Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
dyp.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
let version = "20191116" let list_map f l = List.rev (List.rev_map f l) include Dyplex open Printf type ('token,'obj,'data,'local_data,'lexbuf) dypgen_toolbox = { parser_pilot : ('token,'obj,'data,'local_data,'lexbuf) parser_pilot; global_data : 'data; local_data : 'local_data; last_local_data : 'local_data; next_lexeme : unit -> string list; symbol_start : unit -> int; symbol_start_pos : unit -> Lexing.position; symbol_end : unit -> int; symbol_end_pos : unit -> Lexing.position; rhs_start : int -> int; rhs_start_pos : int -> Lexing.position; rhs_end : int -> int; rhs_end_pos : int -> Lexing.position; print_state : out_channel -> unit; print_grammar : out_channel -> unit; } type ('token,'obj,'gd,'ld,'l) dyp_action = | Add_rules of (rule * (('token,'obj,'gd,'ld,'l) dypgen_toolbox -> ('obj list -> 'obj * ('token,'obj,'gd,'ld,'l) dyp_action list))) list | Bind_to_cons of (string * string) list | Global_data of 'gd | Keep_grammar | Parser of ('token,'obj,'gd,'ld,'l) parsing_device | Local_data of 'ld | Next_grammar of out_channel | Next_state of out_channel | Relation of string list list | Dont_shift exception Giveup exception Undefined_nt of string exception Undefined_ter of string exception Bad_constructor of (string * string * string) exception Constructor_mismatch of (string * string) exception Syntax_error (** This exception is raised by the function parse if the parser is stuck in a situtation where no shift and no reduction is possible. *) (** The way this module handles GLR is documented in the following paper : Scott McPeak, Elkhound: A fast, practical GLR parser generator, University of California Berkeley, Report No. UCB/CSD-2-1214, December 2002 ; figures 7 and 8. Optimizations which are specific to Elkhound are not implemented. This implementation adds dynamic changes to the grammar at run-time during parsing. These modifications take place in the function reduceViaPath. When a reduction is performed the parser checks whether the action is 'classic' (no change to the grammar) or 'dynamic' and proceeds with the modifications to the grammar and the automaton if needed. If the parsing follows simultaneously several paths, as it may be the case with GLR parsing, then there is a distinct grammar and a distinct automaton for each path if needed. Following Scott McPeak's report the stack is implemented as a graph. *) let countred = ref 0 (* counts the number if reductions performed it is only used for information *) type counters = { mutable countsn : int; mutable counted : int; mutable count_token : int; mutable last_layout : int; mutable count_g : int; (* counts number of grammars *) mutable count_lex : int } (* counts number of lexers *) let new_counters () = { countsn = 0; counted = 0; count_token = 0; last_layout = 0; count_g = 0; count_lex = 0 } module Ordered_urule = struct type t = nrule let compare = Stdlib.compare end module Urule_map = Map.Make(Ordered_urule) module NTS = Set.Make(Ordered_non_ter) module Tools = struct type ('token,'obj,'gd,'ld,'l) action_com = { ac_gd : 'gd; ac_ld : 'ld; add_rules : (rule * (('token,'obj,'gd,'ld,'l) dypgen_toolbox -> ('obj list -> 'obj * ('token,'obj,'gd,'ld,'l) dyp_action list))) list; new_nt_cons : (string * string) list; ac_relations : string list list; will_shift : bool; keep_grammar : bool; ac_parser : ('token,'obj,'gd,'ld,'l) parsing_device option; next_state : out_channel option; next_grammar : out_channel option } let rec action_command dal da = match dal with | [] -> da | (Global_data gd)::t -> action_command t { da with ac_gd = gd } | (Local_data ld)::t -> action_command t { da with ac_ld = ld } | (Add_rules ar)::t -> action_command t { da with add_rules = ar@da.add_rules } | (Bind_to_cons l)::t -> action_command t { da with new_nt_cons = l@da.new_nt_cons } | (Relation l)::t -> action_command t { da with ac_relations = l@da.ac_relations } | Dont_shift::t -> action_command t { da with will_shift = false } | Keep_grammar::t -> action_command t { da with keep_grammar = true } | (Parser pdev)::t -> action_command t { da with ac_parser = Some pdev } | (Next_state ns)::t -> action_command t { da with next_state = Some ns } | (Next_grammar ng)::t -> action_command t { da with next_grammar = Some ng } let make_dyp symbol_pos position_list data_arg local_data_arg last_local_data_arg debug_infos parser_pilot next_lexeme = { parser_pilot = parser_pilot; global_data = data_arg; local_data = local_data_arg; last_local_data = last_local_data_arg; next_lexeme = next_lexeme; symbol_start = (fun () -> (fst symbol_pos).Lexing.pos_cnum); symbol_start_pos = (fun () -> fst symbol_pos); symbol_end = (fun () -> (snd symbol_pos).Lexing.pos_cnum); symbol_end_pos = (fun () -> snd symbol_pos); rhs_start = (fun i -> (fst (List.nth position_list (i-1))).Lexing.pos_cnum); rhs_start_pos = (fun i -> fst (List.nth position_list (i-1))); rhs_end = (fun i -> (snd (List.nth position_list (i-1))).Lexing.pos_cnum); rhs_end_pos = (fun i -> snd (List.nth position_list (i-1))); print_state = debug_infos.prt_state; print_grammar = debug_infos.prt_grammar } let rec transform_action a av_list symbol_pos position_list data_arg local_data_arg last_local_data_arg debug_infos parser_pilot next_lexeme = let dyp = make_dyp symbol_pos position_list data_arg local_data_arg last_local_data_arg debug_infos parser_pilot next_lexeme in let new_obj, dal = a dyp av_list in let mapfun (r, ac) = (r, (Dypgen_action (fun ol pos posl gd ld lld di p nl -> (transform_action ac) ol pos posl gd ld lld di p nl)), []) in let dyp_a = action_command dal { ac_gd = data_arg; ac_ld = local_data_arg; add_rules = []; new_nt_cons = []; ac_relations = []; will_shift = true; keep_grammar = false; ac_parser = None; next_state = None; next_grammar = None } in let add_rules_transformed = List.map mapfun dyp_a.add_rules in (new_obj, dyp_a.will_shift, dyp_a.keep_grammar, dyp_a.ac_gd, dyp_a.ac_ld, add_rules_transformed, dyp_a.new_nt_cons, dyp_a.ac_relations, dyp_a.next_state, dyp_a.next_grammar, dyp_a.ac_parser) let transform_inh_val a av_list symbol_pos position_list data_arg local_data_arg last_local_data_arg debug_infos parser_pilot next_lexeme = let dyp = make_dyp symbol_pos position_list data_arg local_data_arg last_local_data_arg debug_infos parser_pilot next_lexeme in a dyp av_list let keep_zero l = match l with | (_,gd,ld)::_ -> [], gd, ld | [] -> assert false let array_of_list = let rec aux a l n = match l with | [] -> a | h::t -> a.(n) <- h; aux a t (n+1) in fun l -> match l with | [] -> [||] | h::_ -> let a = Array.make (List.length l) h in aux a l 0 let hashtbl_of_array a = let len = Array.length a in if len = 0 then failwith "hashtbl_of_array" else let ht = Hashtbl.create len in for i=0 to len-1 do Hashtbl.add ht a.(i) i done; ht let make_nt_cons_map nt_cons_list = List.fold_left (fun ncm (nt_str,cons_i) -> String_map.add nt_str cons_i ncm) String_map.empty nt_cons_list end open Tools let dummy_lhs = (0,0,0) let make_real_grammar user_g (*(pmap:priority_data)*) str_non_ter nt_table _ = if !dypgen_verbose>1 then (let nbr = Urule_map.fold (fun _ _ n -> n+1) user_g 0 in Printf.fprintf !log_channel "size of the grammar : %d rules\n" nbr); (*Printf.printf "nt_table:\n"; Hashtbl.iter (fun nt_str nt_int -> Printf.printf "%s : %d\n" nt_str nt_int) nt_table; flush_all ();*) let nt_nb = Hashtbl.length nt_table + 1 in if !dypgen_verbose>1 then Printf.fprintf !log_channel "number of non terminals : %d\n" nt_nb; (*if ppar.undef_nt then*) if false then (* FIXME *) (let check_nt_def = Array.make nt_nb (false,false) in let rec f4 rhs = match rhs with | (Ps_Non_ter (nt,_))::tl | (Ps_Non_ter_NL (nt,_))::tl -> let b,_ = check_nt_def.(nt) in check_nt_def.(nt) <- (b,true); f4 tl | _::tl -> f4 tl | [] -> () in let f3 (nt,rhs,_,_) _ = let _,b = check_nt_def.(nt) in check_nt_def.(nt) <- (true,b); f4 rhs in Urule_map.iter f3 user_g; for i=0 to nt_nb-1 do if check_nt_def.(i) = (false,true) then raise (Undefined_nt(str_non_ter.(i))) done); (*let array_nt_ps = Array.make nt_nb Prio_set.empty in*) (*let all_prio_set = let rec f i set = if i= -1 then set else f (i-1) (Prio_set.add i set) in f (pmap.prd_nb-1) Prio_set.empty in*) (*let iterfun (nt,rhs,p,_) _ = array_nt_ps.(nt) <- Prio_set.add p array_nt_ps.(nt); List.iter (fun li -> match li with | Ps_Non_ter (nt,ntp) | Ps_Non_ter_NL (nt,ntp) -> (match ntp with | No_priority -> array_nt_ps.(nt) <- all_prio_set | Eq_priority p -> array_nt_ps.(nt) <- Prio_set.add p array_nt_ps.(nt) | Less_priority p -> array_nt_ps.(nt) <- Prio_set.union array_nt_ps.(nt) (fst pmap.prd_rel.(p)) | Lesseq_priority p -> array_nt_ps.(nt) <- Prio_set.union array_nt_ps.(nt) (Prio_set.add p (fst pmap.prd_rel.(p))) | Greater_priority p -> array_nt_ps.(nt) <- Prio_set.union array_nt_ps.(nt) (snd pmap.prd_rel.(p)) | Greatereq_priority p -> array_nt_ps.(nt) <- Prio_set.union array_nt_ps.(nt) (Prio_set.add p (snd pmap.prd_rel.(p)))) | _ -> ()) rhs in let () = Urule_map.iter iterfun user_g in*) (*let array_nt_prio = Array.make nt_nb Prio_map.empty in let rec f_rec i n = if i=nt_nb then n else let prio_set = array_nt_ps.(i) in let foldfun prio (prio_map,n) = (*Printf.fprintf !log_channel "add (%s,%s) (%d,%d,%d)\n" str_non_ter.(i) pmap.prd_names.(prio) i prio n;*) (Prio_map.add prio n prio_map),(n+1) in let prio_map,n = Prio_set.fold foldfun prio_set (Prio_map.empty,n) in let () = array_nt_prio.(i) <- prio_map in f_rec (i+1) n in (*Printf.fprintf !log_channel "make array_nt_prio\n";*) let newnt_nb = f_rec 0 0 in let non_ter_of_ind = Array.make newnt_nb 0 in let prio_of_ind = Array.make newnt_nb 0 in let f2 nt p n = non_ter_of_ind.(n) <- nt; prio_of_ind.(n) <- p; in for i=0 to nt_nb-1 do Prio_map.iter (f2 i) array_nt_prio.(i) done;*) let newnt_nb = Array.length str_non_ter in let g = Array.make newnt_nb Map_rhs.empty in let array_of_list l = let a = Array.make (List.length l) (Ps_Ter 0) in let _ = List.fold_left (fun i x -> a.(i) <- x; (i+1)) 0 l in a in Urule_map.iter (fun (ind, litl, _, b) a -> (*let ind = Prio_map.find p array_nt_prio.(ntn) in*) g.(ind) <- Map_rhs.add ((array_of_list litl), b) a g.(ind)) user_g; let nbr = let rec f nt i = if nt = newnt_nb then i else f (nt+1) (Map_rhs.fold (fun _ _ i -> i+1) g.(nt) i) in f 0 0 in if !dypgen_verbose>1 then (Printf.fprintf !log_channel "size of the extended grammar : %d rules\n" nbr; Printf.fprintf !log_channel "number of non terminals : %d\n" newnt_nb; flush stdout); g, (*array_nt_prio,*) nt_nb, (*non_ter_of_ind, prio_of_ind,*) nbr module Ordered_nrule = struct type t = nrule let compare = Stdlib.compare end module RS = Set.Make (Ordered_nrule) (*let rec derive_epsilon nt1 vr nt_epsilon user_g = match nt_epsilon.(nt1) with (True|False) as b -> b | NA -> let f (r:nrule) _ b = if b=True then b else let (nt,litl,_,_) = r in if nt<>nt1 then False else if RS.mem r vr then False else let rec f2 litl = match litl with | (Ps_Non_ter (nt,_))::t | (Ps_Non_ter_NL (nt,_))::t -> nt::(f2 t) | _ -> [] in let ntl = f2 litl in let rec f3 (ntl:non_ter list) = match ntl with | [] -> True | nt::t -> let b = let b = derive_epsilon nt (RS.add r vr) nt_epsilon user_g in nt_epsilon.(nt) <- b; b in if b=True then f3 t else False in f3 ntl in Urule_map.fold f user_g False*) (* Computes the array nullable for the non trivial cases. This array tells whether a nonterminal can derive the empty string. The grammar is assumed to only contains rules with rhs of two or more nonterminals and no terminals. *) let make_nullable (gram_rhs:rhs array) lhs_table (*lhslists*) (*priodata array_nt_prio*) sub_g nullable = let f rn b = let _,_,ind = lhs_table.(rn) in if nullable.(ind) then b else let rec all_nullable rhs = function 0 -> true | i -> match rhs.(i-1) with | Ps_Non_ter (nt, _) | Ps_Non_ter_NL (nt, _) -> (*let lhslist = comp_lhslist nt lhslists priodata array_nt_prio in*) (*let lhslist = [fst nt] in if List.exists (fun (nt,_,_) -> nullable.(nt)) lhslist*) if nullable.(nt) then all_nullable rhs (i-1) else false | _ -> assert false in let rhs = gram_rhs.(rn) in if all_nullable rhs (Array.length rhs) then (nullable.(ind) <- true; true) else b in let rec aux () = if Int_set.fold f sub_g false then aux () in aux () (* This is a tail-recursive implementation of the closure algorithm outlined in Martin Bravenboer PhD thesis Chapter 1 p.29. When a node n1 points to a node n2 it means: set(n1) includes set(n2). The array result is an array of Int_set.t. The array nodes contains the list of adjacent vertices of each vertex, when the function returns, nodes is an array of empty lists. *) let closure_of_include (nodes:int list array) (result:Int_set.t array) = let node_nb = Array.length nodes in let color = Array.make node_nb `white in let root = Array.make node_nb (-1) in let d = Array.make node_nb (-1) in let rec pop res date = function | (w,d)::t when d >= date -> result.(w) <- res; color.(w) <- `blue; pop res date t | stack -> stack in let rec visit time stack visited v = if d.(v) = -1 then (color.(v) <- `gray; d.(v) <- time; root.(v) <- time); match nodes.(v) with | w::t -> nodes.(v) <- t; if color.(w)=`white then visit (time+1) stack (v::visited) w else (if (color.(w)=`blue || color.(w)=`black) && d.(v) >= d.(w) then result.(v) <- Int_set.union result.(v) result.(w); if color.(w) <> `blue && root.(w) < root.(v) then root.(v) <- root.(w); visit time stack visited v) | [] -> let stack = if root.(v) = d.(v) then (color.(v) <- `blue; pop result.(v) d.(v) stack) else (color.(v) <- `black; (v,time)::stack) in (match visited with | u::t -> result.(u) <- Int_set.union result.(u) result.(v); visit time stack t u | [] -> time) in let rec aux id time = if id < node_nb then let time = visit time [] [] id in aux (id+1) time in aux 0 0 let array_for_all f a = let rec aux i = if i=0 then true else if f (i-1) a.(i-1) then aux (i-1) else false in aux (Array.length a) let make_po_array gram_rhs lhs_table (*lhslists priodata array_nt_prio*) sub_g nullable po_ht lhs_nb cyclic_rule = let result = Array.make lhs_nb Int_set.empty in let nodes = Array.make lhs_nb [] in let check_cyclic_rule = Array.make (Array.length cyclic_rule) [] in let f rn = let _, _, ind = lhs_table.(rn) in let rhs = Array.map (fun symb -> match symb with | Ps_Non_ter (nt, _) | Ps_Non_ter_NL (nt, _) -> (*let lhs_list = comp_lhslist nt lhslists priodata array_nt_prio in*) (*let lhs_list = [fst nt] in lhs_list, List.exists (fun (_, _, i) -> nullable.(i)) lhs_list*) nt, nullable.(nt) (* possible optimization: memoize this result *) | _ -> assert false) gram_rhs.(rn) in let g i (ind', _) = if array_for_all (fun j x -> i=j || snd x) rhs then (*List.iter (fun (_, _, ind') ->*) if not (Hashtbl.mem po_ht (ind, ind')) then (Hashtbl.add po_ht (ind, ind') true; nodes.(ind) <- ind'::nodes.(ind); result.(ind) <- Int_set.add ind' result.(ind); check_cyclic_rule.(rn) <- (i, ind')::check_cyclic_rule.(rn)) (*lhs_list*) in Array.iteri g rhs in Int_set.iter f sub_g; closure_of_include nodes result; for i=0 to lhs_nb -1 do Int_set.iter (fun j -> Hashtbl.add po_ht (i, j) true) result.(i) done; for i=0 to (Array.length cyclic_rule) -1 do let ind, _, _ = lhs_table.(i) in cyclic_rule.(i) <- List.fold_left (fun res (j, ind') -> match res with | k::_ when k=j -> res | _ -> if (Hashtbl.mem po_ht (ind, ind')) && (Hashtbl.mem po_ht (ind', ind)) then j::res else res) [] check_cyclic_rule.(i) done let htc ht i1 i2 = Hashtbl.mem ht (i1, i2) let int_set_of_list l = List.fold_left (fun res x -> Int_set.add x res) Int_set.empty l let list_of_int_set s = Int_set.fold (fun x res -> x::res) s [] let compute_L gram_rhs gram_lhs (*lhslists prio_dat array_nt_prio*) = let n = Array.length gram_lhs in let r_L = Array.make n [] in let marked = Array.make n false in for i=0 to n-1 do let l = List.fold_left (fun l rn -> match gram_rhs.(rn).(0) with | Ps_Non_ter (nt, _) | Ps_Non_ter_NL (nt, _) -> (*let lhs_l = comp_lhslist nt lhslists prio_dat array_nt_prio in*) (*let lhs_l = [fst nt] in List.fold_left (fun newl (nt,p,j) -> if marked.(j) then newl else (marked.(j) <- true; j::newl)) l lhs_l*) if marked.(nt) then l else (marked.(nt) <- true; nt::l) | _ -> l) [] (fst gram_lhs.(i)) in let l2 = if marked.(i) then l else i::l in r_L.(i) <- l2; List.iter (fun j -> marked.(j) <- false) l done; let result = Array.make n Int_set.empty in for i=0 to n-1 do result.(i) <- int_set_of_list r_L.(i) done; closure_of_include r_L result; for i=0 to n-1 do r_L.(i) <- list_of_int_set result.(i) done; r_L let str_rule rn gram_rhs lhs_table str_non_ter str_ter regexp_array = Printf.sprintf "%s -> %s" (str_lhs lhs_table.(rn) str_non_ter) (str_handle gram_rhs.(rn) (-1) str_non_ter str_ter regexp_array) let print_grammar chan gram_rhs lhs_table str_non_ter str_ter regexp_array = for i=0 to (Array.length lhs_table)-1 do Printf.fprintf chan "rn:%d %s\n" i (str_rule i gram_rhs lhs_table str_non_ter str_ter regexp_array) done; print_newline () let remove_implicit gram_lhs implicit = Array.init (Array.length gram_lhs) (fun i -> let rl, er = gram_lhs.(i) in List.filter (fun rn -> not implicit.(rn)) rl, er) let create_aut gram_rhs gram_lhs gram_parnt bnt_array r_L (*prio_dat*) it_nb (*array_nt_prio nt_of_ind prio_of_ind*) ist_nt_nb (*lhslists*) lhs_table str_non_ter entry_points_list _ token_nb str_ter regexp_array implicit_rule = let () = countst := 0 in let is_trace = ((Array.make token_nb Map_is.empty), (Array.make token_nb Map_is.empty)), ((Array.make ist_nt_nb Map_is.empty), (Array.make ist_nt_nb Map_is.empty)) in let gram_lhs' = remove_implicit gram_lhs implicit_rule in (*print_grammar stdout gram_rhs lhs_table str_non_ter str_ter regexp_array; print_gram_lhs stdout gram_lhs' str_non_ter;*) let state_list, n, stations, entry_points, is_trace = build_automaton is_trace gram_rhs gram_lhs gram_lhs' gram_parnt bnt_array !dypgen_verbose (*prio_dat*) it_nb (*array_nt_prio nt_of_ind prio_of_ind lhslists*) r_L lhs_table ist_nt_nb token_nb str_non_ter str_ter entry_points_list regexp_array implicit_rule in state_list, n, stations, entry_points, is_trace let list_of_array a = let rec aux i l = if i=(-1) then l else aux (i-1) (a.(i)::l) in aux (Array.length a -1) [] let create_po (gram_rhs:rhs array) lhs_table (*lhslists priodata array_nt_prio*) lhs_nb str_non_ter (*nt_of_ind*) (*prio_of_ind*) = let time1 = Sys.time () in (*let po_array = Array.init lhs_nb (fun _ -> (Array.make lhs_nb false)) in*) let po_ht = Hashtbl.create lhs_nb in let nullable = Array.make lhs_nb false in let rec rhs_tokless rhs = function 0 -> true | i -> match rhs.