Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
dyplex.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
(* Extensible lexer: one can define new terminals or extend existing ones but not redefine nor remove them. *) include Automaton (*let soc c = let x = " " in x.[0] <- c; x*) let any_char = (0, 255) let interval_diff (a1,b1) (a2,b2) = if a1 < a2 then if b1 <= b2 then [a1, min (a2-1) b1] else [(a1, a2-1);(b2+1, b1)] else if b1 <= b2 then [] else [max a1 (b2+1), b1] let diff cs1 cs2 = let aux cs1 ci2 = List.fold_left (fun l ci1 -> (interval_diff ci1 ci2)@l) [] cs1 in List.fold_left aux cs1 cs2 let interval_inter (a1,b1) (a2,b2) = if b1<a2 || b2<a1 then None else Some (max a1 a2, min b1 b2) let regexp_of_string s = let rec aux i l = if i= -1 then l else aux (i-1) ((RE_Char s.[i])::l) in let len = String.length s in if len = 0 then failwith "Lexer generator: empty string in regular expression" else RE_Seq (aux (len-1) []) let norm_cs cs = List.map (fun (a,b) -> let a, b = int_of_char a, int_of_char b in min a b, max a b) cs let check_cs cs = List.map (fun (a,b) -> if a>b then failwith "check_cs") cs let disjoint cs = match cs with [] | [_] -> cs | _ -> let cs = List.sort (fun (a,_) (b,_) -> compare a b) cs in let rec aux h l accu = match l with | [] -> h::accu | ((a2,b2) as h2)::t -> let a1, b1 = h in if b1>=a2-1 then aux (a1, max b1 b2) t accu else aux h2 t (h::accu) in match cs with h::t -> List.rev (aux h t []) | _ -> assert false let str_int_list l = let l = List.map (fun i -> string_of_int i) l in String.concat " " l let list_of_set s = Int_set.fold (fun x l -> x::l) s [] let str_int_set s = str_int_list (list_of_set s) let str_intc_list l = String.concat " " (List.map (fun (a,b) -> (string_of_int a)^"-"^(string_of_int b)) l) let str_trans (l,n) = Printf.sprintf "\n <%d> %s" n.id (str_intc_list l) let str_eps n = Printf.sprintf "\n <%d>" n.id let str_trans_list l = String.concat "" (List.map str_trans l) let str_eps_list l = String.concat "" (List.map str_eps l) let print_node s = Printf.fprintf !log_channel "State [%d]\n trans=%s\n eps=%s\n matched=%s\n\n" s.id (str_trans_list s.trans) (str_eps_list s.eps) (str_int_set s.matched) let prn n = Printf.fprintf !log_channel "Node [%d]\n trans=%s\n eps=%s\n matched=%s\n\n" n.id (str_trans_list n.trans) (str_int_list (List.map (fun n -> n.id) n.eps)) (str_int_set n.matched); n let print_nfa s = let rec aux s visited = if not (Int_set.mem s.id visited) then (print_node s; let visited = List.fold_left (fun visited (_, n) -> aux n visited) (Int_set.add s.id visited) s.trans in List.fold_left (fun visited n -> aux n visited) visited s.eps) else visited in let _ = aux s Int_set.empty in () let build_nfa table = let rec aux = function | RE_Char c -> let c = int_of_char c in (fun succ id -> (*prn*) { id = id; trans = [[c,c], succ]; eps = []; matched = Int_set.empty }, id+1) | RE_Char_set cs -> let cs = disjoint (norm_cs cs) in (fun succ id -> (*prn*) { id = id; trans = [cs, succ]; eps = []; matched = Int_set.empty }, id+1) | RE_Char_set_exclu cs -> let cs = disjoint (diff [any_char] (norm_cs cs)) in (fun succ id -> (*prn*) { id = id; trans = [cs, succ]; eps = []; matched = Int_set.empty }, id+1) | RE_String s -> aux (regexp_of_string s) | RE_Alt rl -> let fl = aux_list rl in (fun succ id -> let nl, id = List.fold_left (fun (nl, id) f -> let n, id = f succ id in n::nl, id) ([], id) fl in (*prn*) { id = id; trans = []; eps = nl; matched = Int_set.empty }, id+1) | RE_Seq rl -> let fl = aux_list