match List.find_idx (fun v -> Var.equal x v) stack with
  | None ->
      Format.kasprintf
        failwith
        "%s.get_var: variable %a not found in %a"
        __MODULE__
        Var.pp
        x
        Fmtc.(brackets @@ list ~sep:(sp **> comma) @@ Var.pp)
        stack
  | Some (i, _) ->
      i


let new_env vars stack =
  Msg.debug (fun m ->
      m
        "Ast_to_elo.new_env: stacking %a onto %a"
        Fmt.(brackets @@ list ~sep:comma Ast.pp_var)
        (List.rev vars)
        Fmt.(brackets @@ list ~sep:comma Var.pp)
        stack);
  List.rev_map (function Ast.BVar v -> v) vars @ stack


let rec convert_fml stack ({ prim_fml; _ } : (Ast.var, Ast.ident) Gen_goal.fml)
    =
  match prim_fml with
  | Qual (_, _) ->
      assert false (* simplified *)
  | Let (_, _) ->
      assert false (* simplified *)
  | Quant (_, _ :: _ :: _, _) ->
      assert false (* simplified *)
  | Quant (_, [], _) ->
      assert false (* impossible *)
  | Quant (q, [ (disj, vars, range) ], block) ->
      let range' = convert_exp stack range in
      let block' = convert_block (new_env vars stack) block in
      E.quant (convert_quant q) (disj, List.length vars, range') block'
  | True ->
      E.true_
  | False ->
      E.false_
  | RComp (e1, comp, e2) ->
      E.rcomp
        (convert_exp stack e1)
        (convert_comp_op comp)
        (convert_exp stack e2)
  | IComp (e1, comp, e2) ->
      E.icomp
        (convert_iexp stack e1)
        (convert_icomp_op comp)
        (convert_iexp stack e2)
  | LUn (op, f) ->
      E.lunary (convert_lunop op) (convert_fml stack f)
  | LBin (f1, op, f2) ->
      E.lbinary
        (convert_fml stack f1)
        (convert_lbinop op)
        (convert_fml stack f2)
  | FIte (c, t, e) ->
      E.fite (convert_fml stack c) (convert_fml stack t) (convert_fml stack e)
  | Block fmls ->
      E.block @@ convert_block stack fmls


and convert_block stack fmls = List.map (convert_fml stack) fmls

and convert_quant (q : Gen_goal.quant) =
  match q with
  | One | Lone ->
      assert false (* simplified *)
  | All ->
      E.all
  | Some_ ->
      E.some
  | No ->
      E.no_


and convert_comp_op (comp : Gen_goal.comp_op) =
  match comp with
  | In ->
      E.in_
  | NotIn ->
      E.not_in
  | REq ->
      E.req
  | RNEq ->
      E.rneq


and convert_icomp_op (comp : Gen_goal.icomp_op) =
  match comp with
  | IEq ->
      E.ieq
  | INEq ->
      E.ineq
  | Lt ->
      E.lt
  | Lte ->
      E.lte
  | Gt ->
      E.gt
  | Gte ->
      E.gte


and convert_lunop (op : Gen_goal.lunop) =
  match op with
  | F ->
      E.eventually
  | G ->
      E.always
  | Not ->
      E.not_
  | O ->
      E.once
  | X ->
      E.next
  | H ->
      E.historically
  | P ->
      E.previous


and convert_lbinop (op : Gen_goal.lbinop) =
  match op with
  | And ->
      E.and_
  | Or ->
      E.or_
  | Imp ->
      E.impl
  | Iff ->
      E.iff
  | U ->
      E.until
  | R ->
      E.releases
  | S ->
      E.since
  | T ->
      E.triggered


and convert_exp
    stack ({ prim_exp; arity; _ } : (Ast.var, Ast.ident) Gen_goal.exp) =
  let ar = convert_arity arity in
  match prim_exp with
  | BoxJoin (_, _) ->
      assert false (* simplified *)
  | Compr ([], _) ->
      assert false (* impossible *)
  | None_ ->
      E.none
  | Univ ->
      E.univ
  | Iden ->
      E.iden
  | Ident (Var v) ->
      E.var ~ar @@ get_var v stack
  | Ident (Name n) ->
      E.name ~ar n
  | RUn (op, e) ->
      E.runary ~ar (convert_runop op) (convert_exp stack e)
  | RBin (e1, op, e2) ->
      E.rbinary
        ~ar
        (convert_exp stack e1)
        (convert_rbinop op)
        (convert_exp stack e2)
  | RIte (c, t, e) ->
      E.rite
        ~ar
        (convert_fml stack c)
        (convert_exp stack t)
        (convert_exp stack e)
  | Prime e ->
      E.prime ~ar @@ convert_exp stack e
  | Compr (decls, block) ->
      let decls' = convert_sim_bindings stack decls in
      let vars = List.flat_map (fun (_, vars, _) -> vars) decls in
      let block' = convert_block (new_env vars stack) block in
      E.compr ~ar decls' block'
      |> Fun.tap (fun e ->
             Msg.debug (fun m ->
                 m
                   "Ast_to_elo.convert_Compr@ @[<hov2>%a@]@ --> @[<hov2>%a@]"
                   Ast.pp_prim_exp
                   prim_exp
                   (E.pp_exp 0)
                   e))


and convert_sim_bindings
    stack (decls : (Ast.var, Ast.ident) Gen_goal.sim_binding list) =
  match decls with
  | [] ->
      []
  | (disj, vars, range) :: tl ->
      let hd' = (disj, List.length vars, convert_exp stack range) in
      hd' :: convert_sim_bindings (new_env vars stack) tl


and convert_runop (op : Gen_goal.runop) =
  match op with
  | Transpose ->
      E.transpose
  | TClos ->
      E.tclos
  | RTClos ->
      E.rtclos


and convert_rbinop (op : Gen_goal.rbinop) =
  match op with
  | Union ->
      E.union
  | Inter ->
      E.inter
  | Over ->
      E.over
  | LProj ->
      E.lproj
  | RProj ->
      E.rproj
  | Prod ->
      E.prod
  | Diff ->
      E.diff
  | Join ->
      E.join


and convert_iexp stack ({ prim_iexp; _ } : (Ast.var, Ast.ident) Gen_goal.iexp) =
  match prim_iexp with
  | Num n ->
      E.num n
  | Card e ->
      E.card @@ convert_exp stack e
  | IUn (Neg, e) ->
      E.iunary E.neg @@ convert_iexp stack e
  | IBin (e1, op, e2) ->
      E.ibinary
        (convert_iexp stack e1)
        (convert_ibinop op)
        (convert_iexp stack e2)


and convert_ibinop (op : Gen_goal.ibinop) =
  match op with Add -> E.add | Sub -> E.sub


let convert_goal (Gen_goal.Run (fmls, expec)) =
  E.run (convert_block [] fmls) expec


let convert (ast : Ast.t) =
  let invariants = convert_block [] ast.invariants in
  let goal = convert_goal ast.goal in
  E.make
    ast.file
    ast.domain
    ast.instance
    ast.sym
    invariants
    goal
    ast.atom_renaming
    ast.name_renaming
OCaml

Innovation. Community. Security.