(i-1) with | (Ps_Ter _) | (Ps_Ter_NL _) -> false | (Ps_Non_ter _) | (Ps_Non_ter_NL _) -> rhs_tokless rhs (i-1) in let rnb = Array.length gram_rhs in let rec f i sub_g = if i=rnb then sub_g else let _,_,ind = lhs_table.(i) in let sub_g = match gram_rhs.(i) with | [||] -> nullable.(ind) <- true; sub_g | rhs -> if rhs_tokless rhs (Array.length rhs) then Int_set.add i sub_g else sub_g in f (i+1) sub_g in let sub_g = f 0 Int_set.empty in let cyclic_rule = Array.make (Array.length gram_rhs) [] in make_nullable gram_rhs lhs_table (*lhslists priodata array_nt_prio*) sub_g nullable; make_po_array gram_rhs lhs_table (*lhslists priodata array_nt_prio*) sub_g nullable po_ht lhs_nb cyclic_rule; if !dypgen_verbose>1 then for i=0 to lhs_nb -1 do if Hashtbl.mem po_ht (i, i) then (Printf.printf "Warning: non terminal `%s' can derive itself\n" str_non_ter.(i) (*output_string stderr "cyclic grammars are not allowed\n"; failwith "cyclic grammar"*)) done; let time2 = Sys.time () in if !dypgen_verbose>1 then (Printf.fprintf !log_channel "po_ht built, %.3f sec\n" (time2-.time1); flush stdout) else (); po_ht, cyclic_rule let print_table_state chan i table table_it table_lit_trans gram_rhs lhs_table str_non_ter str_ter regexp_array = (*let tnb, ntnb = Array.length table.(0).(0), Array.length table.(0).(1) in*) let f tab name_fun = Hashtbl.iter (fun i u -> Printf.printf "(%s,%d) " (name_fun i) u) tab in Printf.fprintf chan " State %d\n" i; Printf.fprintf chan " li: %s\n items:\n" (str_literal_trans table_lit_trans.(i) str_non_ter str_ter); print_item_set chan table_it.(i) gram_rhs lhs_table str_non_ter str_ter regexp_array; Printf.fprintf chan " next states (shift):\n "; f table.(i).(0) (fun i -> try str_ter.(i) with _ -> (Printf.sprintf "<regexp:%d>" i)); f table.(i).(2) (fun i -> try "- "^str_ter.(i) with _ -> (Printf.sprintf "- <regexp:%d>" i)); print_newline (); Printf.fprintf chan " next states (reduction):\n "; f table.(i).(1) (fun i -> str_non_ter.(i)); print_newline (); print_newline () let make_table state_list n _ gram_rhs _ _ token_nb _ _ _ = let table = Array.init n (fun _ -> [| Hashtbl.create (token_nb/10); Hashtbl.create (Array.length gram_rhs /10); Hashtbl.create (token_nb/10); Hashtbl.create (Array.length gram_rhs /10)|]) in (*Printf.printf "E.token_nb=%d, ist_nt_nb=%d\n" E.token_nb ist_nt_nb;*) let table_it = Array.make n dummy_item_set in let state_is_mergeable = Array.make n true in let state_bnt = Array.make n None in let table_lit_trans = Array.make n (Ps_Ter 0) in (*let table_lex_trans = Array.make (n*token_nb) false in*) (*Printf.fprintf !log_channel "token_nb=%d\n" token_nb;*) let g num (succ,_) = match succ.li with | Ps_Ter t -> (*Printf.printf "Ps_Ter %s, t=%d\n" (str_token_name t) t;*) Hashtbl.replace table.(num).(0) t succ.number (*Printf.fprintf !log_channel "table_lex_trans(state=%d,token=%d):true\n" num t;*) (*table_lex_trans.(num*token_nb+t) <- true*) | Ps_Non_ter nt -> (*Printf.printf "Ps_Non_ter %s\n" (str_non_terminal nt);*) (*Printf.printf "num=%d, ind=%d, table length=%d, po_array length=%d\n" num ind (Array.length table) (Array.length po_array); Printf.printf "table.(num).(1) length=%d\n" (Array.length table.(num).(1)); Printf.printf "po_array.(ind) length=%d\n" (Array.length po_array.(ind));*) Hashtbl.replace table.(num).(1) nt succ.number | Ps_Ter_NL t -> (*Printf.printf "Ps_Ter_NL %s, t=%d\n" (str_token_name t) t;*) Hashtbl.replace table.(num).(2) t succ.number | Ps_Non_ter_NL nt -> (*Printf.printf "Ps_Non_ter %s\n" (str_non_terminal nt);*) Hashtbl.replace table.(num).(3) nt succ.number in let f v = (*Printf.printf "process state %d\n" v.number;*) List.iter (g v.number) v.succ_states; table_it.(v.number) <- v.items; table_lit_trans.(v.number) <- v.li; state_bnt.(v.number) <- v.bestowing_nt; (*Printf.printf "state: %d\n" v.number; print_bnt v.bestowing_nt;*) state_is_mergeable.(v.number) <- v.mergeable in List.iter f state_list; (*print_tables table table_it table_lit_trans gram_rhs lhs_table prio_of_ind str_ter str_non_ter nt_of_ind priority_names ppar regexp_array;*) table, table_it, table_lit_trans, state_bnt, state_is_mergeable let update_user_g ral user_g = let f (user_g, i) (r, a, inh_l, ier, ilr) = let (al, j, inh_ll, _, _), i = try Urule_map.find r user_g, i with Not_found -> ([], i+1, List.map (fun (p,_) -> p, []) inh_l, false, false), i+1 in let inh_ll = List.map2 (fun (p, a) (_, l) -> p, a::l) inh_l inh_ll in (Urule_map.add r (a::al, j, inh_ll, ier, ilr) user_g), i in fst (List.fold_left f (user_g, -1) (List.rev ral)) let make_grams_actions g nbr str_non_ter ntp_ntl_ht = (*let gl_len = (Array.length g)+1 in*)(*Printf.fprintf !log_channel "-state built-\n"; print_state v gram_rhs lhs_table nt_of_ind prio_of_ind str_non_ter str_token_name prio_dat.prd_names; Printf.fprintf !log_channel "\n"; flush_all ();*) let gram_lhs = Array.make (Array.length g) ([],None) in (* The last cell of the array will be kept ([],None) and reserved for the non terminals appearing in the rhs of the "seed" items, i.e. kernel items of the initial state, when the automaton is generated for a modification of the grammar. *) let gram_rhs = Array.make nbr [||] in let gram_parnt = Array.make nbr [] in let bnt_array = Array.make (Array.length str_non_ter) false in let rule_options = Array.make nbr 3 in let lhs_table = Array.make nbr dummy_lhs in let new_actions = Array.make nbr [] in let implicit_rule = Array.make nbr false in let left_rec_rule = Array.make nbr false in (*let rn = ref 0 in*) let inh_list = ref [] in let inh = ref 0 in let f i (rhs, ro) (ac, rn, inh_l, ier, ilr) (inh, inh_list) = gram_rhs.(rn) <- rhs; rule_options.(rn) <- ro; new_actions.(rn) <- ac; implicit_rule.(rn) <- ier; left_rec_rule.(rn) <- ilr; lhs_table.(rn) <- (i, 0, i); let rnl, iop = gram_lhs.(i) in let de = if Array.length rhs > 0 then (gram_lhs.(i) <- (rn::rnl, iop); match rhs.(0) with | Ps_Non_ter (nt, _) | Ps_Non_ter_NL (nt, _) when str_non_ter.(nt).[0] = '0' -> true | _ -> false) else (gram_lhs.(i) <- (rnl, Some rn); false) in let parnt, inh, inh_list = List.fold_left (fun (parnt, inh, inh_list) (place, inh_val) -> let nt = match rhs.(place-1) with | Ps_Non_ter (nt, _) | Ps_Non_ter_NL (nt, _) -> nt | _ -> assert false in (*Printf.fprintf !log_channel "bnt_array.(%s) <- true\n" str_non_ter.(nt);*) if not bnt_array.(nt) then (bnt_array.(nt) <- true; let nt_list = try Hashtbl.find ntp_ntl_ht nt with Not_found -> assert false in List.iter (fun nt -> bnt_array.(nt) <- true) nt_list); (place, inh)::parnt, inh+1, (inh_val, place-1, i, nt, de)::inh_list) ([], inh, inh_list) inh_l in gram_parnt.(rn) <- List.rev parnt; inh, inh_list in for i = 0 to Array.length g - 1 do let a, b = Map_rhs.fold (f i) g.(i) (!inh, !inh_list) in inh := a; inh_list := b done; let inherited = Array.make !inh ([],-1,-1,-1,false) in let _ = List.fold_left (fun i (inh_val, nbarg, lhs, nt, de) -> inherited.(i) <- inh_val, nbarg, lhs, nt, de; i+1) 0 (List.rev !inh_list) in (*print_grammar gram_rhs lhs_table; print_g g lhs_of_ind; print_gram_lhs gram_lhs lhs_of_ind;*) gram_lhs, gram_rhs, gram_parnt, bnt_array, lhs_table, new_actions, inherited, rule_options, implicit_rule, left_rec_rule module String_set = Set.Make(Ordered_string) module Ordered_rule = struct type t = (non_ter * priority) * rhs * int (* the int tells whether the rule allows layout characters inside or afterwards *) let compare = Stdlib.compare end module Rule_map = Map.Make(Ordered_rule) let lit_of_nlit str_non_ter (*prio_names*) str_ter (regexp_array:regexp array) symb = match symb with | Ps_Ter t -> (try Ter (str_ter.(t)) with _ -> ((*Printf.printf "t=%d, t-(Array.length str_ter)=%d, regexp_array=%d\n" t (t-(Array.length str_ter)) (Array.length regexp_array);*) Regexp (regexp_array.(t-(Array.length str_ter))) ) ) | Ps_Non_ter (nt,_) -> (*Non_ter (str_non_ter.(nt),nt_prio p prio_names)*) Non_ter (str_non_ter.(nt), No_priority) | Ps_Ter_NL t -> (try Ter_NL (str_ter.(t)) with _ -> Regexp_NL (regexp_array.(t-(Array.length str_ter)))) | Ps_Non_ter_NL (nt,_) -> Non_ter_NL (str_non_ter.(nt), No_priority) (*Non_ter_NL (str_non_ter.(nt),nt_prio p prio_names)*) let nl_inside = [No_layout_inside] let nl_follows = [No_layout_follows] let nl_inside_nl_follows = [No_layout_inside;No_layout_follows] let make_rn_of_rule (gram_rhs:rhs array) rule_options lhs_table str_non_ter (*prio_names*) str_ter (regexp_array:regexp array) = let n = Array.length gram_rhs in let rn_of_rule = Hashtbl.create n in for i=0 to n-1 do let nt,_,_ = lhs_table.(i) in let litl = List.map (lit_of_nlit str_non_ter (*prio_names*) str_ter regexp_array) (list_of_array gram_rhs.(i)) in let rol = match rule_options.(i) with | 3 -> [] | 2 -> nl_inside | 1 -> nl_follows | 0 -> nl_inside_nl_follows | _ -> assert false in Hashtbl.add rn_of_rule (*(str_non_ter.(nt),litl,prio_names.(p),rol) i*) (str_non_ter.(nt),litl,"",rol) i done; rn_of_rule let find_lhspm nt lhs_prio_map = try String_map.find nt lhs_prio_map with Not_found -> String_set.empty let string_of_nt_prio = function | No_priority -> "(_)", None | Eq_priority p -> "("^p^")", Some p | Less_priority p -> "(<"^p^")", Some p | Lesseq_priority p -> "(<="^p^")", Some p | Greater_priority p -> "(>"^p^")", Some p | Greatereq_priority p -> "(>="^p^")", Some p let string_prio_of_nt_prio ntp = match string_of_nt_prio ntp with | _, (Some p) -> p | _, None -> "" let add_prio_nt nt_prio_map lhs_prio_map priodata nt_table ntntp_ht ntp_ntl_ht = String_map.fold (fun nt_lhs (nt, ntp) ral -> let ps = find_lhspm nt lhs_prio_map in let ps = String_set.fold (fun p s -> Prio_set.add (try Hashtbl.find priodata.prd_ind p with Not_found -> assert false) s) ps Prio_set.empty in let pset, is_eq = match ntp with | No_priority -> ps, false | Less_priority p -> let i = try Hashtbl.find priodata.prd_ind p with Not_found -> assert false in Prio_set.inter (fst priodata.prd_rel.(i)) ps, false | Lesseq_priority p -> let i = try Hashtbl.find priodata.prd_ind p with Not_found -> assert false in Prio_set.inter (Prio_set.add i (fst priodata.prd_rel.(i))) ps, false | Greater_priority p -> let i = try Hashtbl.find priodata.prd_ind p with Not_found -> assert false in Prio_set.inter (snd priodata.prd_rel.(i)) ps, false | Greatereq_priority p -> let i = try Hashtbl.find priodata.prd_ind p with Not_found -> assert false in Prio_set.inter (Prio_set.add i (snd priodata.prd_rel.(i))) ps, false | Eq_priority p -> let i = try Hashtbl.find priodata.prd_ind p with Not_found -> assert false in (if Prio_set.mem i ps then Prio_set.add i Prio_set.empty else Prio_set.empty), true in let lhs = try Hashtbl.find nt_table nt_lhs with Not_found -> assert false in let ral, nt_list = Prio_set.fold (fun i (ral, nt_list) -> let p = priodata.prd_names.(i) in (*Printf.printf "add %s -> %s\n" nt_lhs (nt^"("^p^")");*) let nt = try Hashtbl.find nt_table (nt^"("^p^")") with Not_found -> assert false in let s = try Hashtbl.find ntntp_ht nt with Not_found -> Int_set.empty in Hashtbl.replace ntntp_ht nt (Int_set.add lhs s); if is_eq then ral, nt_list else let rule = (lhs, [Ps_Non_ter (nt, No_priority)], 0, 3) in let action = Dypgen_action (fun _ _ _ _ _ _ _ _ _ -> (*match ol with | [x] -> x, true, false, gd, ld, [], [], [], None, None | _ ->*) assert false) in (rule, action, [], true, false)::ral, (* true means it is an implicit rule *) nt::nt_list) pset (ral, []) in Hashtbl.add ntp_ntl_ht lhs nt_list; ral) nt_prio_map [] let make_grammar ral old_ral (relations:string list list) ppar ter_table str_ter regexp_table nt_cons_map = let token_nb = Hashtbl.length ter_table in let fold_rhs (nts, ps, ntpm, ntcm) = function | (Non_ter (nt, ntp)) | (Non_ter_NL (nt, ntp)) -> let prio, p = string_of_nt_prio ntp in String_set.add (nt^prio) nts, (match p with Some p -> String_set.add p ps | None -> ps), (String_map.add (nt^prio) (nt, ntp) ntpm), (try let cons = String_map.find nt nt_cons_map in String_map.add (nt^prio) cons ntcm with Not_found -> ntcm) | Ter _ | Ter_NL _ | Regexp _ | Regexp_NL _ -> nts, ps, ntpm, ntcm in let nt_set, prio_set, nt_prio_map, lhs_prio_map, ntcm = List.fold_left (fun (nts, ps, ntpm, lhspm, ntcm) ((lhs, rhs, p, _), _, _) -> let nts = String_set.add (lhs^"("^p^")") nts in let nts = String_set.add (lhs^"(_)") nts in let ntpm = String_map.add (lhs^"(_)") (lhs, No_priority) ntpm in let ntpm = String_map.add (lhs^"("^p^")") (lhs, Eq_priority p) ntpm in let cons = try String_map.find lhs nt_cons_map with Not_found -> assert false in let ntcm = String_map.add (lhs^"("^p^")") cons ntcm in let ntcm = String_map.add (lhs^"(_)") cons ntcm in let ps = String_set.add p ps in let lhsps = find_lhspm lhs lhspm in let lhspm = String_map.add lhs (String_set.add p lhsps) lhspm in let nts, ps, ntpm, ntcm = List.fold_left fold_rhs (nts, ps, ntpm, ntcm) rhs in nts, ps, ntpm, lhspm, ntcm) (String_set.empty, String_set.empty, String_map.empty, String_map.empty, String_map.empty) (old_ral@ral) in let prio_set = List.fold_left (fun prio_set l -> List.fold_left (fun prio_set p -> String_set.add p prio_set) prio_set l) prio_set relations in let pr_nb = String_set.cardinal prio_set (*+ 1*) in let prio_table = Hashtbl.create pr_nb in let fold_ht ht str n = Hashtbl.add ht str n; (n+1) in let nt_set_card = String_set.cardinal nt_set in let nt_table = Hashtbl.create nt_set_card in let _ = String_set.fold (fold_ht nt_table) nt_set 0 in let cons_of_nt = Array.make (String_set.cardinal nt_set) 0 in let f nt cons = try let i = Hashtbl.find nt_table nt in cons_of_nt.(i) <- cons with Not_found -> () (* nt_cons_map may contains non terminals that are not in any rules in the case of addition of new rules at parsing time one uses create_parsing_device just for the set of new rules but one reuses the nt_cons_map of the previous grammar with the possible addition of new pairs (nt,cons) for new non terminals. *) in String_map.iter f ntcm; let _ = String_set.fold (fold_ht prio_table) prio_set 0 in (*let regexp_table = Hashtbl.create 10 in*) let re_id = ref (token_nb + (Hashtbl.length regexp_table)) in let regexp_list = (ref []),(ref []) in let regexp_actions = (ref []),(ref []) in let make_regexp re = if not ppar.use_dyplex then failwith "make_grammar: Regular expression not allowed in a rule when using an external lexer generator."; try Hashtbl.find regexp_table re with Not_found -> (Hashtbl.add regexp_table re !re_id; (match re with | RE_String _ -> (fst regexp_list) := re::(!(fst regexp_list)); (fst regexp_actions) := !re_id:: (!(fst regexp_actions)) | _ -> (snd regexp_list) := re::(!(snd regexp_list)); (snd regexp_actions) := !re_id::(!(snd regexp_actions)) ); incr re_id; !re_id-1) in let make_non_ter nt p = let prio, _ = string_of_nt_prio p in let nt = nt^prio in try (Hashtbl.find nt_table nt, No_priority) with Not_found -> failwith ("make_non_ter did not find non terminal \""^nt^"\"") in let f4 l = match l with | Ter t -> Ps_Ter (try Hashtbl.find ter_table t with Not_found -> raise (Undefined_ter t) (*failwith "make_grammar: terminal not found in table"*)) | Regexp re -> Ps_Ter (make_regexp re) | Non_ter (nt, p) -> Ps_Non_ter (make_non_ter nt p) | Ter_NL t -> Ps_Ter_NL (try Hashtbl.find ter_table t with Not_found -> raise (Undefined_ter t)) | Regexp_NL re ->(* print_endline "Regexp_NL";*) Ps_Ter_NL (make_regexp re) | Non_ter_NL (nt, p) -> Ps_Non_ter_NL (make_non_ter nt p) in let is_left_rec lhs = function | (Non_ter (nt, _))::_ | (Non_ter_NL (nt, _))::_ -> lhs = nt | _ -> false in let f3 ral (((lhs:string),rhs,(p:string),rol),a,inhl) = let ilr = is_left_rec lhs rhs in let lhs = try Hashtbl.find nt_table (lhs^"("^p^")") with Not_found -> assert false in (*let p = Hashtbl.find prio_table p in*) let rhs = List.map f4 rhs in let x = List.fold_left (fun x ro -> match ro with | No_layout_inside -> (lnot 1) land x | No_layout_follows -> (lnot 2) land x) 3 rol in ((lhs, rhs, 0, x), a, inhl, false, ilr)::ral (* false means it is an explicit rule *) in (*Printf.printf "regexp_table len = %d, token_nb = %d\n" (Hashtbl.length regexp_table) token_nb; Hashtbl.iter (fun re i -> Printf.printf "i=%d\n" i) regexp_table;*) let str_non_ter = Array.make (nt_set_card+1) "" in let str_non_ter_prio = Array.make (nt_set_card+1) ("","") in let f5 str n = str_non_ter.(n) <- str; let nt, p = String_map.find str nt_prio_map in let p_str = string_prio_of_nt_prio p in str_non_ter_prio.(n) <- nt, p_str in Hashtbl.iter f5 nt_table; let prio_dat = { prd_rel = Array.make pr_nb (Prio_set.empty,Prio_set.empty); prd_ind = prio_table; prd_names = Array.make pr_nb ""; prd_nb = pr_nb } in let f9 s = try Hashtbl.find prio_table s with Not_found -> assert false in let f8 l = List.map f9 l in let relations = List.map f8 relations in let f7 l = add_list_relations prio_dat l in List.iter f7 relations; let f10 s i = prio_dat.prd_names.(i) <- s in Hashtbl.iter f10 prio_table; let lhs_n = String_map.fold (fun _ s n -> n+(String_set.cardinal s)) lhs_prio_map 0 in let ntntp_ht = Hashtbl.create lhs_n in let implicit_nt_nb = String_map.fold (fun _ _ n -> n+1) nt_prio_map 0 in let ntp_ntl_ht = Hashtbl.create implicit_nt_nb in let ral0 = add_prio_nt nt_prio_map lhs_prio_map prio_dat nt_table ntntp_ht ntp_ntl_ht in let ral = List.fold_left f3 ral0 ral in let user_g = update_user_g ral Urule_map.empty in let regexp_array = Array.make (Hashtbl.length regexp_table) RE_Eof_char in Hashtbl.iter (fun re i -> regexp_array.(i-token_nb) <- re) regexp_table; let g, (*array_nt_prio,*) nt_nb, (*nt_of_ind, prio_of_ind,*) nbr = make_real_grammar user_g (*prio_dat*) str_non_ter nt_table ppar in let gram_lhs, gram_rhs, gram_parnt, bnt_array, lhs_table, actions, inherited, rule_options, implicit_rule, left_rec_rule = make_grams_actions g nbr str_non_ter ntp_ntl_ht in let nt_ntl_array = Array.make (Array.length gram_lhs) Int_set.empty in Hashtbl.iter (fun lhs nts -> (*nt_ntl_array.(lhs) <- (Int_set.fold (fun nt l -> nt::l) nts [])*) nt_ntl_array.(lhs) <- nts) ntntp_ht; let rn_of_rule = make_rn_of_rule gram_rhs rule_options lhs_table str_non_ter (*prio_dat.prd_names*) str_ter regexp_array in (*let lhslists = Array.make nt_nb Ntp_map.empty in*) let po_ht, cyclic_rules = create_po gram_rhs lhs_table (*lhslists prio_dat*) (*array_nt_prio*) (Array.length gram_lhs) str_non_ter (*nt_of_ind*) (*prio_of_ind*) in (*print_grammar stdout gram_rhs lhs_table str_non_ter prio_dat.prd_names str_ter regexp_array;*) (*print_nt_ntl_array stdout nt_ntl_array str_non_ter;*) gram_lhs, gram_rhs, lhs_table, actions, inherited, nt_nb, po_ht, user_g, (*array_nt_prio, nt_of_ind, prio_of_ind,*) nt_table, str_non_ter, str_non_ter_prio, (*prio_dat,*) rn_of_rule, regexp_table, ((List.rev !