rl in (fun succ id -> List.fold_left (fun (n, id) f -> f n id) (succ, id) fl) | RE_Star r -> let f = aux r in (fun succ id -> let n = { id = id; trans = []; eps = []; matched = Int_set.empty } in let s, id1 = f n (id+1) in n.eps <- [s;succ]; (*prn*) n, id1) | RE_Plus r -> let f = aux r in (fun succ id -> let n = { id = id; trans = []; eps = []; matched = Int_set.empty } in let s, id1 = f n (id+1) in n.eps <- [s;succ]; (*prn n;*) (*prn*) s, id1) | RE_Option r -> let f = aux r in (fun succ id -> let s, id = f succ id in (*prn*) { id = id; trans = []; eps = [s;succ]; matched = Int_set.empty }, id+1) | RE_Name s -> Hashtbl.find table s | RE_Eof_char -> (fun succ id -> (*prn*) { id = id; trans = [[256,256], succ]; eps = []; matched = Int_set.empty }, id+1) and aux_list rl = List.fold_left (fun fl r -> (aux r)::fl) [] rl in function r -> aux r let make_nfa r table regexp_id id = let f = build_nfa r table in f ((*prn*) { id = id; trans = []; eps = []; matched = Int_set.add regexp_id Int_set.empty }) (id+1) let compile_regexp_decl rl = let table = Hashtbl.create (List.length rl) in (*print_endline "regexp_decl:\n";*) List.iter (fun (name, r) -> (*Printf.printf "%s : %s\n" name (print_pretty_regexp r);*) let f = build_nfa table r in (*let n, _ = f { id = 0; trans = []; eps = []; matched = Int_set.add (-1) Int_set.empty } 1 in print_nfa n;*) Hashtbl.add table name f) rl; (*print_newline ();*) table let print_tl tl = Printf.printf "disjoint_tl called, trans list:\n"; List.iter (fun (cil,n) -> Printf.printf "node id: %d\n" n.id; Printf.printf " %s\n" (str_intc_list cil)) tl let print_disjoint_tl_res res = Printf.printf "disjoint_tl result:\n"; List.iter (fun ((a,b),nl) -> Printf.printf "character interval: %d-%d\n" a b; Printf.printf " %s\n" (str_int_list (List.map (fun n -> n.id) nl))) res module Ordered_node = struct type t = node let compare n1 n2 = Stdlib.compare n1.id n2.id end module Node_set = Set.Make(Ordered_node) let list_of_ns ns = Node_set.fold (fun n l -> n::l) ns [] let ci_begin = Array.make 257 [] let ci_end = Array.make 257 [] let disjoint_tl tl scount = List.iter (fun (il,n) -> List.iter (fun (a,b) -> ci_begin.(a) <- n::ci_begin.(a); ci_end.(b) <- n::ci_end.(b)) il) tl; let rec aux1 i res = if i=257 then res else match ci_begin.(i) with | [] -> aux1 (i+1) res | l -> let new_ns = List.fold_left (fun ns n -> scount.(n.id) <- scount.(n.id)+1; if scount.(n.id)=1 then Node_set.add n ns else ns) Node_set.empty l in aux2 i i new_ns res and aux2 i inf ns res = match ci_end.(i) with | [] -> aux3 (i+1) inf ns res | l -> let new_ns = List.fold_left (fun ns n -> scount.(n.id) <- scount.(n.id)-1; if scount.(n.id)=0 then Node_set.remove n ns else ns) ns l in let nl = list_of_ns ns in if i=256 then ((inf,i),nl)::res else if Node_set.is_empty new_ns then aux1 (i+1) (((inf,i),nl)::res) else aux3 (i+1) (i+1) new_ns (((inf,i),nl)::res) and aux3 i inf ns res = match ci_begin.(i) with | [] -> aux2 i inf ns res | l -> let new_ns = List.fold_left (fun ns n -> scount.(n.id) <- scount.(n.id)+1; if scount.(n.id)=1 then Node_set.add n ns else ns) ns l in if inf=i then aux2 i i new_ns res else aux2 i i new_ns (((inf,i-1),list_of_ns ns)::res) in let res = aux1 0 [] in List.iter (fun (il,_) -> List.iter (fun (a,b) -> ci_begin.(a) <- []; ci_end.(b) <- []) il) tl; res module Ordered_int_set = struct type t = Int_set.t let compare = Int_set.compare end module State_map = Map.Make(Ordered_int_set) let print_node_list sl = Printf.fprintf !log_channel "States list:\n\n"; List.iter print_node sl let union_matched nl filter_matched = List.fold_left (fun s n -> Int_set.union s (filter_matched n)) Int_set.empty nl let make_dfa state_count_array filter_matched = let rec make_state (next,sl,sm,id) ((ci,nl),ids) = try let s = State_map.find ids sm in ([ci],s)::next, sl, sm, id with Not_found -> let s = { id = id; trans = []; eps = []; matched = union_matched nl filter_matched } in let new_next, sl, sm, id = let sm = State_map.add ids s sm in make_next nl sl sm (id+1) in s.trans <- new_next; ([ci],s)::next, s::sl, sm, id and make_next nl sl sm id = (*Printf.printf "make_next pour %d\n" (id-1); print_node_list nl;*) let l = let dtlres = (disjoint_tl (List.concat (List.map (fun n -> n.trans) nl)) state_count_array) in (*print_disjoint_tl_res dtlres;*) List.map (fun (ci,nl) -> let nl, ids = epsilon_closure nl in (ci,nl), ids) dtlres in let res = List.fold_left make_state ([],sl,sm,id) l in (*(print_endline "make_next ends"; let a,_,_,_ = res in Printf.printf "result = %s\n" (str_trans_list a));*) res and epsilon_closure nl = let rec aux (accu,id_set) n = if Int_set.mem n.id id_set then accu, id_set else List.fold_left aux (n::accu, Int_set.add n.id id_set) n.eps in List.fold_left aux ([],Int_set.empty) nl in function nfa_start_list -> (*Printf.printf "nfa_start_list length = %d\n" (List.length nfa_start_list);*) let nl, ids = epsilon_closure nfa_start_list in let matched = union_matched nl filter_matched in let start = { id = 0; trans = []; eps = []; matched = matched } in let next, sl, _, snb = let smap = State_map.add ids start State_map.empty in make_next nl [start] smap 1 in start.trans <- next; start, sl, snb let write_interval (a,b) i dec_table next_id = for j=i*257+a to i*257+b do dec_table.(j) <- next_id done let print_dec_table dt = Printf.fprintf !log_channel "Transition table\n"; for i=0 to Array.length dt -1 do Printf.fprintf !log_channel " (%d,%d):%d\n" (i/257) (i mod 257) dt.(i) done; Printf.fprintf !log_channel "\n" let print_final f = Printf.fprintf !log_channel "Final table\n"; for i=0 to Array.length f -1 do Printf.fprintf !log_channel " state %d:%s\n" i (str_int_list f.(i)) done; Printf.fprintf !log_channel "\n\n" let make_lexer build_nfa_table = function [] -> let dummy_node = { id=0; trans=[]; eps=[]; matched=Int_set.empty } in { tbl_trans = [||] ; tbl_final = [||]; tbl_notrans = [||] }, dummy_node | rl -> (*Printf.printf "rl length = %d\n" (List.length rl);*) (*print_endline "main lexer:\n";*) let nfa_list,_,nfa_state_nb = List.fold_left (fun (nfa_l,regexp_id,node_id) regexp -> let nfa, node_id = make_nfa build_nfa_table regexp regexp_id node_id in (*Printf.printf "%d : %s\n" regexp_id (print_pretty_regexp regexp); print_nfa nfa;*) nfa::nfa_l, (regexp_id+1), node_id) ([],0,0) rl in let state_count_array = Array.make nfa_state_nb 0 in let start, sl, _ = make_dfa state_count_array (fun n -> n.matched) nfa_list in if !dypgen_verbose>4 then print_node_list sl; let state_nb = List.length sl in let dec_table = Array.make (state_nb*257) (-1) in (* This is the decision table, 256 indices for characters and the last one for eof. *) let final = Array.make state_nb [] in let notrans = Array.make state_nb false in let _ = List.iter (fun n -> (match n.trans with [] -> notrans.(n.id) <- true | trans_l -> List.iter (function ([ci],n1) -> write_interval ci n.id dec_table n1.id | _ -> assert false) trans_l); final.