(fst regexp_list)), (List.rev !(snd regexp_list))), ((List.rev !(fst regexp_actions)), (List.rev !(snd regexp_actions))), regexp_array, rule_options, (*lhslists,*) cyclic_rules, gram_parnt, bnt_array, cons_of_nt, nt_ntl_array, implicit_rule, left_rec_rule (*let create_interm_pdev rapf_list relations global_data local_data nt_cons_map entry_point_list ppar regexp_decl main_lexer aux_lexer token_nb str_ter ter_table pdev = let gram_lhs,gram_rhs,lhs_table,actions,user_nt_nb,ist_nt_nb, po_array,user_g, array_nt_prio,nt_of_ind, prio_of_ind, nt_table, str_non_ter, priority_data, rn_of_rule, regexp_table, regexp_list, regexp_actions, regexp_array, allow_layout = make_grammar rapf_list relations ppar ter_table str_ter ppar.regexp_fun (*token_nb*) pdev.regexp_table in let regexp_nb = (List.length (fst regexp_list)) + (List.length (snd regexp_list)) in let new_token_nb = token_nb + regexp_nb in let entry_point_list = List.map (fun ep -> Hashtbl.find nt_table ep) entry_point_list in let cons_of_nt = Array.make (Array.length str_non_ter) 0 in let f nt cons = try let i = Hashtbl.find nt_table nt in cons_of_nt.(i) <- cons with Not_found -> () (* nt_cons_map may contains non terminals that are not in any rules in the case of addition of new rules at parsing time one uses create_parsing_device just for the set of new rules but one reuses the nt_cons_map of the previous grammar with the possible addition of new pairs (nt,cons) for new non terminals. *) in String_map.iter f nt_cons_map; let lhslists = Array.make ist_nt_nb Ntp_map.empty in let time1 = Sys.time () in let _, r_L = compute_L gram_rhs gram_lhs lhslists priority_data array_nt_prio in let time2 = Sys.time () in if !dypgen_verbose>1 then Printf.fprintf !log_channel "r_L computed, %.3f sec\n" (time2-.time1); let state_list, n, stations, entry_points, is_trace = create_aut gram_rhs gram_lhs r_L priority_data 0 array_nt_prio nt_of_ind prio_of_ind ist_nt_nb lhslists lhs_table str_non_ter entry_point_list ppar new_token_nb str_ter regexp_array in (*print_gram_lhs gram_lhs lhs_of_ind str_non_ter;*) let table, table_it, table_lit_trans(*, table_lex_trans*) = make_table state_list n (Array.length gram_lhs) gram_rhs lhs_table nt_of_ind prio_of_ind array_nt_prio ppar new_token_nb str_ter str_non_ter pdev.prio.prd_names regexp_array in let rnb = Array.length gram_rhs in let actions = Array.make rnb [] in List.iter (fun (r,a) -> let i = Hashtbl.find rn_of_rule r in actions.(i) <- a::actions.(i)) rapf_list; { gram_rhs = gram_rhs ; gram_lhs = gram_lhs ; lhs_table = lhs_table ; entry_points = entry_points ; g_nb = 0; lex_nb = 0; nt_table = nt_table ; stations = stations ; state_list = state_list ; is_trace = is_trace; array_nt_prio = array_nt_prio; st_nb = n; table = table ; table_it = table_it ; (*table_lex_trans = table_lex_trans ;*) table_lit_trans = table_lit_trans ; lhslists = lhslists ; r_L = r_L ; po = po_array ; data = global_data; loc_data = local_data ; prio = priority_data ; nt_nb = Array.length gram_lhs; token_nb = new_token_nb; prio_of_ind = prio_of_ind; nt_of_ind = nt_of_ind; str_non_ter = str_non_ter; cons_of_nt = cons_of_nt; relations = relations; nt_cons_map = nt_cons_map; rn_of_rule = rn_of_rule; entry_point = 0; actions = actions; regexp_decl = pdev.regexp_decl; main_lexer_start = pdev.main_lexer_start; main_lexer_table = pdev.main_lexer_table; main_lexer_actions = pdev.main_lexer_actions; aux_lexer = pdev.aux_lexer; str_ter = pdev.str_ter; ter_table = pdev.ter_table; layout_id = pdev.layout_id; regexp_table = pdev.regexp_table; regexp_array = pdev.regexp_array; allow_layout = allow_layout }*) let create_parsing_device ra_list relations (*global_data local_data*) nt_cons_map entry_point_list ppar regexp_decl_list main_lexer aux_lexer token_nb str_ter ter_table = let gram_lhs, gram_rhs, lhs_table, actions, inherited, nt_nb, po_ht, _, nt_table, str_non_ter, str_non_ter_prio, rn_of_rule, regexp_table, regexp_list, regexp_actions, regexp_array, rule_options, cyclic_rules, gram_parnt, bnt_array, cons_of_nt, nt_ntl_array, implicit_rule, left_rec_rule = make_grammar ra_list [] relations ppar ter_table str_ter (Hashtbl.create 10) nt_cons_map in let regexp_nb = (List.length (fst regexp_list)) + (List.length (snd regexp_list)) in let new_token_nb = token_nb + regexp_nb in let entry_point_list = List.map (fun ep -> try Hashtbl.find nt_table (ep^"(_)") with Not_found -> assert false) entry_point_list in (*let cons_of_nt = Array.make (Array.length str_non_ter) 0 in let f nt cons = try let i = Hashtbl.find nt_table nt in cons_of_nt.(i) <- cons with Not_found -> () (* nt_cons_map may contains non terminals that are not in any rules in the case of addition of new rules at parsing time one uses create_parsing_device just for the set of new rules but one reuses the nt_cons_map of the previous grammar with the possible addition of new pairs (nt,cons) for new non terminals. *) in String_map.iter f nt_cons_map;*) (*let lhslists = Array.make nt_nb Ntp_map.empty in*) let time1 = Sys.time () in let r_L = compute_L gram_rhs gram_lhs (*lhslists priority_data array_nt_prio*) in let time2 = Sys.time () in if !dypgen_verbose>1 then Printf.fprintf !log_channel "r_L computed, %.3f sec\n" (time2-.time1); let state_list, n, stations, entry_points, is_trace = create_aut gram_rhs gram_lhs gram_parnt bnt_array r_L (*priority_data*) 0 (*array_nt_prio nt_of_ind prio_of_ind*) nt_nb (*lhslists*) lhs_table str_non_ter entry_point_list ppar new_token_nb str_ter regexp_array implicit_rule in (*print_gram_lhs gram_lhs lhs_of_ind str_non_ter;*) let table, table_it, table_lit_trans, state_bnt, state_is_mergeable = make_table state_list n (Array.length gram_lhs) gram_rhs lhs_table (*nt_of_ind prio_of_ind array_nt_prio*) ppar new_token_nb str_ter str_non_ter (*priority_data.prd_names*) regexp_array in (*let rnb = Array.length gram_rhs in let actions = Array.make rnb [] in List.iter (fun (r,a) -> let i = Hashtbl.find rn_of_rule r in actions.(i) <- a::actions.(i)) ra_list;*) let regexp_decl = compile_regexp_decl regexp_decl_list in let rl = List.map (fun (_,r) -> r) (fst main_lexer) in let rl = (fst regexp_list)@rl@(snd regexp_list) in let main_table, main_start = make_lexer regexp_decl rl in (*let regexp_actions_array = Array.make regexp_nb (0,ppar.regexp_fun) in*) let mla_nb = (Array.length (snd main_lexer)) in (*Printf.printf "mla_nb=%d, regexp_nb=%d\nregexp_actions len = %d %d\nregexp_list len = %d %d\n" mla_nb regexp_nb (List.length (fst regexp_actions)) (List.length (snd regexp_actions)) (List.length (fst regexp_list)) (List.length (snd regexp_list));*) let main_lexer_actions = Array.make (mla_nb+regexp_nb) ppar.regexp_fun in let main_lexer_ter_id = Array.make (mla_nb+regexp_nb) 0 in let i = List.fold_left (fun i x -> main_lexer_ter_id.(i) <- x; i+1) 0 (fst regexp_actions) in let arr = snd main_lexer in for j=0 to mla_nb-1 do main_lexer_actions.(j+i) <- snd arr.(j); main_lexer_ter_id.(j+i) <- fst arr.(j) done; let _ = List.fold_left (fun i x -> main_lexer_ter_id.(i) <- x; i+1) (i+mla_nb) (snd regexp_actions) in let aux_nb = List.length aux_lexer in let aux_table = Hashtbl.create aux_nb in let aux_start = Hashtbl.create aux_nb in let aux_actions = Hashtbl.create aux_nb in List.iter (fun (name,(rl,al)) -> let table, start = make_lexer regexp_decl rl in Hashtbl.add aux_table name table; Hashtbl.add aux_start name start; Hashtbl.add aux_actions name (array_of_list al)) aux_lexer; { ra_list = ra_list; gram_rhs = gram_rhs ; gram_lhs = gram_lhs ; gram_parnt = gram_parnt ; bnt_array = bnt_array ; (*dypgen_epsilon = (try Hashtbl.find nt_table "dypgen__epsilon" with Not_found -> -1);*) lhs_table = lhs_table ; entry_points = entry_points ; g_nb = 0; lex_nb = 0; nt_table = nt_table ; stations = stations ; state_list = state_list ; is_trace = is_trace; (*array_nt_prio = array_nt_prio;*) st_nb = n; table = table ; state_bnt = state_bnt ; state_is_mergeable = state_is_mergeable ; table_it = table_it ; (*table_lex_trans = table_lex_trans ;*) table_lit_trans = table_lit_trans ; (*lhslists = lhslists ;*) r_L = r_L ; po = po_ht ; cyclic_rules = cyclic_rules ; (*data = global_data;*) (*loc_data = local_data ;*) (*prio = priority_data ;*) nt_nb = Array.length gram_lhs; token_nb = new_token_nb; (*prio_of_ind = prio_of_ind; nt_of_ind = nt_of_ind;*) str_non_ter = str_non_ter; str_non_ter_prio = str_non_ter_prio; cons_of_nt = cons_of_nt; relations = relations; nt_cons_map = nt_cons_map; rn_of_rule = rn_of_rule; entry_point = 0; actions = actions; inherited = inherited; regexp_decl = regexp_decl; regexp_decl_list = regexp_decl_list; main_lexer_start = main_start; main_lexer_table = main_table; main_lexer_actions = main_lexer_actions; main_lexer_ter_id = main_lexer_ter_id; main_lexer_init_id = List.length (fst regexp_actions); aux_lexer = { aux_lexer_start = aux_start; aux_lexer_table = aux_table; aux_lexer_actions = aux_actions }; str_ter = str_ter; ter_table = ter_table; layout_id = (try Hashtbl.find ter_table "__dypgen_layout" with Not_found -> -1 (*assert false*)); regexp_table = regexp_table; (*regexp_actions = regexp_actions_array;*) regexp_array = regexp_array; rule_options = rule_options; nt_ntl_array = nt_ntl_array; implicit_rule = implicit_rule; left_rec_rule = left_rec_rule } (*let array_of_list l = let n = List.length l in let a = Array.make n (List.hd l) in let _ = List.fold_left (fun i x -> a.(i) <- x; i+1) 0 l in ()*) let make_parser ra_list relations global_data local_data nt_cons_map entry_point_list merge_warning token_nb undef_nt get_value get_name str_token global_data_equal local_data_equal test_cons str_cons cons_str cons_table merge_array lexbuf_position_fun regexp_decl_list main_lexer aux_lexer ter_string_list regexp_fun use_dyplex = (*let ra_list = List.map (fun (r,a) -> (r,a,[])) ra_list in*) let ppar = { merge_warning = merge_warning; undef_nt = undef_nt; get_value = get_value; get_name = get_name; str_token = str_token; global_data_equal = global_data_equal; local_data_equal = local_data_equal; find_rightSib_global_data_equal = (fun _ _ -> true); find_rightSib_local_data_equal = (fun _ _ -> true); test_cons = test_cons; str_cons = str_cons; cons_str = cons_str; cons_table = cons_table; merge_array = merge_array; lexbuf_position_fun = lexbuf_position_fun; regexp_fun = regexp_fun; use_dyplex = use_dyplex; use_rule_order = false; use_all_actions = false; main_lexer_action_nb = List.length (fst main_lexer) } in (* Here token_nb is the number of named terminals, in parsing device it is the sum of this number and the number of regexp used in rhs of parser rules. *) (*let main_lex_re, main_lex_act = main_lexer in let len, main_lex_act = match main_lex_act with | [] -> 0, [] | _::t -> (List.length t), t in let main_lex_actions = Array.make len (0,regexp_fun) in let _ = List.fold_left (fun i x -> main_lex_actions.(i) <- x; i+1) 0 main_lex_act in let main_lexer = main_lex_re, main_lex_actions in*) let main_lexer = match main_lexer with | ("dummy_entry",_)::_, _ -> [],[||] | a, b -> a, array_of_list b in let str_ter = Array.make token_nb "" in let ter_table = Hashtbl.create token_nb in List.iter (fun (name,id) -> str_ter.(id) <- name; Hashtbl.add ter_table name id) ter_string_list; let pdev = create_parsing_device ra_list relations nt_cons_map entry_point_list ppar regexp_decl_list main_lexer aux_lexer token_nb str_ter ter_table in { pp_dev = pdev; pp_par = ppar; pp_gd = global_data; pp_ld = local_data } module Ordered_edge = struct type t = lit_trans * priority let compare = Stdlib.compare end module Edge_map = Map.Make(Ordered_edge) let compute_nt_to_add is gram_rhs r_L (*array_nt_prio lhslists prio_dat*) non_kernel_array = let aux (rn,dp) (nt_to_add,nk) = try (match gram_rhs.(rn).(dp) with | Ps_Non_ter nt | Ps_Non_ter_NL nt -> ((*let lhs_l = comp_lhslist nt lhslists prio_dat array_nt_prio in*) let g1 nt_to_add ind = Int_set.add ind nt_to_add in let g2 nt_to_add (ind,_) = let ind_list = r_L.(ind) in List.fold_left g1 nt_to_add ind_list in (g2 nt_to_add nt), if non_kernel_array.(rn) then nk else (non_kernel_array.(rn) <- true; rn::nk)) | _ -> nt_to_add,nk) with Invalid_argument _ -> nt_to_add,nk in let nt_to_add,nk = Intc_set.fold aux is.kernel_nt (Int_set.empty,is.non_kernel) in is.non_kernel <- nk; List.iter (fun rn -> non_kernel_array.(rn) <- false) nk; nt_to_add (*let consider_priorities pdev_list state_lists old_is_trace (*priodata array_nt_prio lhslists*) r_L st_nb ind_subst diff_lhslist gram_rhs gram_lhs gram_parnt bnt_array lhs_table (*nt_of_ind prio_of_ind*) str_non_ter succ_states_array non_kernel_array = let token_nb = List.fold_left (fun tn p -> max p.token_nb tn) 0 pdev_list in let array_lt_ter = Array.make token_nb None in let array_lt_ter_nl = Array.make token_nb None in (*let splitting_ter = Array.make token_nb false in*) let nt_nb = Array.length gram_lhs in let array_lt_nt = Array.make nt_nb None in let array_lt_nt_nl = Array.make nt_nb None in (*let splitting_nt = Array.make (Array.length str_non_ter) false in*) countst := st_nb; let array_lhs = Array.make nt_nb false in (*let aux_nt (is_list,lt_list) lhs = let (_,_,ind) = lhs in match array_lt_nt.(ind) with | None -> let is = new_item_set () in array_lt_nt.(ind) <- Some is; is::is_list,(Ps_Non_ter lhs)::lt_list | Some is -> is::is_list,lt_list in let aux_nt_nl (is_list,lt_list,nl_list) lhs = let (_,_,ind) = lhs in match array_lt_nt_nl.(ind) with | None -> let is = new_item_set () in array_lt_nt_nl.(ind) <- Some is; is::is_list,(Ps_Non_ter_NL lhs)::lt_list,(ind,is)::nl_list | Some is -> is::is_list,lt_list,nl_list in*) let f i pdev = let rec map_succ v = (*Printf.fprintf !log_channel "-state built-\n"; print_state v gram_rhs lhs_table nt_of_ind prio_of_ind str_non_ter str_token_name prio_dat.prd_names; Printf.fprintf !log_channel "\n"; flush_all ();*) (*Printf.printf "build state %d\n" v.number; flush_all ();*) let vl = move_LR0 v old_is_trace.(i) gram_rhs gram_lhs gram_parnt bnt_array r_L priodata array_nt_prio lhslists array_lt_ter array_lt_ter_nl array_lt_nt array_lt_nt_nl (*splitting_ter splitting_nt*) array_lhs succ_states_array non_kernel_array in List.iter map_succ vl in let (is_trace_tok, is_trace_tok_nl), (is_trace_nt, is_trace_nt_nl) = old_is_trace.(i) in let g ntp_map s = (*Printf.fprintf !log_channel "consider_priorities s.number=%d\n" s.number; Printf.fprintf !log_channel "kernel_nt size=%d\n" (Intc_set.cardinal s.items.kernel_nt); print_state s gram_rhs lhs_table nt_of_ind prio_of_ind str_non_ter E.str_token_name priodata.prd_names;*) (*let spl_ter_l, spl_nt_l = splitting_symbol s gram_rhs bnt_array splitting_ter splitting_nt in*) let h (rn,dp) (lt_list, nl_list, ntp_map) = (*print_kernel !log_channel gram_rhs lhs_table str_non_ter E.str_token_name priodata.prd_names (rn,dp);*) let rhs = gram_rhs.(rn) in let (is_list, lt_list), nl_list, ntp_map = match rhs.(dp) with | Ps_Non_ter nt -> let lhslist, ntp_map = diff_lhslist nt ntp_map pdev lhslists priodata array_nt_prio ind_subst.(i) in List.fold_left (aux_move_nt array_lt_nt (*splitting_nt*)) ([],lt_list) lhslist, nl_list, ntp_map | Ps_Ter _ | Ps_Ter_NL _ -> ([],lt_list), nl_list, ntp_map | Ps_Non_ter_NL nt -> let lhslist, ntp_map = diff_lhslist nt ntp_map pdev lhslists priodata array_nt_prio ind_subst.(i) in let a, b, c = List.fold_left (aux_move_nt_nl array_lt_nt_nl (*splitting_nt*)) ([],lt_list, nl_list) lhslist in (a, b), c, ntp_map in List.iter (if dp+1 = Array.length rhs then (fun is -> is.reducible <- Int_set.add rn is.reducible) else match rhs.(dp+1) with | Ps_Ter _ | Ps_Ter_NL _ -> (fun is -> is.kernel_t <- Intc_set.add (rn,dp+1) is.kernel_t) | Ps_Non_ter nt | Ps_Non_ter_NL nt -> (fun is -> (is.kernel_nt <- Intc_set.add (rn,dp+1) is.kernel_nt))) is_list; lt_list, nl_list, ntp_map in let lt_list, nl_list, ntp_map = Intc_set.fold h s.items.kernel_nt ([],[],ntp_map) in let h2 (lt_list, nl_list, ntp_map) rn = h (rn,0) (lt_list, nl_list, ntp_map) in let lt_list, nl_list, ntp_map = List.fold_left h2 (lt_list, nl_list, ntp_map) s.items.non_kernel in (*Intc_set.iter (print_kernel !log_channel gram_rhs lhs_table str_non_ter str_token_name priority_names) is.kernel_nt;*) (*List.iter (fun x -> splitting_ter.(x) <- false) spl_ter_l; List.iter (fun x -> splitting_nt.(x) <- false) spl_nt_l;*) (*let add_to_is is0 is1op = match is1op with | None -> () | Some is1 -> is0.kernel_nt <- Intc_set.union is0.kernel_nt is1.kernel_nt; is0.kernel_t <- Intc_set.union is0.kernel_t is1.kernel_t; is0.reducible <- Int_set.union is0.reducible is1.reducible in*) add_items_to_nl_state array_lt_ter array_lt_nt nl_list; (*List.iter (fun (ind, is0) -> add_to_is is0 array_lt_nt.(ind)) nl_list;*) let prd_nb = priodata.prd_nb in List.iter (fun (s,p) -> ga_set succ_states_array (s.number*prd_nb+p) true) s.succ_states; let f2 (vl, succ_states_list) symb = let is_opt, prio = match symb with | Ps_Non_ter (_,prio,ind) -> array_lt_nt.(ind), prio | Ps_Non_ter_NL (_,prio,ind) -> array_lt_nt_nl.(ind), prio | _ -> assert false in match is_opt with Some is -> close_state is_trace_tok is_trace_tok_nl is_trace_nt is_trace_nt_nl succ_states_array prd_nb gram_rhs gram_lhs gram_parnt lhslists priodata array_nt_prio r_L non_kernel_array symb prio (vl, succ_states_list) is | None -> assert false (*let it_nb = (Int_set.cardinal is.reducible) + (Intc_set.cardinal is.kernel_nt) + (Intc_set.cardinal is.kernel_t) in let old_reducible = is.reducible in (* epsilon rules may be added to reducible by closure_LR0 *) try let v1 = match symb with | Ps_Non_ter (nt,_,_) -> Map_is.find (is,it_nb) (fst (snd old_is_trace.(i))).(nt) | Ps_Non_ter_NL (nt,_,_) -> Map_is.find (is,it_nb) (snd (snd old_is_trace.(i))).(nt) | _ -> assert false in let succ_states_list = if ga_get succ_states_array (v1.number*prd_nb+prio) then succ_states_list else (ga_set succ_states_array (v1.number*prd_nb+prio) true; (v1,prio)::succ_states_list) in vl, succ_states_list with Not_found -> let f1 (rn,dp) (nt_to_add,predict) = match gram_rhs.(rn).(dp) with | Ps_Non_ter nt | Ps_Non_ter_NL nt -> let lhs_l = comp_lhslist nt lhslists priodata array_nt_prio in let g1 nt_to_add ind = Int_set.add ind nt_to_add in let g2 nt_to_add (_,_,ind) = let ind_list = r_L.(ind) in List.fold_left g1 nt_to_add ind_list in (List.fold_left g2 nt_to_add lhs_l), Predict.add nt predict | Ps_Ter _ | Ps_Ter_NL _ -> assert false in let nt_to_add, predict = Intc_set.fold f1 is.kernel_nt (Int_set.empty,Predict.empty) in let g nk rn = if non_kernel_array.(rn) then nk else (non_kernel_array.(rn) <- true; rn::nk) in let f ind (nk,red) = match gram_lhs.(ind) with | rn_l, None -> List.fold_left g nk rn_l, red | rn_l, (Some rn) -> List.fold_left g nk rn_l, Int_set.add rn red in let non_kernel,reducible = Int_set.fold f nt_to_add ([],is.reducible) in List.iter (fun rn -> non_kernel_array.(rn) <- false) non_kernel; let predict = List.fold_left (fun predict rn -> try (match gram_rhs.(rn).(0) with | Ps_Non_ter nt | Ps_Non_ter_NL nt -> Predict.add nt predict | _ -> predict) with Invalid_argument _ -> assert false) predict non_kernel in is.predict <- predict; is.reducible <- reducible; is.non_kernel <- non_kernel; let v1 = { li = lit_of_symb symb; items = is; number = !countst; mergeable = is_mergeable is gram_parnt; bestowing_nt = make_bestowing_nt is gram_parnt gram_rhs lhslists priodata array_nt_prio; succ_states = [] } in incr countst; let old_is = { is with reducible = old_reducible } in let () = match symb with | Ps_Non_ter (nt,_,_) -> (fst (snd old_is_trace.(i))).(nt) <- Map_is.add (old_is,it_nb) v1 (fst (snd old_is_trace.(i))).(nt) | Ps_Non_ter_NL (nt,_,_) -> (snd (snd old_is_trace.(i))).(nt) <- Map_is.add (old_is,it_nb) v1 (snd (snd old_is_trace.(i))).(nt) | _ -> assert false in ga_set succ_states_array (v1.number*prd_nb+prio) true; v1::vl, (v1,prio)::succ_states_list*) in (* ends let f2 ... *) let vl, succ_states_list = List.fold_left f2 ([],s.succ_states) lt_list in s.succ_states <- succ_states_list; List.iter (fun (s,p) -> !succ_states_array.(s.number*prd_nb+p) <- false) s.succ_states; let clear_array symb = match symb with | Ps_Ter t -> array_lt_ter.(t) <- None | Ps_Non_ter (_,_,ind) -> array_lt_nt.(ind) <- None | Ps_Ter_NL t -> array_lt_ter_nl.(t) <- None | Ps_Non_ter_NL (_,_,ind) -> array_lt_nt_nl.(ind) <- None in List.iter clear_array lt_list; List.iter map_succ vl; ntp_map in (* ends let g ... *) let _ = List.fold_left g Ntp_map.empty state_lists.(i) in i+1 in (* ends let f ... *) let _ = List.fold_left f 0 pdev_list in ()*) (* to be improved: memoize the resulting list for a couple (nt,ntp) too, instead of just the result for ntp. *) (*let diff_lhslist nt_of_ind prio_of_ind str_non_ter (nt,ntp) ntp_map pdev lhslists priodata array_nt_prio ind_subst = (*Printf.fprintf !log_channel "diff_lhslist nt=%s ntp=%s\n" str_non_ter.(nt) (str_nt_prio ntp priodata.prd_names);*) try let prio_l = Ntp_map.find ntp ntp_map in (*Printf.fprintf !log_channel "diff_lhslist prio_l = "; List.iter (fun p -> Printf.fprintf !log_channel "%s " priodata.prd_names.(p)) prio_l; Printf.fprintf !log_channel "\n";*) List.map (fun p -> nt,p,Prio_map.find p array_nt_prio.(nt)) prio_l, ntp_map with Not_found -> let new_lhslist = comp_lhslist (nt,ntp) lhslists priodata array_nt_prio in let new_lhslist = List.sort Stdlib.compare new_lhslist in try let old_nt = make_old_nt nt ntp pdev priodata str_non_ter in let old_lhslist = comp_lhslist old_nt pdev.lhslists pdev.prio pdev.array_nt_prio in let old_lhslist = List.map (fun (nt,p,i) -> let i = ind_subst.(i) in nt_of_ind.(i),prio_of_ind.(i),i) old_lhslist in let old_lhslist = List.sort Stdlib.compare old_lhslist in let l = diff_list new_lhslist old_lhslist [] in let prio_l = List.map (fun (_,p,_) -> p) l in (*Printf.fprintf !log_channel "diff_lhslist res = "; List.iter (fun p -> Printf.fprintf !log_channel "%s " priodata.prd_names.(p)) prio_l; Printf.fprintf !log_channel "\n";*) l, Ntp_map.add ntp prio_l ntp_map with External_prio -> [], Ntp_map.add ntp [] ntp_map*) let new_start_state is key_is lit_trans _ is_trace state_list gram_rhs gram_lhs gram_parnt _ r_L non_kernel_array map_succ = let key = key_is, (Int_set.cardinal key_is.reducible) + (Intc_set.cardinal key_is.kernel_t) + (Intc_set.cardinal key_is.kernel_nt) in try let state_ind = match lit_trans with | Ps_Ter t -> (Map_is.find key (fst (fst is_trace)).(t)).number | Ps_Non_ter nt -> (Map_is.find key (fst (snd is_trace)).(nt)).number | Ps_Ter_NL t -> (Map_is.find key (snd (fst is_trace)).(t)).number | Ps_Non_ter_NL nt -> (Map_is.find key (snd (snd is_trace)).(nt)).number in (*Printf.printf "state_ind = %d\n" state_ind;*) state_list, (Some state_ind), is_trace with Not_found -> let nt_to_add = compute_nt_to_add key_is gram_rhs r_L non_kernel_array in closure_v0_LR0 key_is gram_rhs gram_lhs nt_to_add non_kernel_array; let v = { li = Ps_Ter (-1); items = key_is; (* is instead of key_is here doesn't produce any bug !? *) number = !countst; mergeable = is_mergeable is gram_parnt; bestowing_nt = make_bestowing_nt is gram_parnt; succ_states = [] } in let state_ind = !countst in incr countst; let is_trace, state_list = map_succ (is_trace,[]) v in state_list, (Some state_ind), is_trace let make_key_single is0 gram_rhs = let is = new_item_set () in is.reducible <- Int_set.union is.reducible (Int_set.filter (fun rn -> Array.length gram_rhs.(rn)>0) is0.reducible); is.kernel_t <- Intc_set.union is.kernel_t is0.kernel_t; is.kernel_nt <- Intc_set.union is.kernel_nt is0.kernel_nt; is, (Int_set.cardinal is.reducible) + (Intc_set.cardinal is.kernel_t) + (Intc_set.cardinal is.kernel_nt) let rule_of_nrule (gram_rhs:rhs array) rule_options lhs_table str_non_ter str_ter regexp_array rn = (*Printf.fprintf !log_channel "Array.length gram_rhs=%d, rn=%d\n" (Array.length gram_rhs) rn;*) let len = Array.length gram_rhs.(rn) in let rec f i l = if i= -1 then l else f (i-1) ((lit_of_nlit str_non_ter (*prio_names*) str_ter regexp_array gram_rhs.(rn).(i))::l) in let litl = f (len-1) [] in let nt,_,_ = lhs_table.(rn) in let rol = match rule_options.(rn) with | 3 -> [] | 2 -> nl_inside | 1 -> nl_follows | 0 -> nl_inside_nl_follows | _ -> assert false in (*(str_non_ter.(nt),litl,prio_names.(p),rol)*) (str_non_ter.(nt),litl,"",rol) let extend_parsing_device pdev pl is lit_trans ppar = (*if pdev.rule_subst = [||] then print_endline "pdev.rule_subst = [||]";*) let f = rule_of_nrule pl.gram_rhs pl.rule_options pl.lhs_table pl.str_non_ter (*pl.prio.prd_names*) pl.str_ter pl.regexp_array in is.reducible <- Int_set.fold (fun rn red -> let rn = try Hashtbl.find pdev.rn_of_rule (f rn) with Not_found -> assert false in Int_set.add rn red) is.reducible Int_set.empty; is.kernel_t <- Intc_set.fold (fun (rn,x) k -> let rn = try Hashtbl.find pdev.rn_of_rule (f rn) with Not_found -> assert false in Intc_set.add (rn,x) k) is.kernel_t Intc_set.empty; is.kernel_nt <- Intc_set.fold (fun (rn,x) k -> let rn = try Hashtbl.find pdev.rn_of_rule (f rn) with Not_found -> assert false in Intc_set.add (rn,x) k) is.kernel_nt Intc_set.empty; let is, inb = make_key_single is pdev.gram_rhs in let key = is, inb in (*Printf.fprintf !log_channel "extend_parsing_device key is:\n"; print_item_set !log_channel is pdev.gram_rhs pdev.lhs_table pdev.nt_of_ind pdev.prio_of_ind pdev.str_non_ter str_token_name pdev.prio.prd_names;*) let lit_trans = match lit_trans with | Ps_Non_ter nt -> Ps_Non_ter (try Hashtbl.find pdev.nt_table (pl.str_non_ter.(nt)) with Not_found -> assert false) | Ps_Ter t -> Ps_Ter t | Ps_Non_ter_NL nt -> Ps_Non_ter_NL (try Hashtbl.find pdev.nt_table (pl.str_non_ter.(nt)) with Not_found -> assert false) | Ps_Ter_NL t -> Ps_Ter_NL t in try (* ??? bug fst <-> snd ? let s = match lit_trans with | Ps_Non_ter nt -> Map_is.find key (fst pdev.is_trace).(nt) | Ps_Ter t -> Map_is.find key (snd pdev.is_trace).(t) in*) let s = match lit_trans with | Ps_Non_ter nt -> Map_is.find key (fst (snd pdev.is_trace)).(nt) | Ps_Ter t -> Map_is.find key (fst (fst pdev.is_trace)).(t) | Ps_Non_ter_NL nt -> Map_is.find key (snd (snd pdev.is_trace)).(nt) | Ps_Ter_NL t -> Map_is.find key (snd (fst pdev.is_trace)).(t) in s.number, pdev with Not_found -> let array_lt_ter = Array.make pdev.token_nb None in let array_lt_ter_nl = Array.make pdev.token_nb None in (*let splitting_ter = Array.make pdev.token_nb false in*) let nt_nb = Array.length pdev.gram_lhs in let array_lt_nt = Array.make nt_nb None in let array_lt_nt_nl = Array.make nt_nb None in (*let splitting_nt = Array.make (Array.length pdev.str_non_ter) false in*) (*Gc.set { (Gc.get()) with Gc.space_overhead = 100 };*) let array_lhs = Array.make nt_nb false in (*let succ_states_array = ref (Array.make (2*(Array.length pdev.table_it)*pdev.prio.prd_nb) false) in*) let succ_states_array = ref (Array.make (2*(Array.length pdev.table_it)) false) in let non_kernel_array = Array.make (Array.length pdev.gram_rhs) false in let rec map_succ (is_trace,state_list) v = let vl = (*Printf.fprintf !log_channel "-state built-\n"; print_state v pdev.gram_rhs pdev.lhs_table pdev.nt_of_ind pdev.prio_of_ind pdev.str_non_ter str_token_name pdev.prio.prd_names; Printf.fprintf !log_channel "\n"; flush_all ();*) move_LR0 v is_trace pdev.gram_rhs pdev.gram_lhs pdev.gram_parnt pdev.bnt_array pdev.r_L (*pdev.prio*) (*pdev.array_nt_prio pdev.lhslists*) array_lt_ter array_lt_ter_nl array_lt_nt array_lt_nt_nl (*splitting_ter splitting_nt*) array_lhs succ_states_array non_kernel_array in List.fold_left map_succ (is_trace,v::state_list) vl in let nt_to_add = let aux1 (rn,dp) (nt_to_add,nk) = (*is.non_kernel <- Int_set.add rn is.non_kernel;*) try (match pdev.gram_rhs.(rn).(dp) with | Ps_Non_ter nt | Ps_Non_ter_NL nt -> ((*let lhs_l = comp_lhslist nt pdev.lhslists pdev.prio pdev.array_nt_prio in*) (*Printf.fprintf !log_channel "List.length lhs_l=%d\n" (List.length lhs_l);*) let g1 nt_to_add ind = Int_set.add ind nt_to_add in let g2 nt_to_add (ind,_) = let ind_list = pdev.r_L.(ind) in (*Printf.fprintf !log_channel "List.length ind_list=%d\n" (List.length ind_list); List.iter (fun i -> Printf.fprintf !log_channel "%d " i) ind_list; Printf.fprintf !log_channel "\n";*) List.fold_left g1 nt_to_add ind_list in (g2 nt_to_add nt), if non_kernel_array.(rn) then nk else (non_kernel_array.(rn) <- true; rn::nk)) | _ -> assert false) with Invalid_argument _ -> assert false in let nt_to_add, nk = Intc_set.fold aux1 is.kernel_nt (Int_set.empty,[]) in is.non_kernel <- nk; (*List.iter (fun rn -> non_kernel_array.(rn) <- false) nk;*) (* closure_v0_LR0 will clear the array *) nt_to_add (*let aux2 (rn,dp) nt_to_add = aux1 dp rn nt_to_add in let nt_to_add = Intc_set.fold aux2 is.kernel_nt Int_set.empty in Int_set.fold (aux1 0) is.non_kernel nt_to_add*) in closure_v0_LR0 is pdev.gram_rhs pdev.gram_lhs nt_to_add non_kernel_array; countst := pdev.st_nb+1; let predict = List.fold_left (fun predict rn -> try (match pdev.gram_rhs.(rn).(0) with | Ps_Non_ter nt | Ps_Non_ter_NL nt -> Predict.add nt predict | _ -> predict) with Invalid_argument _ -> assert false) Predict.empty is.non_kernel in let predict = Intc_set.fold (fun (rn,dp) predict -> try (match pdev.gram_rhs.(rn).(dp) with | Ps_Non_ter nt | Ps_Non_ter_NL nt -> Predict.add nt predict | _ -> assert false) with Invalid_argument _ -> assert false) is.kernel_nt predict in is.predict <- predict; let v = { li = lit_trans; items = is; number = !countst; mergeable = is_mergeable is pdev.gram_parnt; bestowing_nt = make_bestowing_nt is pdev.gram_parnt; succ_states = [] } in let v_rightSib = !countst in incr countst; let is_trace, state_list = map_succ (pdev.is_trace,pdev.state_list) v in let table, table_it, table_lit_trans, state_bnt, state_is_mergeable = make_table state_list (!countst) (Array.length pdev.gram_lhs) pdev.gram_rhs pdev.lhs_table (*pdev.nt_of_ind pdev.prio_of_ind*) (*pdev.array_nt_prio*) ppar pdev.token_nb pdev.str_ter pdev.str_non_ter (*pdev.prio.prd_names*) pdev.regexp_array in let pdev_rightSib = { pdev with table = table; table_it = table_it; table_lit_trans = table_lit_trans; state_bnt = state_bnt; state_is_mergeable = state_is_mergeable; is_trace = is_trace; state_list = state_list; st_nb = !countst } in v_rightSib, pdev_rightSib let new_rn old_rn old_pdev rn_of_rule = let rule = rule_of_nrule old_pdev.gram_rhs old_pdev.rule_options old_pdev.lhs_table old_pdev.str_non_ter old_pdev.str_ter old_pdev.regexp_array old_rn in try Hashtbl.find rn_of_rule rule with Not_found -> assert false let new_rn_red red old_pdev rn_of_rule = Int_set.fold (fun rn s -> Int_set.add (new_rn rn old_pdev rn_of_rule) s) red Int_set.empty let new_rn_kernel k old_pdev rn_of_rule = Intc_set.fold (fun (rn, dp) s -> Intc_set.add (new_rn rn old_pdev rn_of_rule, dp) s) k Intc_set.empty let update_parsing_device ppar pdev_leftSib new_relations rapf_add new_nt_cons counters start_is lit_trans = let time1_update_parsing_device = Sys.time () in let new_nt_cons = List.map (fun (nt, cons) -> (nt, try Hashtbl.find ppar.cons_table cons with Not_found -> assert false)) new_nt_cons in let nt_cons_map = List.fold_left (fun m (nt, cons) -> try let prev_cons = String_map.find nt m in if prev_cons = cons then m else raise (Constructor_mismatch (ppar.cons_str.(prev_cons), ppar.cons_str.(cons))) with Not_found -> String_map.add nt cons m) pdev_leftSib.nt_cons_map new_nt_cons in let relations = new_relations@pdev_leftSib.relations in (*print_endline "nt_cons_map"; String_map.iter (fun nt cons -> Printf.printf "nt=%s, cons=%s\n" nt ppar.cons_str.(cons)) nt_cons_map; print_newline ();*) let interm_pdev, state_ind = let ra_list, entry_point_list, _, _, _, str_ter, ter_table, pdev = pdev_leftSib.ra_list@rapf_add, [], [], ([],[||]), [], pdev_leftSib.str_ter, pdev_leftSib.ter_table, pdev_leftSib in let gram_lhs, gram_rhs, lhs_table, actions, inherited, nt_nb, po_ht, _, nt_table, str_non_ter, str_non_ter_prio, rn_of_rule, _, regexp_list, regexp_actions, regexp_array, rule_options, cyclic_rules, gram_parnt, bnt_array, cons_of_nt, nt_ntl_array, implicit_rule, left_rec_rule = make_grammar ra_list [] relations ppar ter_table str_ter pdev_leftSib.regexp_table nt_cons_map in (*Printf.printf "regexp_array len=%d\n" (Array.length regexp_array);*) let main_table, main_start, main_lexer_actions, main_lexer_ter_id, main_lexer_init_id, lex_nb = match regexp_list with | [], [] -> pdev.main_lexer_table, pdev.main_lexer_start, pdev.main_lexer_actions, pdev.main_lexer_ter_id, pdev.main_lexer_init_id, pdev.lex_nb | _ -> let prev_mla_nb = Array.length pdev_leftSib.main_lexer_actions in let main_table, main_start = let node_nb = (Array.length pdev_leftSib.main_lexer_table.tbl_trans)/257 in extend_lexer pdev_leftSib.main_lexer_start regexp_list pdev_leftSib.regexp_decl node_nb prev_mla_nb in let main_lexer_init_id = pdev_leftSib.main_lexer_init_id + (List.length (fst regexp_actions)) in let main_lexer_actions = Array.make (prev_mla_nb+(List.length (fst regexp_list))+ (List.length (snd regexp_list))) ppar.regexp_fun in let main_lexer_ter_id = Array.make (Array.length main_lexer_actions) 0 in let i = List.fold_left (fun i x -> main_lexer_ter_id.(i) <- x; i+1) 0 (fst regexp_actions) in let arr1 = pdev_leftSib.main_lexer_ter_id in let arr2 = pdev_leftSib.main_lexer_actions in for j=0 to prev_mla_nb-1 do main_lexer_ter_id.(j+i) <- arr1.(j); main_lexer_actions.(j+i) <- arr2.(j) done; let _ = List.fold_left (fun i x -> main_lexer_ter_id.(i) <- x; i+1) (i+prev_mla_nb) (snd regexp_actions) in counters.count_lex <- counters.count_lex + 1; main_table, main_start, main_lexer_actions, main_lexer_ter_id, main_lexer_init_id, counters.count_lex in (*Printf.printf "main_lexer_actions:\n"; for i=0 to Array.length main_lexer_actions -1 do Printf.printf "%d -> %d\n" i (fst main_lexer_actions.(i)) done; print_newline ();*) (*let regexp_nb = (List.length (fst regexp_list)) + (List.length (snd regexp_list)) in let new_token_nb = token_nb + regexp_nb in*) let new_token_nb = (Hashtbl.length ter_table) + (Array.length regexp_array) in let entry_point_list = List.map (fun ep -> try Hashtbl.find nt_table ep with Not_found -> assert false) entry_point_list in (*let cons_of_nt = Array.make (Array.length str_non_ter) 0 in let f nt cons = try let i = Hashtbl.find nt_table nt in Printf.printf "nt=%s, cons=%s\n" str_non_ter.(i) ppar.cons_str.(cons); cons_of_nt.(i) <- cons with Not_found -> () (* nt_cons_map may contains non terminals that are not in any rules in the case of addition of new rules at parsing time one uses create_parsing_device just for the set of new rules but one reuses the nt_cons_map of the previous grammar with the possible addition of new pairs (nt,cons) for new non terminals. *) in print_endline "cons_of_nt dans interm_pdev"; String_map.iter f nt_cons_map; print_newline ();*) (*let lhslists = Array.make nt_nb Ntp_map.empty in*) let time1 = Sys.time () in let r_L = compute_L gram_rhs gram_lhs (*lhslists*) (*priority_data array_nt_prio*) in let time2 = Sys.time () in if !dypgen_verbose>1 then Printf.fprintf !log_channel "r_L computed, %.3f sec\n" (time2-.time1); let state_list, n, stations, entry_points, is_trace = create_aut gram_rhs gram_lhs gram_parnt bnt_array r_L (*priority_data*) 0 (*array_nt_prio nt_of_ind prio_of_ind*) nt_nb (*lhslists*) lhs_table str_non_ter entry_point_list ppar new_token_nb str_ter regexp_array implicit_rule in (*print_gram_lhs gram_lhs lhs_of_ind str_non_ter;*) let table, table_it, table_lit_trans, state_bnt, state_is_mergeable = make_table state_list n (Array.length gram_lhs) gram_rhs lhs_table (*nt_of_ind prio_of_ind array_nt_prio*) ppar new_token_nb str_ter str_non_ter (*priority_data.prd_names*) regexp_array in let new_nt nt = Hashtbl.find nt_table pdev_leftSib.str_non_ter.(nt) in let lhs_nb = Array.length bnt_array in let array_lt_ter = Array.make new_token_nb None in let array_lt_ter_nl = Array.make new_token_nb None in let array_lt_nt = Array.make lhs_nb None in let array_lt_nt_nl = Array.make lhs_nb None in let array_lhs = Array.make nt_nb false in let new_ssa = ref (Array.make (2*n) false) in let non_kernel_array = Array.make (Array.length gram_rhs) false in let rec map_succ (is_trace, state_list) v = let vl = (*Printf.fprintf !log_channel "-state built-\n"; print_state v gram_rhs lhs_table nt_of_ind prio_of_ind str_non_ter str_token_name priodata.prd_names; Printf.fprintf !log_channel "\n"; flush_all ();*) (*print_state v gram_rhs lhs_table nt_of_ind prio_of_ind str_non_ter pdev.str_ter priodata.prd_names interm_pdev.regexp_array;*) move_LR0 v is_trace gram_rhs gram_lhs gram_parnt bnt_array r_L array_lt_ter array_lt_ter_nl array_lt_nt array_lt_nt_nl array_lhs new_ssa non_kernel_array in List.fold_left map_succ (is_trace,v::state_list) vl in let state_list, state_ind, is_trace = match start_is, lit_trans with | (Some is), (Some lt) -> let lt = match lt with | Ps_Non_ter nt -> Ps_Non_ter (new_nt nt) | Ps_Ter t -> Ps_Ter t | Ps_Non_ter_NL nt -> Ps_Non_ter_NL (new_nt nt) | Ps_Ter_NL t -> Ps_Ter_NL t in let key_is = { reducible = (Int_set.filter (fun rn -> Array.length gram_rhs.