(n.id) <- List.sort Stdlib.compare (list_of_set n.matched) (* Is it necessary to sort the list or doesn't list_of_set already do it? *)) sl in if !dypgen_verbose>4 then (print_dec_table dec_table; print_final final); { tbl_trans = dec_table ; tbl_final = final ; tbl_notrans = notrans }, start let extend_lexer main_lexer_start regexp_list build_nfa_table node_nb regexp_nb = let aux_nfa (nfa_l,regexp_id,node_id) regexp = let nfa, node_id = make_nfa build_nfa_table regexp regexp_id node_id in nfa::nfa_l, (regexp_id+1), node_id in let nfa_list, fst_regexp_id, nfa_state_nb = List.fold_left aux_nfa ([main_lexer_start],0,node_nb) (fst regexp_list) in let nfa_list, _, nfa_state_nb = List.fold_left aux_nfa (nfa_list,regexp_nb+fst_regexp_id,node_nb+nfa_state_nb) (snd regexp_list) in let state_count_array = Array.make nfa_state_nb 0 in let filter_matched n = if n.id < node_nb then Int_set.fold (fun i s -> Int_set.add (i+fst_regexp_id) s) n.matched Int_set.empty else n.matched in let start, sl, _ = make_dfa state_count_array filter_matched nfa_list in if !dypgen_verbose>4 then print_node_list sl; let state_nb = List.length sl in let dec_table = Array.make (state_nb*257) (-1) in (* This is the decision table, 256 indices for characters and the last one for eof. *) let final = Array.make state_nb [] in let notrans = Array.make state_nb false in let _ = List.iter (fun n -> (match n.trans with [] -> notrans.(n.id) <- true | trans_l -> List.iter (function ([ci],n1) -> write_interval ci n.id dec_table n1.id | _ -> assert false) trans_l); final.(n.id) <- List.sort Stdlib.compare (list_of_set n.matched) (* Is it necessary to sort the list or doesn't list_of_set already do it? *)) sl in if !dypgen_verbose>4 then (print_dec_table dec_table; print_final final); { tbl_trans = dec_table ; tbl_final = final ; tbl_notrans = notrans }, start open Lexing let lexeme dyplexbuf = Lexing.lexeme dyplexbuf.lb_lexbuf let lexeme_char dyplexbuf i = Lexing.lexeme_char dyplexbuf.lb_lexbuf i let lexeme_start dyplexbuf = Lexing.lexeme_start dyplexbuf.lb_lexbuf let lexeme_end dyplexbuf = Lexing.lexeme_end dyplexbuf.lb_lexbuf let lexeme_start_p dyplexbuf = Lexing.lexeme_start_p dyplexbuf.lb_lexbuf let lexeme_end_p dyplexbuf = Lexing.lexeme_end_p dyplexbuf.lb_lexbuf let flush_input dyplexbuf = Lexing.flush_input dyplexbuf.lb_lexbuf let lex_engine is_main_lexer tbl_list (lexbuf:Lexing.lexbuf) reset_start_pos = (*let input_string = dyplexbuf.lb_string in*) if reset_start_pos then (lexbuf.lex_start_pos <- lexbuf.lex_curr_pos; lexbuf.lex_start_p <- lexbuf.lex_curr_p); (*let curr_pos = lexbuf.lex_curr_pos in*) if !dypgen_verbose>4 then (Printf.printf "lex_engine begins: curr_pos = %d\n" lexbuf.lex_curr_pos); let add_final_p, add_final = if is_main_lexer then (fun a b -> a::b), (fun a b -> a::b) else (fun a _ -> [[List.hd a]]), (fun (a,b) _ -> [a,[List.hd b]]) in let lex_nb = List.length tbl_list in let rec aux state_list final valid_lex = let aux_final (final_p,valid_lex,matched) tbl state = if state = -1 then [-1]::final_p,valid_lex,matched else let final_p, matched = match tbl.tbl_final.(state) with | [] -> [-1]::final_p, matched (* -1 is useful as a placeholder when the list will be read in the function select_token *) | lf -> if !dypgen_verbose>4 then (Printf.fprintf !log_channel "add_final_p : %s\n" (str_int_list lf)); add_final_p lf final_p, true in let valid_lex = if (try tbl.tbl_notrans.