(rn)>0) (new_rn_red is.reducible pdev_leftSib rn_of_rule)); kernel_t = new_rn_kernel is.kernel_t pdev_leftSib rn_of_rule; kernel_nt = new_rn_kernel is.kernel_nt pdev_leftSib rn_of_rule; non_kernel = []; predict = Predict.empty } in new_start_state is key_is lt nt_nb is_trace state_list gram_rhs gram_lhs gram_parnt bnt_array r_L non_kernel_array map_succ | _ -> state_list, None, is_trace in { ra_list = ra_list; gram_rhs = gram_rhs ; gram_lhs = gram_lhs ; gram_parnt = gram_parnt ; bnt_array = bnt_array ; lhs_table = lhs_table ; entry_points = entry_points ; g_nb = counters.count_g+1; lex_nb = lex_nb; nt_table = nt_table ; stations = stations ; state_list = state_list ; is_trace = is_trace; st_nb = n; table = table ; state_bnt = state_bnt ; state_is_mergeable = state_is_mergeable ; table_it = table_it ; table_lit_trans = table_lit_trans ; r_L = r_L ; po = po_ht ; cyclic_rules = cyclic_rules ; (*data = global_data;*) (*loc_data = local_data ;*) nt_nb = Array.length gram_lhs; token_nb = new_token_nb; str_non_ter = str_non_ter; str_non_ter_prio = str_non_ter_prio; cons_of_nt = cons_of_nt; relations = relations; nt_cons_map = nt_cons_map; rn_of_rule = rn_of_rule; entry_point = 0; actions = actions; inherited = inherited; regexp_decl = pdev.regexp_decl; regexp_decl_list = pdev.regexp_decl_list; main_lexer_start = main_start; main_lexer_table = main_table; main_lexer_actions = main_lexer_actions; main_lexer_ter_id = main_lexer_ter_id; main_lexer_init_id = main_lexer_init_id; aux_lexer = pdev.aux_lexer; str_ter = pdev.str_ter; ter_table = pdev.ter_table; layout_id = pdev.layout_id; regexp_table = pdev.regexp_table; regexp_array = regexp_array; rule_options = rule_options; nt_ntl_array = nt_ntl_array; implicit_rule = implicit_rule; left_rec_rule = left_rec_rule }, state_ind in let time2 = Sys.time () in counters.count_g <- counters.count_g + 1; if !dypgen_verbose>0 then Printf.fprintf !log_channel "Parser updated in %.3f sec\n" (time2-.time1_update_parsing_device); state_ind, interm_pdev let update_pp pp command_list = let dyp_a = action_command command_list { ac_gd = pp.pp_gd; ac_ld = pp.pp_ld; add_rules = []; new_nt_cons = []; ac_relations = []; will_shift = true; keep_grammar = false; ac_parser = None; next_state = None; next_grammar = None } in let mapfun (r, ac) = (r, (Dypgen_action (fun ol pos posl gd ld lld di p nl -> (transform_action ac) ol pos posl gd ld lld di p nl)), []) in let add_rules_transformed = List.map mapfun dyp_a.add_rules in let counter = { countsn = 0; counted = 0; count_token = 0; last_layout = 0; count_g = 0; count_lex = 0 } in let _, new_pdev = update_parsing_device pp.pp_par pp.pp_dev dyp_a.ac_relations add_rules_transformed dyp_a.new_nt_cons counter None None in { pp with pp_dev = new_pdev; pp_gd = dyp_a.ac_gd; pp_ld = dyp_a.ac_ld } (* ******* CE QUI PRECEDE EST A DEPLACER DANS UN AUTRE FICHIER ****** *) type ('token,'obj,'data,'local_data,'lexbuf) vertex = { state_nb : int; mutable pdev : ('token,'obj,'data,'local_data,'lexbuf) parsing_device; mutable global_data : 'data; mutable local_data : 'local_data; sn_nb : int; last_token : int; sn_non_ter : int; (* the original non terminal of transition, ex: nt of transition is expr(<pp), sn_non_ter is, say, expr(pi). *) layout_flags : int; (* First bit = 1 if layout char were read just before the last token read before creating this stack node. Second bit = 1 if layout char are allowed to be read before the next token. *) lexer_pos : Lexing.position; (* this is the position just after the token *) mutable succ_edges : (('token,'obj,'data,'local_data,'lexbuf) edge) list; mutable prev_nodes_eps : ('token,'obj,'data,'local_data,'lexbuf) vertex list; (* stack nodes that point to this node and that have the same last_token, the list is made empty when the node is removed from topmost *) (*inherited_values : (int, 'obj list) Hashtbl.t;*) (* the int is the id of the associated non terminal *) mutable inherited_values : 'obj list; (* There is only one nt in one rhs that can have an inherited value waiting to be used. *) mutable det_depth : int; (* deterministic depth, see Elkhound TR sect. 3.1 (not used yet) *) mutable ref_count : int; (* reference count, see Elkhound TR sect. 3.1 (not used yet) *) visited_states : int Intc_map.t (* map which keys are int couples, for each couple (a,b) the state nb b of grammar a has been visited, the associated values is the id of the corresponding stack node. The map is made empty again when consuming input. this field is useful for merging with a predecessor stack node only in case of a state that is labelled "non mergeable". *) } and ('token,'obj,'data,'local_data,'lexbuf) edge = { mutable edge_label : 'obj list; mutable edge_id : int; mutable dest : ('token,'obj,'data,'local_data,'lexbuf) vertex; mutable parse_tree : string; e_lexer_pos : Lexing.position; (* this is the position just before the token, after layout chars *) (*mutable edge_reduced : bool;*) (* tells whether the edge has been used for a reduction *) (*mutable reduction_list : ('token,'obj,'data,'local_data,'lexbuf) reduction list option;*) (* Only useful in case of a cyclic grammar: yield-then-merge may happen for an edge corresponding with a nonterminal that can derive itself. When reducing along such an edge, one stores the path of this reduction (even if the action raises Giveup). If a subsequent merge happens on this edge then the reductions are added to pathList and removed from the edge. When the source node quits topmost the field reduction_list is set to []. *) } (*and ('token,'obj,'data,'local_data,'lexbuf) reduction = (('token,'obj,'data,'local_data,'lexbuf) vertex * ('token,'obj,'data,'local_data,'lexbuf) edge list * int) * (int * rhs) * int*) (*let update_depth topmost f = let rec aux g sn = if f sn then match sn.succ_edges with | [e] when sn.ref_count=1 -> let h x = sn.det_depth <- x+1; g (x+1) in aux h e.dest | _ -> sn.det_depth <- 0; g 0 in List.iter (aux (fun _ -> ())) topmost*) let create_e v1 label id v2 _ _ pt e_lexer_pos = let new_edge = { edge_label = label; edge_id = id; dest = v2; parse_tree = pt; e_lexer_pos = e_lexer_pos (*edge_reduced = false;*) (*reduction_list = None*) } in v1.succ_edges <- new_edge::(v1.succ_edges); (*v2.ref_count <- v2.ref_count+1; if v2.ref_count > 2 then update_depth topmost f;*) if v1.last_token = v2.last_token then v2.prev_nodes_eps <- v1::v2.prev_nodes_eps; new_edge let create_v state_nb pdev global_data local_data sn_nb last_token lexer_pos layout_flags depth non_ter vs = { state_nb = state_nb; pdev = pdev; global_data = global_data; local_data = local_data; sn_nb = sn_nb; sn_non_ter = non_ter; last_token = last_token; lexer_pos = lexer_pos; layout_flags = layout_flags; succ_edges = []; prev_nodes_eps = []; inherited_values = []; (*Hashtbl.create (Int_set.cardinal pdev.state_bnt.(state_nb));*) det_depth = depth; ref_count = 0; visited_states = vs } (** [find_paths] returns a list of couples ([path],[token_nb]), where a path is a list of edges of the graph structured stack [gs]. The returned paths have the following properties : they begin at stack node [sn], their length is [len], the nodes along each path contain states which associated literals are in [litl], these literals take place along the path in the same order as in the list [litl] (actually in reverse). These paths are the ones along which a reduction can be performed by a production rule which rhs is [litl]. [token_nb] is the token number of the leftmost stack node of a path, i.e. the dest stack node of the edge which is at the end of the list of edges which is [path]. It is the number of the token which is the first in the part of the input which would be reduced by the rule given as argument. [find_paths] is used in [do_reductions] and in [insert_reduction] and in [insert_reduction2]. *) let find_paths ?(skip=0) ?(init=[]) sn (rhs:rhs) = let rec aux n succ path = if n = skip then match path with | e::_ -> let s = e.dest in [path,s.last_token] | [] -> [[],sn.last_token] else match succ with | e::t -> let sn2 = e.dest in let succ2 = sn2.succ_edges in (aux (n-1) succ2 (e::path))@(aux n t path) | [] -> [] in aux (Array.length rhs) sn.succ_edges init let find_paths_no_layout ?(skip=0) ?(init=[]) sn (rhs:rhs) last_layout = let rec aux n succ path = if n = skip then match path with | e::_ -> let s = e.dest in [path,s.last_token] | [] -> [[],sn.last_token] else match succ with | e::t -> let sn2 = e.dest in if sn2.last_token < last_layout then [] else let succ2 = sn2.succ_edges in (aux (n-1) succ2 (e::path))@(aux n t path) | [] -> [] in aux (Array.length rhs) sn.succ_edges init let stack_node_equal sn1 sn2 = sn1.sn_nb = sn2.sn_nb let edge_equal e1 e2 = e1.edge_id = e2.edge_id let edge_list_equal el1 el2 = List.for_all2 edge_equal el1 el2 let print_path sn p = let snnb = sn.sn_nb in let f e = let ednb = e.edge_id in Printf.fprintf !log_channel "[%d]-%d-" e.dest.sn_nb ednb in List.iter f p; Printf.fprintf !log_channel "[%d]\n" snnb (* revcat a b = rev a @ b *) let rec revcat a b = match a with | [] -> b | h :: t -> revcat t (h::b) (** Maintains a partially ordered list of couples (path,rule_bis), where a path is a list of edges of the graph structured stack. This function inserts the couple of the path [p] and the rule_bis [r] in the list [l] at its right place. The partial order is the field [po] of the state which is held by the source stack node of the first edge of the path [p]. The partial order is implemented as a 2 dim array of type bool option. The need for this partial order is explained in Scott McPeak's report. A better data structure than a list should be used, maybe a mutable list. *) let insert_partially_ordered l (((start0,p0,tnb0),(ind0,_),rn0) as pr0) = if !dypgen_verbose>2 then (output_string !log_channel "inserting reduction along:\n"; print_path start0 p0); let pdev0 = start0.pdev in (*Printf.fprintf !log_channel "insert_partially_ordered\n";*) (* The bool b tells whether a path of the same class has already been seen in the list *) let rec aux result b l = match l with | [] -> revcat result [pr0] | (((start1,p1,tnb1),(ind1,_),rn1) as pr1)::tl -> if tnb1<tnb0 then revcat result (pr0::l) (* yes, this is the good order *) else if tnb1>tnb0 then aux (pr1::result) false tl else if pdev0.g_nb <> start1.pdev.g_nb then aux (pr1::result) false tl (* Is the following test really useful ? *) else if rn0=rn1 && (stack_node_equal start0 start1) && (edge_list_equal p0 p1) then revcat result l else if htc pdev0.po ind0 ind1 then aux (pr1::result) (htc pdev0.po ind1 ind0) tl else if (htc pdev0.po ind1 ind0) || ind0=ind1 then revcat result (pr0::l) else if b then revcat result (pr0::l) else aux (pr1::result) false tl in aux [] false l (* The following functions are used when pathList is a queue, using the module Path_queue. (but it seems to be slower) *) (*let compare_path path path1 = let ((start_node,p,token_nb),(ind,rhs)) = path in let ((start1,p1,tnb1),(ind1,rhs1)) = path1 in if token_nb<tnb1 then -1 else if token_nb>tnb1 then 1 else let parsing_device = start_node.pdev in let parsing_device1 = start1.pdev in if parsing_device.g_nb<parsing_device1.g_nb then -1 else if parsing_device.g_nb>parsing_device1.g_nb then 1 else let ntoi = parsing_device.non_ter_of_ind in let rel = match parsing_device.po.(ntoi.(ind1)).(ntoi.(ind)) with | Some b -> b | None -> assert false in if rel then -1 else let rel = match parsing_device.po.(ntoi.(ind)).(ntoi.(ind1)) with | Some b -> b | None -> assert false in if rel then 1 else let c = Stdlib.compare (ind,rhs) (ind1,rhs1) in if c<>0 then c else let c = Stdlib.compare start_node.sn_nb start1.sn_nb in if c<>0 then c else let rec aux l1 l2 = match l1,l2 with | [],[] -> 0 | _,[] -> 1 | [],_ -> -1 | (e1::t1),(e2::t2) -> let c = Stdlib.compare (snd e1.edge_label) (snd e2.edge_label) in if c<>0 then c else aux t1 t2 in aux p p1 let insert_path path path_queue = let (start_node,_,_),(ind,_) = path in let pdev = start_node.pdev in let ntoi = pdev.non_ter_of_ind in if ntoi.(ind) = non_terminal_startprime then path_queue else (* Do not reduce with S'->S *) Path_queue.insert compare_path path path_queue let pop_path path_queue = Path_queue.pop compare_path path_queue*) let str_symb_in_rhs_reduction str_non_ter = function | Ps_Non_ter (nt,_) | Ps_Non_ter_NL (nt,_) -> str_non_ter.(nt) | Ps_Ter t | Ps_Ter_NL t -> "t"^(string_of_int t) let str_rhs_reduction sn p rhs str_non_ter = let _, l = List.fold_left (fun (lt,l) e -> e.dest.last_token, (e.dest.last_token,lt)::l) (sn.last_token,[]) p in let rec aux i l s = if i=Array.length rhs then s else match l with | (a,b)::tl -> let s = Printf.sprintf "%s %s:%d-%d" s (str_symb_in_rhs_reduction str_non_ter rhs.(i)) a b in aux (i+1) tl s | _ -> assert false in (aux 0 l "")^"\n" let insert_reduction2 rl sn counters use_rule_order = let v = sn.state_nb and pdev = sn.pdev in let aux2 rn rl = let rhs = pdev.gram_rhs.(rn) and _, _, ind = pdev.lhs_table.(rn) in let paths = if 1 land pdev.rule_options.(rn) = 1 then find_paths sn rhs else find_paths_no_layout sn rhs counters.last_layout in List.fold_left (fun rl (p,tnb) -> insert_partially_ordered rl ((sn,p,tnb),(ind,rhs),rn)) rl paths in if use_rule_order then let rn = Int_set.fold (fun rn minrn -> min minrn rn) pdev.table_it.(v).reducible max_int in (if rn < max_int then aux2 rn rl else rl) else try Int_set.fold aux2 pdev.table_it.(v).reducible rl with Invalid_argument _ -> (Printf.fprintf stderr "v = %d, table_it len = %d\n" v (Array.length pdev.table_it); exit 2) (* link is supposed to be an edge coming from sn *) let insert_reduction_with_link rl sn link counters use_rule_order = if !dypgen_verbose>2 then output_string !log_channel "insert_reduction_with_link called\n"; let v = sn.state_nb and pdev = sn.pdev in let sn1 = link.dest in let aux2 rn rl = let rhs = pdev.gram_rhs.(rn) and _, _, ind = pdev.lhs_table.(rn) in let paths = if rhs = [||] then [[],sn.last_token] else if 1 land pdev.rule_options.(rn) = 1 then find_paths ~skip:1 ~init:[link] sn1 rhs else if sn1.last_token < counters.last_layout then [] else find_paths_no_layout ~skip:1 ~init:[link] sn1 rhs counters.last_layout in List.fold_left (fun rl (p,tnb) -> insert_partially_ordered rl ((sn,p,tnb),(ind,rhs),rn)) rl paths in if use_rule_order then let rn = Int_set.fold (fun rn minrn -> min minrn rn) pdev.table_it.(v).reducible max_int in (if rn < max_int then aux2 rn rl else rl) else try Int_set.fold aux2 pdev.table_it.(v).reducible rl with Invalid_argument _ -> (Printf.fprintf stderr "v = %d, table_it len = %d\n" v (Array.length pdev.table_it); exit 2) let find_all_prev_nodes sn = let rec aux (n_list,n_set) curr_sn = if Int_set.mem curr_sn.sn_nb n_set then (n_list,n_set) else let n_set = Int_set.add curr_sn.sn_nb n_set in let n_list = curr_sn::n_list in List.fold_left aux (n_list,n_set) curr_sn.prev_nodes_eps in let pn, _ = aux ([],Int_set.empty) sn in pn let insert_reduction rl sn link counters _ use_rule_order = match sn.prev_nodes_eps with | [] -> insert_reduction_with_link rl sn link counters use_rule_order | _ -> if !dypgen_verbose>2 then output_string !log_channel "insert_reduction called\n"; let prev_nodes = find_all_prev_nodes sn in let edge_nb = link.edge_id in let aux1 rl sn = let v = sn.state_nb and pdev = sn.pdev in let aux2 rn rl = let rhs = pdev.gram_rhs.(rn) and _, _, ind = pdev.lhs_table.(rn) in let paths = if 1 land pdev.rule_options.(rn) = 1 then find_paths sn rhs else find_paths_no_layout sn rhs counters.last_layout in List.fold_left (fun rl (p,tnb) -> insert_partially_ordered rl ((sn,p,tnb),(ind,rhs),rn)) rl (List.filter (fun (p,_) -> List.exists (fun e -> e.edge_id=edge_nb) p) paths) in if use_rule_order then (let rn = Int_set.fold (fun rn minrn -> min minrn rn) pdev.table_it.(v).reducible max_int in if rn < max_int then aux2 rn rl else rl) else Int_set.fold aux2 pdev.table_it.(v).reducible rl in List.fold_left aux1 rl prev_nodes (*let insert_reduction_old pathList _ link last_layout topmost = let _,edge_nb = link.edge_label in let aux1 pathList sn = let v,pdev = sn.state_nb,sn.pdev in let aux2 rn pathList = let rhs,(_,_,ind) = pdev.gram_rhs.(rn), pdev.lhs_table.(rn) in let paths = if 1 land pdev.rule_options.(rn) = 1 then find_paths sn rhs else find_paths_no_layout sn rhs last_layout in let aux3 pathList (p,tnb) = if List.exists (function e -> (snd e.edge_label)=edge_nb) p then let () = if !dypgen_verbose>2 then print_path sn p else () in insert_partially_ordered pathList ((sn,p,tnb),(ind,rhs),rn) else pathList in List.fold_left aux3 pathList paths in Int_set.fold aux2 pdev.table_it.(v).reducible pathList in List.fold_left aux1 pathList topmost*) exception Find_rightSib_failed let str_bool = function true -> "true" | false -> "false" (** [find_rightSib] is used in [reduceViaPath] and [doShift]. Its purpose is to find in the stack nodes list [snl] a stack node which holds the same grammar as [g_leftSib] and which holds a state which has an items set equal to [is_rightSib]. *) let find_rightSib g_nb_rightSib st_nb snl (gd:'gd) (ld:'ld) layout_flags (gd_equal:'gd->'gd->bool) (ld_equal:'ld->'ld->bool) non_ter test_mergeable (*sn_id start_node_nb*) = if !dypgen_verbose>2 then Printf.fprintf !log_channel "find_rightSib called\n"; let rec aux snl = match snl with | [] -> raise Find_rightSib_failed | sn::tl -> (*let sn_id = try Intc_map.find (g_nb_rightSib,st_nb) start_node.visited_states with Not_found -> -1 in*) if !dypgen_verbose>2 then Printf.fprintf !log_channel "sn.sn_nb = %d, sn.state_nb = %d, st_nb = %d, sn.pdev.g_nb = %d, g_nb_rightSib = %d, gd_equal = %s, ld_equal = %s, layout_flags = %d, sn.layout_flags = %d, test_mergeable = %s, sn.sn_non_ter = %d, non_ter = %d\n" sn.sn_nb sn.state_nb st_nb sn.pdev.g_nb g_nb_rightSib (str_bool (gd_equal sn.global_data gd)) (str_bool (ld_equal sn.local_data ld)) layout_flags sn.layout_flags (str_bool (test_mergeable sn)) sn.sn_non_ter non_ter; if sn.state_nb = st_nb && sn.pdev.g_nb = g_nb_rightSib && gd_equal sn.global_data gd && ld_equal sn.local_data ld && layout_flags = sn.layout_flags && (test_mergeable sn) && (*(sn.pdev.state_is_mergeable.(sn.state_nb) || start_node_nb = sn.sn_nb || sn_id = sn.sn_nb) &&*) sn.sn_non_ter = non_ter then sn else aux tl in aux snl let print_sn sn = let chan = !log_stack_channel in let { state_nb = v; pdev = parsing_device; sn_nb = snnb; last_token = last_token; _ } = sn in (*let nt_of_ind = parsing_device.nt_of_ind in let prio_of_ind = parsing_device.prio_of_ind in*) let gram_rhs = parsing_device.gram_rhs in let lhs_table = parsing_device.lhs_table in let is = parsing_device.table_it.(v) in let str_non_ter = parsing_device.str_non_ter in output_string chan "____________________________________\n"; Printf.fprintf chan "STACK NODE <%d>, last token:%d\n" snnb last_token; output_string chan "\n"; print_item_set chan is gram_rhs lhs_table (*nt_of_ind prio_of_ind*) str_non_ter sn.pdev.str_ter (*priority_names*) parsing_device.regexp_array; Printf.fprintf chan " state number: %d\n" v; output_string chan "\n"; let f3 f4 ed = let ednb = ed.edge_id in let { state_nb = v; sn_nb = snnb; _} = f4 ed in Printf.fprintf chan " sn:%d ed:%d st:%d\n" snnb ednb v in output_string chan "\n"; output_string chan " predecessor stack nodes :\n"; (*let () = List.iter (f3 (fun e -> e.source.vertex_label)) sn.pred_edges in output_string chan "\n";*) output_string chan " successor stack nodes :\n"; let () = List.iter (f3 (fun e -> e.dest)) sn.succ_edges in output_string chan "\n"; flush_all () let check_last_token last_token vl = vl.last_token >= last_token open Lexing exception Find_link_failed (*let insert_in_ml ml ind0 tnb0 rightSib link cons_index new_obj gd ld old_obj_list = let g_nb0 = rightSib.pdev.g_nb in let po = rightSib.pdev.po in let new_merge_item () = let objdatalist = (new_obj, gd, ld)::(List.map (fun o -> o,rightSib.pdev.data,rightSib.pdev.loc_data) old_obj_list in ind0,tnb0,g_nb0,(rightSib, link, cons_index, objdatalist) in let rec aux result b l = match l with | [] -> revcat result [new_merge_item ()] | ((ind1,tnb1,g_nb1,(gd1,e1,ld1,odl1)) as m1)::tl -> if tnb1<tnb0 then revcat result (new_merge_item ()::l) (* yes, this is the good order *) else if tnb1>tnb0 then aux (m1::result) false tl else if g_nb0 <> g_nb1 then aux (m1::result) false tl else if link.edge_nb = e1.edge_nb then let odl = (new_obj, gd, ld)::odl1 in let m = (ind1,tnb1,g_nb1,(gd1,e1,ld1,odl)) in revcat result (m::tl) else if po.(ind0).(ind1) then aux (m1::result) po.(ind1).(ind0) tl else if po.(ind1).(ind0) || ind0=ind1 then revcat result (new_merge_item ()::l) else if b then revcat result (new_merge_item ()::l) else aux (m1::result) false tl in aux [] false ml*) let remove_path_edge edge_nb pathList = let aux1 e = match e with | { edge_id = n ; _ } when n=edge_nb -> false | _ -> true in let aux2 ((_,p,_),_,_) = List.for_all aux1 p in List.filter aux2 pathList let rec remove_sn_from_list sn_nb l res = match l with | [] -> res | sn::t when sn.sn_nb = sn_nb -> res@t | sn::t -> remove_sn_from_list sn_nb t (sn::res) let remove_edge edge_nb sn = let rec aux succ_edges res = match succ_edges with | [] -> res | {edge_id = n; dest = sn_dest; _ }::t when n=edge_nb -> if sn.last_token = sn_dest.last_token then sn_dest.prev_nodes_eps <- remove_sn_from_list sn.sn_nb sn_dest.prev_nodes_eps []; res@t | e::t -> aux t (e::res) in sn.succ_edges <- aux sn.succ_edges [] let merge_in_edge ppar counters edge_nb (sn, link, cons_index, objdata_list) (topmost, rl) = (*let topmost, rl = let _, _, _, (sn, link, cons_index, objdata_list) = m in let edge_nb = link.edge_nb in*) if !dypgen_verbose>2 then Printf.fprintf !log_channel "do_merge for edge: [%d]-%d-[%d]\nobjdata_list length = %d\n" link.dest.sn_nb edge_nb sn.sn_nb (List.length objdata_list); let obj_list, glo_dat, loc_dat = ppar.merge_array.(cons_index) objdata_list in if !dypgen_verbose>2 then Printf.fprintf !log_channel "obj_list length = %d\n" (List.length obj_list); let pdev = sn.pdev in if (ppar.global_data_equal glo_dat sn.global_data && ppar.local_data_equal loc_dat sn.local_data) then (link.edge_label <- obj_list; link.edge_id <- edge_nb; if !dypgen_verbose>2 then Printf.fprintf !log_channel "do_merge updates the contents of the edge: [%d]-%d-[%d]\n" link.dest.sn_nb edge_nb sn.sn_nb; topmost, rl) else match sn.succ_edges with _::_::_ -> (if !dypgen_verbose>2 then Printf.fprintf !log_channel "do_merge removes the edge: [%d]-%d-[%d]\n" link.dest.sn_nb edge_nb sn.sn_nb; remove_edge edge_nb sn; let rl = remove_path_edge edge_nb rl in let rightSib, new_countsn, topmost, rS_is_new = try (*if not pdev.state_is_mergeable.(sn.state_nb) then raise Find_rightSib_failed else*) find_rightSib pdev.g_nb sn.state_nb topmost sn.global_data sn.local_data sn.layout_flags ppar.global_data_equal ppar.local_data_equal sn.sn_non_ter (*(-1) (-1)*) (fun sn -> sn.pdev.state_is_mergeable.(sn.state_nb)), counters.countsn, topmost, false with Find_rightSib_failed -> let rightSib = create_v sn.state_nb pdev glo_dat loc_dat counters.countsn sn.last_token sn.lexer_pos sn.layout_flags (link.dest.det_depth+1) sn.sn_non_ter sn.visited_states in rightSib, counters.countsn+1, rightSib::topmost, true in let new_edge = create_e rightSib obj_list counters.counted link.dest (check_last_token link.dest.last_token) topmost link.parse_tree link.e_lexer_pos in if !dypgen_verbose>2 then (print_sn rightSib; Printf.fprintf !log_channel "do_merge creates a new edge%s:\n[%d]-%d-[%d]\n" (if rS_is_new then " and a new node" else "") link.dest.sn_nb counters.counted rightSib.sn_nb); counters.countsn <- new_countsn; counters.counted <- counters.counted + 1; let rl = if rS_is_new then insert_reduction2 rl rightSib counters ppar.use_rule_order else insert_reduction rl rightSib new_edge counters topmost ppar.use_rule_order in topmost, rl) | _ -> (sn.global_data <- glo_dat; sn.local_data <- loc_dat; link.edge_label <- obj_list; link.edge_id <- edge_nb; topmost, rl) (* collect_objs collects objects along the path p. The head of the list corresponds to the leftmost object in gs. *) let collect_objs path start_node = let rec aux res = function | e1::((e2::_) as tl) -> let str_non_ter = e2.dest.pdev.str_non_ter in (match e2.dest.pdev.table_lit_trans.(e2.dest.state_nb) with | Ps_Non_ter nt when str_non_ter.(nt).[0] = '0' -> aux res tl | _ -> aux (e1.edge_label::res) tl) | [e] -> let str_non_ter = start_node.pdev.str_non_ter in (match start_node.pdev.table_lit_trans.(start_node.state_nb) with | Ps_Non_ter nt when str_non_ter.(nt).[0] = '0' -> res | _ -> e.edge_label::res) | [] -> [] in let rec collect = function | obj_list::tl -> let obj_ll = collect tl in let f1 new_obj_ll obj_l = let f2 new_obj_ll obj = (obj::obj_l)::new_obj_ll in List.fold_left f2 new_obj_ll obj_list in let obj_ll = List.fold_left f1 [] obj_ll in obj_ll | [] -> [[]] in collect (List.rev (aux [] path)) let print_s start_node last_pdev outchan = print_table_state outchan start_node.state_nb last_pdev.table last_pdev.table_it last_pdev.table_lit_trans last_pdev.gram_rhs last_pdev.lhs_table (*last_pdev.prio_of_ind*) last_pdev.str_non_ter (*last_pdev.nt_of_ind last_pdev.prio.prd_names*) last_pdev.str_ter last_pdev.regexp_array let print_g last_pdev outchan = print_grammar outchan last_pdev.gram_rhs last_pdev.lhs_table last_pdev.str_non_ter (*last_pdev.prio.prd_names*) last_pdev.str_ter last_pdev.regexp_array let position_map p start_node = let rec aux res lpos = function | [] -> res | e::t -> let pos = e.dest.lexer_pos in aux ((e.e_lexer_pos, lpos)::res) pos t in aux [] start_node.lexer_pos (List.rev p) let rec make_path sn n res = if n = 0 then res else match sn.succ_edges with e::_ -> make_path e.dest (n-1) (e::res) | _ -> assert false let add_inherited_val sn0 sn1 argll nt = let nt = if sn0.pdev.g_nb = sn1.pdev.g_nb then nt else try Hashtbl.find sn0.pdev.nt_table sn1.pdev.str_non_ter.(nt) with Not_found -> assert false in if sn0.pdev.bnt_array.(nt) then (*let _ = output_string !log_channel "bnt_array = true\n" in*) (*let arg0l = try Hashtbl.find sn0.inherited_values nt with Not_found -> assert false in*) let arg0l = sn0.inherited_values in (*Printf.printf "arg0l length = %d\n" (List.length arg0l);*) let arglll = List.map (fun argl -> List.map (fun arg0 -> arg0::argl) arg0l) argll in List.flatten arglll else (*let _ = output_string !log_channel "bnt_array = false\n" in*) argll (*let rec find_end_node_pos snd_node_lexer_pos sn_lexer_pos = function | (pos,_)::tl -> if pos = snd_node_lexer_pos then find_end_node_pos snd_node_lexer_pos sn_lexer_pos tl else pos | [] -> sn_lexer_pos*) let find_end_node_pos sn_lexer_pos path = let rec aux last_pos = function | e::tl -> if last_pos = e.dest.lexer_pos then aux e.e_lexer_pos tl else last_pos | [] -> last_pos in match path with | e::tl -> aux e.e_lexer_pos tl | [] -> sn_lexer_pos let compute_inherited_values sn ppar next_lexeme = (*print_endline "compute_inherited_values";*) let state_id = sn.state_nb in let pdev = sn.pdev in let inh_opt = pdev.state_bnt.(state_id) in (*let aux inh =*) match inh_opt with None -> () | Some inh -> (let actl, argnb, lhs, _, ed = pdev.inherited.(inh) in let path = make_path sn argnb [] in let sn0 = match path with | e::_ -> e.dest | _ -> assert false (* path should be at least of length 1 because dypgen__epsilon is inserted at the beginning of rhs when it begins with a parameterized nt. *) in let path = if ed then List.tl path else path in let argll = collect_objs path sn in let argll = add_inherited_val sn0 sn argll lhs in let position_list = position_map path sn in (*let end_node_pos = match position_list with | (pos, _)::_ -> pos | [] -> sn.lexer_pos in*) let end_node_pos = find_end_node_pos sn.lexer_pos path in let start_node_pos = sn.lexer_pos in let symbol_pos = (end_node_pos, start_node_pos) in let pp = { pp_dev = pdev; pp_par = ppar; pp_gd = sn.global_data; pp_ld = sn.local_data; } in let objll = List.map (fun objl -> List.map (fun ac -> (*print_endline "compute_inherited_values loop";*) ac objl symbol_pos position_list sn.global_data sn.local_data sn.local_data { prt_state = (print_s sn pdev); prt_grammar = (print_g pdev)} pp next_lexeme) actl) argll in let res_l = List.flatten objll in (*Printf.printf "res_l length = %d\n" (List.length res_l);*) (*Hashtbl.add sn.inherited_values nt res_l*) sn.inherited_values <- res_l) (*in Int_set.iter aux inh_set*) let complete_reduction topmost rl mm parse_res _ leftSib pdev_rightSib global_data_rS local_data_rS v_rightSib new_obj nt symbol_pos counters ppar cons_index layout_flags _ tnb selfderiv pt next_lexeme start_node = (*pathList pl_recred topmost leftSib pdev_rightSib v_rightSib new_obj nt lexer_pos prio counters ppar merge_map cons_index layout_flags edge_map ind tnb =*) (*if !dypgen_verbose>2 then output_string !log_channel "complete_reduction called\n";*) countred := !countred + 1; try (*if not pdev_rightSib.state_is_mergeable.(v_rightSib) then raise Find_rightSib_failed else*) (* we allow to merge (same rightSib and same link) for non mergeable state, only the case with Find_link_failed make non mergeable mandatory. *) let sn_id = try Intc_map.find (pdev_rightSib.g_nb,v_rightSib) start_node.visited_states with Not_found -> -1 in let rightSib = find_rightSib pdev_rightSib.g_nb v_rightSib topmost global_data_rS local_data_rS layout_flags ppar.find_rightSib_global_data_equal ppar.find_rightSib_local_data_equal nt (fun _ -> true) (*sn_id start_node.sn_nb*) in let find_link rightSib leftSib = let rec aux el = match el with | [] -> if rightSib.pdev.state_is_mergeable.(rightSib.state_nb) || start_node.sn_nb = rightSib.sn_nb || sn_id = rightSib.sn_nb then raise Find_link_failed else raise Find_rightSib_failed | e::tl -> if (stack_node_equal e.dest leftSib) then e else aux tl in aux rightSib.succ_edges in try let link = find_link rightSib leftSib in (*output_string !log_channel "complete_reduction 1\n";*) let old_obj_list = link.edge_label in let edge_nb = link.edge_id in if (!dypgen_verbose>2 || ppar.merge_warning) then (let (start_pos, end_pos) = symbol_pos in let col1 = start_pos.pos_cnum - start_pos.pos_bol in let col2 = end_pos.pos_cnum - end_pos.pos_bol in Printf.fprintf !log_channel "Warning: the parser will merge the non terminal `%s'\nin file \"%s\", from l:%d,c:%d to l:%d,c:%d, constructor : %s\n" (pdev_rightSib.str_non_ter.(nt)) start_pos.pos_fname start_pos.pos_lnum col1 end_pos.pos_lnum col2 ppar.cons_str.(cons_index)); if !dypgen_verbose>2 then Printf.fprintf !log_channel "complete_reduction prepares a merge for [%d]-%d-[%d]\n" leftSib.sn_nb edge_nb rightSib.sn_nb; if tnb = counters.count_token || selfderiv then let objdata_list = List.map (fun o -> o, global_data_rS, local_data_rS) old_obj_list in let topmost, rl = merge_in_edge ppar counters edge_nb (rightSib, link, cons_index, objdata_list) (topmost, rl) in topmost, rl, mm, parse_res else let mm = let merge_item = try let (sn,_,_,objdata_list) = Int_map.find edge_nb mm in sn, link, cons_index, (new_obj, global_data_rS, local_data_rS)::objdata_list with Not_found -> rightSib, link, cons_index, match old_obj_list with | _::_ -> (new_obj, global_data_rS, local_data_rS):: (List.map (fun o -> o, global_data_rS, local_data_rS) old_obj_list) | _ -> assert false (*| _ -> Printf.printf "len=%d\n" (List.length old_obj_list); assert false*) in Int_map.add edge_nb merge_item mm in topmost, rl, mm, parse_res with Find_link_failed -> (*output_string !log_channel "complete_reduction 2\n";*) if ppar.global_data_equal global_data_rS rightSib.global_data && ppar.local_data_equal rightSib.local_data local_data_rS then () else raise Find_rightSib_failed; let link = create_e rightSib [new_obj] counters.counted leftSib (check_last_token leftSib.last_token) topmost pt (fst symbol_pos) in if !dypgen_verbose>2 then Printf.fprintf !log_channel "complete_reduction creates a new edge:\n[%d]-%d-[%d]\n" leftSib.sn_nb counters.counted rightSib.sn_nb; counters.counted <- counters.counted + 1; (*let pathList, pl_recred, pl_recred_eps = insert_reduction pathList pl_recred pl_recred_eps rightSib link counters.last_layout topmost ppar.use_rule_order ind tnb in*) let rl = insert_reduction rl rightSib link counters topmost ppar.use_rule_order in topmost, rl, mm, parse_res with Find_rightSib_failed -> (*output_string !log_channel "complete_reduction 3\n";*) let new_vs = Intc_map.add (start_node.pdev.g_nb,start_node.state_nb) start_node.sn_nb start_node.visited_states in let rightSib = create_v v_rightSib pdev_rightSib global_data_rS local_data_rS counters.countsn counters.count_token (snd symbol_pos) layout_flags (leftSib.det_depth+1) nt new_vs in let _ = create_e rightSib [new_obj] counters.counted leftSib (check_last_token leftSib.last_token) topmost pt (fst symbol_pos) in if !dypgen_verbose>2 then (print_sn rightSib; Printf.fprintf !log_channel "complete_reduction creates a new edge and a new node:\n[%d]-%d-[%d]\n" leftSib.sn_nb counters.counted rightSib.sn_nb); counters.countsn <- counters.countsn + 1; counters.counted <- counters.counted + 1; compute_inherited_values rightSib ppar next_lexeme; (*let pathList, pl_recred = insert_reduction2 pathList pl_recred pl_recred_eps rightSib counters.last_layout ppar.use_rule_order ind tnb in*) let rl = insert_reduction2 rl rightSib counters ppar.use_rule_order in rightSib::topmost, rl, mm, parse_res let print_pathList pathList = output_string !log_channel " pathList :\n"; List.iter (fun ((start_node,p,_),_,rn) -> output_string !log_channel " > "; print_path start_node p; let pdev = start_node.pdev in output_string !log_channel (" > "^(str_rule rn pdev.gram_rhs pdev.lhs_table pdev.str_non_ter pdev.str_ter pdev.regexp_array)^"\n")) pathList let rec try_actions ac_l start_node toPass symbol_pos position_list pdev_leftSib local_data_lS pp next_lexeme use_all_actions res_list = match ac_l with | (Dypgen_action f)::tl_ac_l -> (*output_string !log_channel "match action\n";*) let res_list, b = (try (f toPass symbol_pos position_list pp.pp_gd local_data_lS pp.pp_ld { prt_state = (print_s start_node pp.pp_dev); prt_grammar = (print_g pp.pp_dev)} pp next_lexeme)::res_list, true with Giveup -> if !dypgen_verbose>2 then output_string !log_channel "Giveup\n"; res_list, false) in if b && not use_all_actions then res_list else try_actions tl_ac_l start_node toPass symbol_pos position_list pdev_leftSib local_data_lS pp next_lexeme use_all_actions res_list | [] -> (*output_string !log_channel "try_action ends\n";*) res_list let match_chan_s_chan_g v_rightSib pdev_rightSib chan_s chan_g = (match chan_s with | None -> () | Some chan -> print_table_state chan v_rightSib pdev_rightSib.table pdev_rightSib.table_it pdev_rightSib.table_lit_trans pdev_rightSib.gram_rhs pdev_rightSib.lhs_table (*pdev_rightSib.prio_of_ind*) pdev_rightSib.str_non_ter (*pdev_rightSib.nt_of_ind pdev_rightSib.prio.prd_names*) pdev_rightSib.str_ter pdev_rightSib.regexp_array); (match chan_g with | None -> () | Some chan -> print_grammar chan pdev_rightSib.gram_rhs pdev_rightSib.lhs_table pdev_rightSib.str_non_ter (*pdev_rightSib.prio.prd_names*) pdev_rightSib.str_ter pdev_rightSib.regexp_array) let fold_rightSib_l pr counters symbol_pos start_node last_pdev _ leftSib ppar non_ter rn _ _ snd_node next_lexeme layout_flags ind tnb selfderiv pt cons_index (new_obj, will_shift2, keep_gram, newdata, newlocal_data, rapf_add, new_nt_cons, new_relations, chan_s, chan_g, pdev_option) (topmost, rl, mm, parse_res, will_shift) v_rightSib = let v_rightSib, pdev_rightSib = if rapf_add = [] then (*let lhs = last_pdev.nt_of_ind.(ind), last_pdev.nt_of_ind.(ind), ind in*) (*let lhs = ind, 0, ind in match keep_gram, left_rec_rule lhs rhs with*) match keep_gram, last_pdev.left_rec_rule.(rn) with | true, true when snd_node.pdev.g_nb = last_pdev.g_nb -> snd_node.state_nb, snd_node.pdev | true, _ -> let time1 = Sys.time () in let v_rightSib, pdev_rightSib = let is = copy_item_set leftSib.pdev.table_it.(v_rightSib) in let lit_trans = leftSib.pdev.table_lit_trans.(v_rightSib) in extend_parsing_device last_pdev leftSib.pdev is lit_trans ppar in let time2 = Sys.time () in if !dypgen_verbose>0 then Printf.fprintf !log_channel "Automaton extended in %.3f sec\n" (time2-.time1); v_rightSib, pdev_rightSib | _ ,_ -> (match pdev_option with | None -> v_rightSib, leftSib.pdev | Some pdev -> let time1 = Sys.time () in let v_rightSib, pdev_rightSib = let is = copy_item_set leftSib.pdev.table_it.(v_rightSib) in let lit_trans = leftSib.pdev.table_lit_trans.(v_rightSib) in extend_parsing_device pdev leftSib.pdev is lit_trans ppar in let time2 = Sys.time () in counters.count_g <- counters.count_g+1; if !dypgen_verbose>0 then Printf.fprintf !log_channel "Automaton extended in %.3f sec\n" (time2-.time1); v_rightSib, { pdev_rightSib with g_nb = counters.count_g }) else let is = Some (leftSib.pdev.table_it.(v_rightSib)) in let lit_trans = Some (leftSib.pdev.table_lit_trans.(v_rightSib)) in match update_parsing_device ppar leftSib.pdev new_relations rapf_add new_nt_cons counters is lit_trans with | (Some start_ind), pdev -> start_ind, pdev | _ -> assert false in (*if (last_pdev.g_nb=pdev_rightSib.g_nb && start_node.state_nb=v_rightSib) || ( Intc_set.mem (pdev_rightSib.g_nb,v_rightSib) start_node.visited_states ) then topmost, rl, mm, parse_res, (will_shift2 && will_shift) else*) let _ = match_chan_s_chan_g v_rightSib pdev_rightSib chan_s chan_g in let topmost, rl, mm, parse_res = let nt_entry_point, _ = leftSib.pdev.str_non_ter_prio.