(state) with _ -> false) then valid_lex-1 else valid_lex in final_p, valid_lex, matched in let final_p, valid_lex, matched = List.fold_left2 aux_final ([], valid_lex, false) tbl_list state_list in let final = if matched then let abs_curr_pos = lexbuf.lex_abs_pos + lexbuf.lex_curr_pos in add_final (abs_curr_pos,final_p) final (* The position here is useful information: in lex_token lex_curr_p.pos_cnum will be set to the position recorded here. *) else final in if valid_lex = 0 then match final with _::_ -> final | [] -> failwith("lexing: empty token") else let c = let b = (lexbuf.lex_curr_pos = lexbuf.lex_buffer_len) in if b then lexbuf.refill_buff lexbuf; if b && lexbuf.lex_eof_reached then 256 else let p = lexbuf.lex_curr_pos in lexbuf.lex_curr_pos <- p+1; if !dypgen_verbose>4 then (Printf.fprintf !log_channel "lex_engine reads: `%c'\n" (Bytes.get lexbuf.lex_buffer p)); try Char.code (Bytes.get lexbuf.lex_buffer p) with Invalid_argument _ -> (Printf.printf "%d, %d, %s, %d, %d\n" lexbuf.lex_curr_pos lexbuf.lex_buffer_len (string_of_bool reset_start_pos) p (Bytes.length lexbuf.lex_buffer); raise (Invalid_argument("index out of bounds"))) in let aux_lex (new_state_list,valid_lex) tbl state = if state = -1 then ((*Printf.printf "next_state = -1\n";*) (-1)::new_state_list,valid_lex) else let next_state = tbl.tbl_trans.(state*257+c) in if !dypgen_verbose>4 then (Printf.fprintf !log_channel "next_state = %d\n" next_state); let valid_lex = if (try (next_state = -1 && not tbl.tbl_notrans.(state)) with _ -> false) then valid_lex-1 else valid_lex in next_state::new_state_list, valid_lex in let new_state_list, valid_lex = List.fold_left2 aux_lex ([], valid_lex) tbl_list state_list in let new_state_list = List.rev new_state_list in if valid_lex = 0 then match final with _::_ -> final | [] -> failwith("lexing: empty token") else aux new_state_list final valid_lex in let l0 = List.map (fun _ -> 0) tbl_list in aux l0 [] lex_nb let lex lexer_name argl dyplexbuf = let table = Hashtbl.find dyplexbuf.lb_aux_lex.aux_lexer_table lexer_name in match lex_engine false [table] dyplexbuf.lb_lexbuf true with [p,[[final]]] -> (*dyplexbuf.lb_curr_p <- { dyplexbuf.lb_curr_p with Lexing.pos_cnum = p };*) dyplexbuf.lb_lexbuf.lex_curr_p <- { dyplexbuf.lb_lexbuf.lex_curr_p with Lexing.pos_cnum = p }; dyplexbuf.lb_lexbuf.lex_curr_pos <- p - dyplexbuf.lb_lexbuf.lex_abs_pos; (*Printf.printf "lex: curr_pos = %d\n" p;*) let action = (Hashtbl.find dyplexbuf.lb_aux_lex.aux_lexer_actions lexer_name).(final) in action argl dyplexbuf | _ -> assert false let zero_position = { Lexing.pos_fname = "" ; Lexing.pos_lnum = 0 ; Lexing.pos_bol = 0 ; Lexing.pos_cnum = 0 ; } (*let make_lexbuf pp str = { lb_curr_p = zero_position; lb_start_p = zero_position; lb_string = str; lb_aux_lex = (fst pp).aux_lexer }*) let from_string pp str = { lb_lexbuf = Lexing.from_string str; lb_aux_lex = pp.pp_dev.aux_lexer } let from_channel pp ic = { lb_lexbuf = Lexing.from_channel ic; lb_aux_lex = pp.pp_dev.aux_lexer } let from_function pp f = { lb_lexbuf = Lexing.from_function f; lb_aux_lex = pp.pp_dev.aux_lexer } let dyplex_lexbuf_position dyplexbuf = dyplexbuf.lb_lexbuf.lex_start_p, dyplexbuf.lb_lexbuf.lex_curr_p let std_lexbuf dyplexbuf = dyplexbuf.lb_lexbuf let set_newline dyplexbuf = let l = std_lexbuf dyplexbuf in let pos = l.lex_curr_p in let npos = { pos with pos_lnum = pos.pos_lnum + 1; pos_bol = pos.pos_cnum } in l.lex_curr_p <- npos let set_fname dyplexbuf fname = let l = std_lexbuf dyplexbuf in let pos = l.lex_curr_p in let npos = { pos with pos_fname = fname } in l.lex_curr_p <- npos; let pos = l.lex_start_p in let npos = { pos with pos_fname = fname } in l.lex_start_p <- npos