(leftSib.pdev.entry_point) in let nt_ind, prio_ind = last_pdev.str_non_ter_prio.(ind) in if (!dypgen_verbose>2) then (fprintf !log_channel "nt_entry_point = %s, nt_ind = %s, prio_ind = %s\n" nt_entry_point nt_ind prio_ind); if (*last_pdev.entry_point = ind*) (*last_pdev.nt_of_ind.(ind)*) nt_entry_point = nt_ind && leftSib.last_token = 0 then (*(complete_reduction pathList pl_recred topmost leftSib pdev_rightSib v_rightSib new_obj (nt_of_ind.(ind_lS)) symbol_pos prio counters ppar merge_map cons_index layout_flags edge_map ind tnb),*) (*let prio_str = last_pdev.prio.prd_names.(last_pdev.prio_of_ind.(ind)) in*) (*let parse_res = (new_obj, prio_str)::parse_res in*) let parse_res = (new_obj, prio_ind)::parse_res in complete_reduction topmost rl mm parse_res pr leftSib pdev_rightSib newdata newlocal_data v_rightSib new_obj non_ter symbol_pos (*prio*) counters ppar cons_index layout_flags ind tnb selfderiv pt next_lexeme start_node else complete_reduction topmost rl mm parse_res pr leftSib pdev_rightSib newdata newlocal_data v_rightSib new_obj non_ter symbol_pos (*prio*) counters ppar cons_index layout_flags ind tnb selfderiv pt next_lexeme start_node (*(complete_reduction pathList pl_recred topmost leftSib pdev_rightSib v_rightSib new_obj (nt_of_ind.(ind_lS)) symbol_pos prio counters ppar merge_map cons_index layout_flags edge_map ind tnb), parse_result*) in topmost, rl, mm, parse_res, (will_shift2 && will_shift) let reduce_with_result pr counters symbol_pos start_node last_pdev position_list leftSib ppar non_ter rn v_rightSib _ rhs snd_node next_lexeme layout_flags ind tnb selfderiv pt (topmost, rl, mm, parse_res, will_shift) ((new_obj, will_shift2, _, _, _, _, _, _, _, _, _) as res) = let cons_index = try leftSib.pdev.cons_of_nt.(non_ter) with e -> (Printf.printf "dyp.ml reduce_with, error cons_of_nt:%d\n" (Array.length leftSib.pdev.cons_of_nt); raise e) in if ppar.test_cons.(cons_index) new_obj = false then (let sr = str_rule rn leftSib.pdev.gram_rhs leftSib.pdev.lhs_table leftSib.pdev.str_non_ter leftSib.pdev.str_ter leftSib.pdev.regexp_array in let cons = ppar.cons_str.(leftSib.pdev.cons_of_nt.(non_ter)) in raise (Bad_constructor(sr,cons,(ppar.str_cons new_obj)))); if v_rightSib = -1 then (if !dypgen_verbose>2 then output_string !log_channel "v_rightSib = -1\n"; if !dypgen_verbose>2 then output_string !log_channel "reduce_with found a new parse_result\n"; let _, prio_ind = last_pdev.str_non_ter_prio.(ind) in let parse_res = (*let lpd = last_pdev in let prio = lpd.prio.prd_names.(lpd.prio_of_ind.(ind)) in*) (new_obj,prio_ind)::parse_res in topmost, rl, mm, parse_res, (will_shift2 && will_shift)) else fold_rightSib_l pr counters (*nt_of_ind*) symbol_pos start_node last_pdev position_list leftSib ppar non_ter rn ind rhs snd_node (*prio*) next_lexeme layout_flags ind tnb selfderiv pt cons_index res (topmost, rl, mm, parse_res, will_shift) v_rightSib let table_find ht i = try Hashtbl.find ht i with Not_found -> -1 let reduce_with_action ac_l pr counters symbol_pos start_node position_list leftSib pp non_ter rn v_rightSib ind rhs snd_node next_lexeme layout_flags tnb selfderiv pt (topmost, rl, mm, parse_res, will_shift) toPass = (*output_string !log_channel "reduce_with_action called\n";*) let res_list = try_actions ac_l start_node toPass symbol_pos position_list leftSib.pdev leftSib.local_data pp next_lexeme pp.pp_par.use_all_actions [] in (*Printf.fprintf !log_channel "reduce_with_action returns res_list length = %d\n" (List.length res_list);*) List.fold_left (reduce_with_result pr counters symbol_pos start_node pp.pp_dev position_list leftSib pp.pp_par non_ter rn v_rightSib ind rhs snd_node next_lexeme layout_flags ind tnb selfderiv pt) (topmost, rl, mm, parse_res, will_shift) res_list (*let next_states table state_nb symb_id layout i0 i2 state_bnt = if layout then table.(state_nb).(i0).(symb_id) else let ns0 = table.(state_nb).(i0).(symb_id) in let ns2 = table.(state_nb).(i2).(symb_id) in match ns0, ns2 with | [s0], [s2] when Int_set.is_empty state_bnt.(s0) && Int_set.is_empty state_bnt.(s2) -> ns2 | _ -> ns0@ns2*) let process_v_rightSib_l ac_l pr counters symbol_pos start_node last_pdev position_list leftSib ppar non_ter rn _ rhs snd_node layout_flags ind tnb pt obj_ll next_lexeme_precursor (topmost, rl, mm, parse_res, will_shift) (v_rightSib, lS_ind) = if !dypgen_verbose>2 then (Printf.fprintf !log_channel "obj_ll length=%d\n" (List.length obj_ll); List.iter (fun ol -> Printf.fprintf !log_channel "obj_l length=%d\n" (List.length ol)) obj_ll; Printf.fprintf !log_channel "v_rightSib = %d\n" v_rightSib; (*List.iter (fun v -> Printf.fprintf !log_channel "v_rightSib = %d\n" v) v_rightSib;*) print_pathList rl; flush_all ()); if v_rightSib = -1 && not (leftSib.pdev.entry_point = lS_ind && leftSib.last_token = 0) (*then (topmost, parse_res) else*) then (topmost, rl, mm, parse_res, will_shift) else let next_lexeme () = next_lexeme_precursor leftSib.pdev leftSib.global_data leftSib.local_data in let selfderiv = htc last_pdev.po ind ind in let pp = { pp_dev = last_pdev; pp_par = ppar; pp_gd = start_node.global_data; pp_ld = start_node.local_data } in List.fold_left (reduce_with_action ac_l pr counters symbol_pos start_node position_list leftSib pp non_ter rn v_rightSib ind rhs snd_node next_lexeme layout_flags tnb selfderiv pt) (topmost, rl, mm, parse_res, will_shift) obj_ll let find_first_no_eps start_node p = let rec aux = function | e1::((e2::_) as tl) -> if e1.dest.last_token = e2.dest.last_token then aux tl else e2.dest | [_] | [] -> start_node in aux p let merge_in_path ppar counters p topmost rl mm = let f (topmost, rl, mm) e = if !dypgen_verbose>2 then Printf.fprintf !log_channel "Try to merge edge %d.\n" e.edge_id; try let merge_item = Int_map.find e.edge_id mm in let mm = Int_map.remove e.edge_id mm in let topmost, rl = merge_in_edge ppar counters e.edge_id merge_item (topmost, rl) in topmost, rl, mm with Not_found -> (if !dypgen_verbose>2 then Printf.fprintf !log_channel "Edge %d not found in merge map.\n" e.edge_id; topmost, rl, mm) in List.fold_left f (topmost, rl, mm) p let reduceViaPath (((start_node,p,tnb),(ind,rhs),rn) as pr) rl mm topmost parse_res ppar counters next_lexeme_precursor last_pr merge_reduce = if !dypgen_verbose>2 then (Printf.fprintf !log_channel "\nreduceViaPath called, start_node=%d, pathList length=%d\n " start_node.sn_nb (List.length rl); let pdev = start_node.pdev in output_string !log_channel ((str_rule rn pdev.gram_rhs pdev.lhs_table pdev.str_non_ter (*pdev.prio.prd_names*) pdev.str_ter pdev.regexp_array)^"\n "); print_path start_node p; flush_all ()); let topmost, rl, mm = merge_in_path ppar counters p topmost rl mm in let position_list = position_map p start_node in (*let end_node_pos = match position_list with | (pos, _)::_ -> pos | [] -> start_node.lexer_pos in*) (*add_to_reduction_list path counters.count_token;*) (*set_edge_reduced p;*) let leftSib, snd_node = match p with | [] -> start_node, start_node | [h] -> h.dest, start_node | h1::h2::_ -> h1.dest, h2.dest in let end_node_pos = find_end_node_pos start_node.lexer_pos p in let start_node_pos = start_node.lexer_pos in let symbol_pos = (end_node_pos, start_node_pos) in (* ^ this is the good order actually ^ *) let pt = if !dypgen_verbose>2 then (let pdev = start_node.pdev in let lhs_s = Printf.sprintf "%s:%d-%d -> " (str_lhs pdev.lhs_table.(rn) pdev.str_non_ter) leftSib.last_token start_node.last_token in Printf.fprintf !log_channel " %s%s\n" lhs_s (str_rhs_reduction start_node p pdev.gram_rhs.(rn) pdev.str_non_ter); let pt_rhs = String.concat " " (List.map (fun e -> e.parse_tree) p) in let pt = "("^lhs_s^pt_rhs^")" in output_string !log_channel (pt^"\n"); pt) else "" in (*Printf.fprintf !log_channel "snd_node.layout_flags=%d\n" snd_node.layout_flags; Printf.fprintf !log_channel "start_node.pdev.rule_options.(rn)=%d start_node.layout_flags=%d\n" start_node.pdev.rule_options.(rn) start_node.layout_flags;*) let first_no_eps = find_first_no_eps start_node p in let layout = (1 land first_no_eps.layout_flags = 1) && p <> [] in let layout_flags = let first_flag = match p with [] -> 0 | _ -> 1 land first_no_eps.layout_flags in first_flag lor ((2 land start_node.pdev.rule_options.(rn)) land (2 land start_node.layout_flags)) in if !dypgen_verbose>2 then (Printf.fprintf !log_channel "first_no_eps = [%d], layout_flags = %d\n" first_no_eps.sn_nb layout_flags); (*Printf.fprintf !log_channel "layout_flags=%d\n" layout_flags;*) let v = leftSib.state_nb in let last_pdev = start_node.pdev in (*let nt_of_ind = leftSib.pdev.nt_of_ind in*) (*let dypgen_epsilon = if Array.length rhs > 0 then rhs.(0) = Ps_Non_ter (start_node.pdev.dypgen_epsilon,No_priority) else false in*) let obj_ll = collect_objs p start_node in let obj_ll = add_inherited_val leftSib start_node obj_ll ind in let ac_l = start_node.pdev.actions.(rn) in let non_ter = try Hashtbl.find leftSib.pdev.nt_table last_pdev.str_non_ter.(ind) with Not_found -> assert false in (*let prio = Hashtbl.find leftSib.pdev.prio.prd_ind last_pdev.prio.prd_names.(ind) in*) (*let ind_lS = if leftSib.pdev.g_nb=last_pdev.g_nb then ind (*else Prio_map.find prio leftSib.pdev.array_nt_prio.(non_ter)*) else non_ter in*) (*let v_rightSib_NL = leftSib.pdev.table.(v).(3).(ind_lS) in let v_rightSib = if not (layout || v_rightSib_NL = []) then v_rightSib_NL else leftSib.pdev.table.(v).(1).(ind_lS) in*) let v_rightSib_l = if layout then Int_set.fold (fun nt l -> (table_find leftSib.pdev.table.(v).(1) nt, nt)::l) leftSib.pdev.nt_ntl_array.(non_ter) [] else Int_set.fold (fun nt l -> let ns = table_find leftSib.pdev.table.(v).(3) nt in if ns = -1 then (table_find leftSib.pdev.table.(v).(1) nt, nt)::l else (ns, nt)::l) leftSib.pdev.nt_ntl_array.(non_ter) [] in (*next_states leftSib.pdev.table v ind_lS layout 1 3 leftSib.pdev.state_bnt in*) let topmost, rl, mm, parse_res, will_shift = List.fold_left (process_v_rightSib_l ac_l pr counters symbol_pos start_node last_pdev position_list leftSib ppar non_ter rn ind rhs snd_node layout_flags ind tnb pt obj_ll next_lexeme_precursor) (topmost, rl, mm, parse_res, true) v_rightSib_l in let topmost = if not will_shift then (start_node.prev_nodes_eps <- []; List.filter (function x -> x!=start_node) topmost) else topmost in merge_reduce rl mm topmost parse_res (if tnb=counters.count_token then last_pr else Some pr) let do_merge mm rl topmost ppar counters = if !dypgen_verbose>2 then (Printf.fprintf !log_channel "do_merge called\n"; flush_all ()); Int_map.fold (merge_in_edge ppar counters) mm (topmost, rl) let make_reduction_list topmost counters ppar = let aux1 pathList sn = let st_nb = sn.state_nb and pdev = sn.pdev in (*Printf.fprintf !log_channel "reducible card = %d\n" (Int_set.cardinal pdev.table_it.(st_nb).reducible);*) (*print_sn sn; print_item_set !log_channel pdev.table_it.(st_nb) pdev.gram_rhs pdev.lhs_table pdev.nt_of_ind pdev.prio_of_ind pdev.str_non_ter str_token_name pdev.prio.prd_names;*) let aux2 rn pathList = let (_,_,ind) = pdev.lhs_table.(rn) in let rhs = pdev.gram_rhs.(rn) in let paths = if 1 land pdev.rule_options.(rn) = 1 then find_paths sn rhs else find_paths_no_layout sn rhs counters.last_layout in let paths = list_map (function (p,tnb) -> sn,p,tnb) paths in let aux3 pathList p = insert_partially_ordered pathList (p,(ind,rhs),rn) in List.fold_left aux3 pathList paths in if ppar.use_rule_order then let rn = Int_set.fold (fun rn minrn -> min minrn rn) pdev.table_it.(st_nb).reducible max_int in if rn = max_int then pathList else aux2 rn pathList else Int_set.fold aux2 pdev.table_it.(st_nb).reducible pathList in List.fold_left aux1 [] topmost let do_reductions topmost counters ppar next_lexeme_precursor = let rl = make_reduction_list topmost counters ppar in let rec merge_reduce rl mm topmost parse_res last_pr = match rl with | pr::tl -> reduceViaPath pr tl mm topmost parse_res ppar counters next_lexeme_precursor last_pr merge_reduce | [] -> topmost, parse_res, mm in let topmost, parse_res, mm = merge_reduce rl Int_map.empty topmost [] None in let topmost, _ = do_merge mm [] topmost ppar counters in topmost, parse_res let do_shifts_for_each _ tok_value _ lexbuf counters ppar _ _ pt sn layout_flags parsing_device next_lexeme_precursor topmost next_state = try (*if not parsing_device.state_is_mergeable.(next_state) then raise Find_rightSib_failed else*) let rightSib = find_rightSib parsing_device.g_nb next_state topmost sn.global_data sn.local_data layout_flags ppar.global_data_equal ppar.local_data_equal 0 (fun sn -> sn.pdev.state_is_mergeable.(sn.state_nb)) (*(-1) (-1)*) in let _ = create_e rightSib [tok_value] counters.counted sn (check_last_token sn.last_token) topmost pt (fst (ppar.lexbuf_position_fun lexbuf)) in if (!dypgen_verbose>2) then Printf.fprintf !log_channel "do_shifts creates a new edge:\n [%d]-%d-[%d]\n" sn.sn_nb counters.counted rightSib.sn_nb; counters.counted <- counters.counted + 1; topmost with Find_rightSib_failed -> let fst_pos, snd_pos = ppar.lexbuf_position_fun lexbuf in let rightSib = create_v next_state parsing_device sn.global_data sn.local_data counters.countsn counters.count_token snd_pos layout_flags (sn.det_depth+1) 0 Intc_map.empty in let _ = create_e rightSib [tok_value] counters.counted sn (check_last_token sn.last_token) topmost pt fst_pos in if !dypgen_verbose>2 then (print_sn rightSib; Printf.fprintf !log_channel "do_shifts creates a new edge and a new node:\n [%d]-%d-[%d]\n" sn.sn_nb counters.counted rightSib.sn_nb); counters.countsn <- counters.countsn + 1; counters.counted <- counters.counted + 1; let next_lexeme () = next_lexeme_precursor rightSib.pdev rightSib.global_data rightSib.local_data in compute_inherited_values rightSib ppar next_lexeme; rightSib::topmost let do_shifts tok_name tok_value prevTops lexbuf counters ppar layout lexeme next_lexeme_precursor = let layout_flags = if layout then 3 else 2 in let pt = if !dypgen_verbose>2 then "\""^lexeme^"\":"^(string_of_int counters.count_token) else "" in let f topmost sn = let state_nb, parsing_device = sn.state_nb, sn.pdev in if layout && (2 land sn.layout_flags = 0) then topmost else let table = parsing_device.table in let next_state = if layout then table_find table.(state_nb).(0) tok_name else let ns = table_find table.(state_nb).(2) tok_name in if ns = -1 then table_find table.(state_nb).(0) tok_name else ns in (*next_states table state_nb tok_name layout 0 2 parsing_device.state_bnt in if next_state_l = [] then topmost else*) if next_state = -1 then topmost else do_shifts_for_each tok_name tok_value prevTops lexbuf counters ppar layout lexeme pt sn layout_flags parsing_device next_lexeme_precursor topmost next_state in List.fold_left f [] prevTops let end_of_parsing_info time1 counters = if !dypgen_verbose>1 then (let time2 = Sys.time () in Printf.fprintf !log_channel "parsing time = %.3f\n" (time2-.time1); output_string !log_channel ("number of stack nodes = "^ (string_of_int counters.countsn)^"\n"); output_string !log_channel ("number of edges = "^ (string_of_int counters.counted)^"\n"); output_string !log_channel ("number of reductions = "^ (string_of_int !countred)^"\n"); flush_all ()); (*if !dypgen_verbose>2 then close_out !log_channel else*) () let init_parser parser_pilot entry_point lexpos lexbuf keep_data use_rule_order use_all_actions = let counters = new_counters () in let { pp_dev = parsing_device; pp_par = ppar; pp_gd = gd; pp_ld = ld } = parser_pilot in let entry_point = try Hashtbl.find parsing_device.nt_table (entry_point^"(_)") with Not_found -> assert false in let parsing_device = { parsing_device with entry_point = entry_point } in let ppar = let f = match lexpos with | Some f -> f | None -> ppar.lexbuf_position_fun in let frS_global_de, frS_local_de = match keep_data with | `both -> ppar.global_data_equal, ppar.local_data_equal | `global -> ppar.global_data_equal, ppar.find_rightSib_local_data_equal | `local -> ppar.find_rightSib_global_data_equal, ppar.local_data_equal | `none -> ppar.find_rightSib_global_data_equal, ppar.find_rightSib_local_data_equal in { ppar with lexbuf_position_fun = f; find_rightSib_global_data_equal = frS_global_de; find_rightSib_local_data_equal = frS_local_de; use_rule_order = use_rule_order; use_all_actions = use_all_actions } in let log_count = ref 0 in if !dypgen_verbose>2 then ( (try let log_count_chan = open_in "dypgen_log_count" in let dlc = input_line log_count_chan in let dlc = if dlc = "" then "0" else dlc in let () = log_count := int_of_string dlc in close_in log_count_chan with _ -> log_count := 0); let log_count_chan = open_out "dypgen_log_count" in output_string log_count_chan (string_of_int (!log_count+1)); close_out log_count_chan; log_channel := open_out ("dypgen_"^(string_of_int !log_count)^".log"); log_stack_channel := open_out ("dypgen_gs_"^(string_of_int !log_count)^".log"); output_string !log_stack_channel "\n\n--------------- Graph Structured Stack ---------------\n\n"); (*let parsing_device = { parsing_device with data = (match global_data with Some gd -> gd | None -> parsing_device.data); loc_data = (match local_data with Some ld -> ld | None -> parsing_device.loc_data) } in*) let start_state = try Hashtbl.find parsing_device.entry_points entry_point with Not_found -> let p = parsing_device in match p.stations.(entry_point) with | Some s -> (Hashtbl.add p.entry_points entry_point s; s) | None -> assert false in let start = create_v start_state.number parsing_device gd ld counters.countsn 0 (snd (ppar.lexbuf_position_fun lexbuf)) 2 0 0 Intc_map.empty in if !dypgen_verbose>2 then print_sn start; { counters with countsn=counters.countsn+1 }, [start], parsing_device, ppar let clean_topmost topmost = List.iter (fun sn -> sn.prev_nodes_eps <- [](*; List.iter (fun e -> e.reduction_list <- []) sn.succ_edges*)) topmost let parse parser_pilot (entry_point:string) ?global_data ?local_data ?(match_len=`longest) ?(keep_data=`both) ?lexpos ?(use_rule_order=false) ?(use_all_actions=false) (lexfun:('a -> 'token)) (lexbuf:'a) = let time1 = Sys.time () in let parser_pilot = match global_data with Some gd -> { parser_pilot with pp_gd = gd } | None -> parser_pilot in let parser_pilot = match local_data with Some ld -> { parser_pilot with pp_ld = ld } | None -> parser_pilot in let counters, topmost, _, ppar = init_parser parser_pilot entry_point lexpos lexbuf keep_data use_rule_order use_all_actions in let next_lexeme_precursor _ _ _ = failwith "next_lexeme must not be called when using an external lexer" in let rec aux_LR0 topmost t prev_parse_result = if !dypgen_verbose>2 then (Printf.fprintf !log_channel "\ndo_shift : %s, size of topmost = %d\n" (ppar.str_token t) (List.length topmost); flush_all ()); counters.count_token <- counters.count_token + 1; clean_topmost topmost; let topmost = do_shifts (ppar.get_name t) (ppar.get_value t) topmost lexbuf counters ppar true "" next_lexeme_precursor in let topmost, parse_result = do_reductions topmost counters ppar next_lexeme_precursor in if topmost = [] then ( match parse_result with _::_ -> parse_result | _ -> (match prev_parse_result with _::_ -> prev_parse_result | _ -> raise Syntax_error)) else match match_len, parse_result with | `shortest, _::_ -> parse_result | _, _::_ -> aux_LR0 topmost (lexfun lexbuf) parse_result | _ -> aux_LR0 topmost (lexfun lexbuf) prev_parse_result in let parse_result = try ( let topmost, _ = (* reduces initial epsilon rules *) do_reductions topmost counters ppar next_lexeme_precursor in aux_LR0 topmost (lexfun lexbuf) []) with Syntax_error -> (flush_all (); (*if !dypgen_verbose>2 then close_out !log_channel;*) raise Syntax_error) in end_of_parsing_info time1 counters; parse_result let select_act_id = let choose_id a b = match a, b with | a, b when a<0 -> b | a, b when b<0 -> a | _ -> min a b in function h::t -> let rec aux k = function | p::t when p>=0 -> aux (choose_id k p) t | [] -> k | _::t -> aux k t in aux h t | [] -> failwith "min_list: empty list" let all_neg l = List.for_all (fun x -> x<0) l let no_double = function [] -> assert false | i::t -> let rec aux i t l = match t with | j::u when j=i -> aux i u l | j::u -> aux j u (j::l) | [] -> l in aux i t [i] (* One of the results returned by lex_engine is selected by select_token. (lex_engine returns ids of regular expressions (and of their corresponding action) that match the input and the corresponding position) The token must be expected by at least one item set. Among those which are expected the longest are selected, then those belonging to the most recent lexer, then the one generated by the higher regular expression in the precedence order. LAYOUT has the lowest priority, a non layout regexp that matches is prefered over a layout regexp that matches, even if it matches more characters. The variable layout is a bool that tells whether layout characters have been read. all_token is a bool that tells whether all the token of the maximal length are selected or only the first one (this is default). *) let select_token topmost lexbuf all_token reset_start_pos select_unexpected layout = if !dypgen_verbose>2 then output_string !log_channel "select_token called\n"; let topmost = List.sort (fun v1 v2 -> Stdlib.compare v1.pdev.lex_nb v2.pdev.lex_nb) topmost in (*let topmost = match topmost with | [_] -> topmost | _ -> List.sort (fun v1 v2 -> Stdlib.compare v1.pdev.lex_nb v2.pdev.lex_nb) topmost in*) let tbl_l, pdev_l, snll, snl, _ = List.fold_left (fun (tl,pl,snll,snl,i) sn -> if i=sn.pdev.lex_nb then tl,pl,snll,sn::snl,i else sn.pdev.main_lexer_table::tl,sn.pdev::pl, (match snl with [] -> snll | _ -> snl::snll), [sn],sn.pdev.lex_nb) ([],[],[],[],-1) topmost in let snll = match snl with [] -> snll | _ -> snl::snll in let res = lex_engine true tbl_l lexbuf.lb_lexbuf reset_start_pos in if !dypgen_verbose>2 then (Printf.fprintf !log_channel "lex_engine: res length=%d, snll len=%d, pdev_l len=%d\n" (List.length res) (List.length snll) (List.length pdev_l); List.iter (fun l -> List.iter (fun sn -> Printf.fprintf !log_channel "sn:%d " sn.sn_nb) l; Printf.fprintf !log_channel "\n") snll); let find_match3 pdev l snl = (*Printf.fprintf !log_channel "find_match3 called\n";*) let aux1 sn l = (* l is assumed to be sorted in increasing order *) (* the function f must filter the actions id of ter that are expected, otherwise: when a layout regexp matches and another regexp matches but produces an unexpected ter, the layout is not considered and the lexer stops while it should discard the unexpected token and continue to lex. *) let f select_unexpected l = List.fold_left (fun l aid -> if pdev.main_lexer_ter_id.(aid) = pdev.layout_id then (-aid-1)::l else let ter_id = try pdev.main_lexer_ter_id.(aid) with _ -> assert false in if table_find sn.pdev.table.(sn.state_nb).(0) ter_id <> -1 || (table_find sn.pdev.table.(sn.state_nb).(2) ter_id <> -1 && not layout) || select_unexpected then ((*Printf.fprintf !log_channel "aid=%d selected\n" aid;*) aid::l) else ((*Printf.fprintf !log_channel "aid=%d not selected\n" aid;*) l)) [] l in (*Printf.printf "fm3 sn.sn_nb=%d, sn.state_nb=%d\n" sn.sn_nb sn.state_nb;*) let rec aux2 layout_matched l0 = match l0 with | act_id::t -> let ter_id = try pdev.main_lexer_ter_id.(act_id) with _ -> assert false (*fst pdev.regexp_actions.(act_id- (Array.length pdev.main_lexer_actions))*) in (*Printf.fprintf !log_channel "fm3 act_id=%d, ter_id=%d, token_nb=%d, layout_id=%d\n" act_id ter_id pdev.token_nb pdev.layout_id; Printf.fprintf !log_channel "ter: %s, act_id=%d\n" (try pdev.str_ter.(ter_id) with _ -> ("<"^(print_pretty_regexp pdev.regexp_array.(ter_id-(Array.length pdev.str_ter)))^">")) act_id;*) (*if sn.pdev.table_lex_trans.(pdev.token_nb*sn.state_nb+ter_id)*) if table_find sn.pdev.table.(sn.state_nb).(0) ter_id <> -1 || (table_find sn.pdev.table.(sn.state_nb).(2) ter_id <> -1 && not layout) then ((*output_string !log_channel "selected by fm3\n";*) (Some (if all_token then (f select_unexpected l) else [act_id])), layout_matched) else if ter_id = pdev.layout_id then (*let _ = output_string !log_channel "fm3 layout matched\n" in*) if all_token then (Some (f select_unexpected l)), layout_matched else aux2 (Some [-act_id-1]) t (*(-1)*) else if select_unexpected then (Some (if all_token then (f true l) else [act_id])), layout_matched else ((*output_string !log_channel "not selected by fm3\n";*) aux2 layout_matched t) | [] -> (*Printf.fprintf !log_channel "fm3 None\n";*) None, layout_matched in let matched, layout_matched = aux2 None l in match matched with | Some _ -> matched | _ -> layout_matched in let act_id_l = List.fold_left (fun ail sn -> match aux1 sn l with | None -> ail | Some idl -> idl@ail) [] snl in match act_id_l with [] -> None | x -> let x = no_double (List.sort Stdlib.compare x) in (*Printf.printf "list x = %s\n" (String.concat " " (List.map (fun i -> string_of_int i) x));*) Some ((if all_token then x else [select_act_id x]), pdev) in let rec find_match2 aid_pdev_layout accu_layout = function | ([-1]::t1),(_::t2),(_::t3) -> (*Printf.fprintf !log_channel "find_match2 -1\n";*) find_match2 aid_pdev_layout accu_layout (t1,t2,t3) | (l::t1),(pdev::t2),(snl::t3) -> (match find_match3 pdev l snl with | None -> find_match2 aid_pdev_layout accu_layout (t1,t2,t3) | Some (action_id_l, pdev) -> if all_neg action_id_l then find_match2 (Some ([List.hd action_id_l], pdev)) (snl@accu_layout) (t1,t2,t3) else Some (action_id_l, pdev, snl)) | _ -> (match aid_pdev_layout with None -> None | Some (aid, pdev) -> Some (aid, pdev, accu_layout)) in let rec find_match1 layout_match = function | (p,l)::t -> if !dypgen_verbose>4 then Printf.fprintf !log_channel "pos=%d\n" (p - lexbuf.lb_lexbuf.lex_abs_pos); (match find_match2 None [] (List.rev l, pdev_l, snll) with | None -> find_match1 layout_match t | Some ((aid, _, _) as x) -> if all_neg aid then (match layout_match with | None -> find_match1 (Some (x,p)) t | Some _ -> find_match1 layout_match t) else ((*lexbuf.lb_lexbuf.lex_curr_p <- { lexbuf.lb_lexbuf.lex_curr_p with Lexing.pos_cnum = p }; lexbuf.lb_lexbuf.lex_curr_pos <- p - lexbuf.lb_lexbuf.lex_abs_pos;*) (Some (x,p)), layout_match)) | [] -> None, layout_match (*(match layout_match with | Some _ -> (*lexbuf.lb_lexbuf.lex_curr_p <- { lexbuf.lb_lexbuf.lex_curr_p with Lexing.pos_cnum = p }; lexbuf.lb_lexbuf.lex_curr_pos <- p - lexbuf.lb_lexbuf.lex_abs_pos;*) None, layout_match | None -> None, N)*) in let x = find_match1 None res in (if !dypgen_verbose>2 then match x with | None, None -> output_string !log_channel "select_token ends, no match\n" | _ -> Printf.fprintf !log_channel "select_token ends, lexbuf.lb_lexbuf.lex_curr_p.pos_cnum = %d\n" lexbuf.lb_lexbuf.lex_curr_p.pos_cnum); x let rec lex_token topmost lexbuf layout all_token = let old_pos = lexbuf.lb_lexbuf.lex_curr_p.pos_cnum in match select_token topmost lexbuf all_token true false layout with | (None, None) -> None | (_, Some ((i::_, pdev, new_topmost),p)) -> lexbuf.lb_lexbuf.lex_curr_p <- { lexbuf.lb_lexbuf.lex_curr_p with Lexing.pos_cnum = p }; lexbuf.lb_lexbuf.lex_curr_pos <- p - lexbuf.lb_lexbuf.lex_abs_pos; (*Printf.printf "lex_token layout, lex_curr_pos=%d, lex_start_pos=%d, lex_abs_pos=%d\n" lexbuf.lb_lexbuf.lex_curr_pos lexbuf.lb_lexbuf.lex_start_pos lexbuf.lb_lexbuf.lex_abs_pos*) let lexbuf = { lexbuf with lb_aux_lex = pdev.aux_lexer } in if old_pos = lexbuf.lb_lexbuf.lex_curr_p.pos_cnum then failwith("lexing: empty token"); (* regexp of layout are not allowed to match input of length = 0 *) if !dypgen_verbose>2 then output_string !log_channel "lex_token called bis\n"; let action = try pdev.main_lexer_actions.(-i-1) with Invalid_argument _ -> assert false in (*Printf.printf "action_id=%d, ter=%d, layout_id=%d\n" action_id ter pdev.layout_id;*) let _ = action lexbuf in lex_token new_topmost lexbuf true all_token | (Some ((action_id_l, pdev, new_topmost),p), None) -> lexbuf.lb_lexbuf.lex_curr_p <- { lexbuf.lb_lexbuf.lex_curr_p with Lexing.pos_cnum = p }; lexbuf.lb_lexbuf.lex_curr_pos <- p - lexbuf.lb_lexbuf.lex_abs_pos; (*Printf.printf "lex_token, lex_curr_pos=%d, lex_start_pos=%d, lex_abs_pos=%d\n" lexbuf.lb_lexbuf.lex_curr_pos lexbuf.lb_lexbuf.lex_start_pos lexbuf.lb_lexbuf.lex_abs_pos;*) let lexbuf = { lexbuf with lb_aux_lex = pdev.aux_lexer } in let ter_obj_l = List.fold_left (fun l action_id -> if action_id<0 then l else let ter, action = try (pdev.main_lexer_ter_id.(action_id), pdev.main_lexer_actions.(action_id)) with Invalid_argument _ -> assert false in (ter, action lexbuf)::l) [] action_id_l in Some (ter_obj_l, new_topmost, lexbuf, layout) | (_, Some (([], _, _),_)) -> assert false (* Note: next_lexeme may return incorrect result when called from an action that extends the grammar or that uses Keep_grammar. *) let next_lexeme_precur_lb_pdev lexbuf pdev gd ld = (*output_string !log_channel "next_lexeme called\n";*) let snl = [create_v 0 pdev gd ld 0 0 Lexing.dummy_pos 2 0 0 Intc_map.empty] in let first_curr_pos = lexbuf.lb_lexbuf.lex_curr_pos in let old_start_pos = lexbuf.lb_lexbuf.lex_start_pos in (* ^ start might move at position 0 if end of buffer is reached *) (*Printf.fprintf !log_channel "first_curr_pos=%d\n" first_curr_pos;*) let rec next_token res = let prev_curr_pos = lexbuf.lb_lexbuf.lex_curr_pos in let prev_start_pos = lexbuf.lb_lexbuf.lex_start_pos in (*Printf.fprintf !log_channel "prev_curr_pos=%d\n" prev_curr_pos;*) let x = try select_token snl lexbuf false false true false (* We can take false for all_token (2nd bool) because it doesn't change the lexeme. *) with Failure _ -> ((*output_string !log_channel "empty token";*) None, None) in let prev_curr_pos = prev_curr_pos - prev_start_pos + lexbuf.lb_lexbuf.lex_start_pos in let first_curr_pos = first_curr_pos - old_start_pos + lexbuf.lb_lexbuf.lex_start_pos in let len = lexbuf.lb_lexbuf.lex_curr_pos - prev_curr_pos in match x with | None, None -> lexbuf.lb_lexbuf.lex_curr_pos <- first_curr_pos; (*Printf.printf "next_lexeme, lex_curr_pos=%d, lex_start_pos=%d, lex_abs_pos=%d\n" lexbuf.lb_lexbuf.lex_curr_pos lexbuf.lb_lexbuf.lex_start_pos lexbuf.lb_lexbuf.lex_abs_pos*) res | None, (Some _) -> let lexeme = try Bytes.to_string (Bytes.sub lexbuf.lb_lexbuf.lex_buffer prev_curr_pos len) with Invalid_argument _ -> (Printf.printf "1; %s\n" (Bytes.to_string (lexbuf.lb_lexbuf.lex_buffer)); raise (Invalid_argument("String.sub"))) in (if !dypgen_verbose>2 then output_string !log_channel "next_lexeme called bis\n"; next_token (lexeme::res)) | (Some _), _ -> let lexeme = try Bytes.to_string (Bytes.sub lexbuf.lb_lexbuf.lex_buffer prev_curr_pos len) with Invalid_argument _ -> (Printf.printf "2; %i, %i\n" prev_curr_pos len; raise (Invalid_argument("String.sub"))) in (lexbuf.lb_lexbuf.lex_curr_pos <- first_curr_pos; (*Printf.printf "next_lexeme, lex_curr_pos=%d, lex_start_pos=%d, lex_abs_pos=%d\n" lexbuf.lb_lexbuf.lex_curr_pos lexbuf.lb_lexbuf.lex_start_pos lexbuf.lb_lexbuf.lex_abs_pos*) lexeme::res) in next_token [] (*let l = next_token [] in List.iter (fun s -> Printf.fprintf !log_channel "%s\n" s) l; l*) (* The returned list contains all the layout lexemes matched and the non layout lexeme, in reverse order, i.e. the non layout lexeme first. *) let print_regexp_array pdev = let toknb = Array.length pdev.str_ter in output_string !log_channel "regexp_array:\n"; for i=0 to Array.length pdev.regexp_array -1 do Printf.fprintf !log_channel "%d:<%s>\n" (i+toknb) (print_pretty_regexp pdev.regexp_array.(i)) done; output_string !log_channel "\n" let print_main_lexer_ter_id mlti = output_string !log_channel "main_lexer_ter_id:\n"; for i=0 to Array.length mlti -1 do Printf.fprintf !log_channel "%d -> %d\n" i mlti.(i) done; output_string !log_channel "\n" let lexparse parser_pilot (entry_point:string) ?global_data ?local_data ?(match_len=`longest) ?(keep_data=`both) ?(choose_token=`first) ?(use_rule_order=false) ?(use_all_actions=false) lexbuf = let time1 = Sys.time () in let parser_pilot = match global_data with Some gd -> { parser_pilot with pp_gd = gd } | None -> parser_pilot in let parser_pilot = match local_data with Some ld -> { parser_pilot with pp_ld = ld } | None -> parser_pilot in let counters, topmost, parsing_device, ppar = init_parser parser_pilot entry_point None lexbuf keep_data use_rule_order use_all_actions in if !dypgen_verbose>4 then (print_dec_table parsing_device.main_lexer_table.tbl_trans; print_final parsing_device.main_lexer_table.tbl_final; print_regexp_array parsing_device; print_main_lexer_ter_id parsing_device.main_lexer_ter_id); let all_token = match choose_token with `first -> false | `all -> true in let next_lexeme_precursor pdev gd ld = next_lexeme_precur_lb_pdev lexbuf pdev gd ld in (*let max_nodes_count = ref 0 in*) let rec aux_LR0 lexbuf topmost prev_parse_result = if !dypgen_verbose>2 then (Printf.fprintf !log_channel "prev_parse_result length = %d\n" (List.length prev_parse_result); flush_all ()); counters.count_token <- counters.count_token + 1; clean_topmost topmost; match lex_token topmost lexbuf false all_token with | None -> (match prev_parse_result with | _::_ -> prev_parse_result | _ -> raise Syntax_error) | Some (ter_obj_l, topmost, lexbuf, layout) -> if layout then counters.last_layout <- counters.count_token - 1; if !dypgen_verbose>2 then (List.iter (fun (ter_id,_) -> Printf.fprintf !log_channel "\nTOKEN : %s, ter_id=%d\n" (try (List.hd topmost).pdev.str_ter.(ter_id) with _ -> (let pdev = (List.hd topmost).pdev in Printf.sprintf "<regexp:%s>" (print_pretty_regexp pdev.regexp_array.(ter_id- (Array.length pdev.str_ter))))) ter_id) ter_obj_l; Printf.fprintf !log_channel "size of topmost = %d lexbuf.lb_curr_p.pos_cnum = %d\n" (List.length topmost) lexbuf.lb_lexbuf.lex_curr_p.pos_cnum; flush_all ()); (*Printf.printf "1 topmost length=%d\n" (List.length topmost);*) let topmost = List.fold_left (fun new_topmost (ter, obj) -> (do_shifts ter obj topmost lexbuf counters ppar layout (Dyplex.lexeme lexbuf) next_lexeme_precursor) @new_topmost) [] ter_obj_l in let next_lexeme_precursor pdev gd ld = next_lexeme_precur_lb_pdev lexbuf pdev gd ld in let topmost, parse_result = do_reductions topmost counters ppar next_lexeme_precursor in (*let nodes_count = count_nodes topmost in if nodes_count > !max_nodes_count then max_nodes_count:=nodes_count;*) (*Printf.printf "topmost length = %d\n" (List.length topmost); Printf.printf "count_nodes = %d\n" nodes_count;*) if !dypgen_verbose>2 then Printf.fprintf !log_channel "parse_result length = %d\n" (List.length parse_result); if topmost = [] then (match parse_result with _::_ -> parse_result | _ -> (match prev_parse_result with | _::_ -> prev_parse_result | _ -> raise Syntax_error)) else (match match_len, parse_result with | `shortest, _::_ -> parse_result | _, _::_ -> aux_LR0 lexbuf topmost parse_result | _ -> aux_LR0 lexbuf topmost prev_parse_result) in let parse_result = try ( let topmost, _ = (* reduces initial epsilon rules *) do_reductions topmost counters ppar next_lexeme_precursor in aux_LR0 lexbuf topmost []) with Syntax_error -> (flush_all (); (*if !dypgen_verbose>2 then close_out !log_channel;*) raise Syntax_error) in end_of_parsing_info time1 counters; (* Printf.printf "max_count_nodes = %d\n" !max_nodes_count; *) parse_result let function_free_pdev pdev = let aux_lexer = { pdev.aux_lexer with aux_lexer_actions = Hashtbl.create 0 } in { pdev with ra_list = []; actions = [||]; regexp_decl = Hashtbl.create 0; main_lexer_actions = [||]; aux_lexer = aux_lexer } let print_symb = function | Ter s | Ter_NL s | Non_ter (s,_) | Non_ter_NL (s,_) -> print_string (s^" ") | Regexp r | Regexp_NL r -> print_string ((print_regexp r)^" ") let print_rule (s1,sl,s2,_) = print_string (s1^" : "); List.iter print_symb sl; print_endline (", "^s2) let import_functions cl_pdev pp ra_list = let pdev = pp.pp_dev in let ppar = pp.pp_par in let ra_list = List.map (fun (r,a) -> (r, Dypgen_action (Tools.transform_action a), [])) ra_list in let ra_list = pdev.ra_list@ra_list in let n = Hashtbl.fold (fun _ rn n -> max rn n) cl_pdev.rn_of_rule 0 in let actions = Array.make (n+1) [] in List.iter (fun ((lhs,rhs,p,rol),a,_) -> let rhs = List.map (function | Non_ter (nt,p) -> Non_ter (nt^(fst (string_of_nt_prio p)), No_priority) | Non_ter_NL (nt,p) -> Non_ter_NL (nt^(fst (string_of_nt_prio p)), No_priority) | x -> x) rhs in let r = (lhs^"("^p^")"), rhs, "", rol in let i = try Hashtbl.find cl_pdev.rn_of_rule r with Not_found -> (print_rule r; Hashtbl.iter (fun r _ -> print_rule r) cl_pdev.rn_of_rule; failwith "A rule was not found in the saved parsing_device.") in actions.(i) <- a::actions.(i)) ra_list; let main_lexer_actions = Array.make (Array.length cl_pdev.main_lexer_ter_id) ppar.regexp_fun in for i=cl_pdev.main_lexer_init_id to cl_pdev.main_lexer_init_id + ppar.main_lexer_action_nb-1 do main_lexer_actions.(i) <- pdev.main_lexer_actions.(i-cl_pdev.main_lexer_init_id+pdev.main_lexer_init_id) done; { cl_pdev with ra_list = ra_list; actions = actions; regexp_decl = compile_regexp_decl cl_pdev.regexp_decl_list; main_lexer_actions = main_lexer_actions; aux_lexer = pdev.aux_lexer } let is_re_name pp s = Hashtbl.mem pp.pp_dev.regexp_decl s