package dose3

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file edosSolver.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
(***************************************************************************************)
(*  Copyright (C) 2005-2009 Jerome Vouillon                                            *)
(*  Minor modifications :                                                              *)
(*       Pietro Abate <pietro.abate@pps.jussieu.fr>                                    *)
(*       Jaap Boender <boender@pps.jussieu.fr>                                         *)
(*                                                                                     *)
(*  This library is free software: you can redistribute it and/or modify               *)
(*  it under the terms of the GNU Lesser General Public License as                     *)
(*  published by the Free Software Foundation, either version 3 of the                 *)
(*  License, or (at your option) any later version.  A special linking                 *)
(*  exception to the GNU Lesser General Public License applies to this                 *)
(*  library, see the COPYING file for more information.                                *)
(***************************************************************************************)

module type S = sig
  type reason
end

module type T = sig
  module X : S

  type state

  type var = int

  type lit

  val lit_of_var : var -> bool -> lit

  val initialize_problem :
    ?print_var:(Format.formatter -> int -> unit) -> ?buffer:bool -> int -> state

  val copy : state -> state

  val propagate : state -> unit

  val protect : state -> unit

  val reset : state -> unit

  type value = True | False | Unknown

  val assignment : state -> value array

  val assignment_true : state -> var list

  val add_rule : state -> lit array -> X.reason list -> unit

  val associate_vars : state -> lit -> var list -> unit

  val solve_all : (state -> unit) -> state -> var -> bool

  val solve : state -> var -> bool

  val solve_lst : state -> var list -> bool

  val collect_reasons : state -> var -> X.reason list

  val collect_reasons_lst : state -> var list -> X.reason list

  val dump : state -> (int * bool) list list

  val debug : bool -> unit

  val stats : state -> unit
end

include Util.Logging (struct
  let label = "dose_common.edosSolver"
end)

module IntHash = Hashtbl.Make (struct
  type t = int

  let equal = ( = )

  let hash i = i
end)

open ExtLib

let ( @ ) l1 l2 =
  let rec geq = function
    | ([], []) -> true
    | (_ :: _, []) -> true
    | ([], _ :: _) -> false
    | (_ :: r1, _ :: r2) -> geq (r1, r2)
  in
  if geq (l1, l2) then List.append l2 l1 else List.append l1 l2

module M (X : S) = struct
  module X = X

  let debug = ref false

  let buffer = ref false

  (* Variables *)
  type var = int

  (* Literals *)
  type lit = int

  (* A clause is an array of literals *)
  type clause =
    { lits : lit array; all_lits : lit array; reasons : X.reason list }

  type value = True | False | Unknown

  module LitMap = Map.Make (struct
    type t = int

    let compare (x : int) y = compare x y
  end)

  type state =
    { (* Indexed by var *)
      st_assign : value array;
      st_assign_true : unit IntHash.t;
      st_reason : clause option array;
      st_level : int array;
      st_seen_var : int array;
      st_refs : int array;
      st_pinned : bool array;
      (* Indexed by lit *)
      st_simpl_prop : clause LitMap.t array;
      st_watched : clause list array;
      st_associated_vars : var list array;
      (* Queues *)
      mutable st_trail : lit list;
      mutable st_trail_lim : lit list list;
      st_prop_queue : lit Queue.t;
      (* Misc *)
      mutable st_cur_level : int;
      mutable st_min_level : int;
      mutable st_seen : int;
      mutable st_var_queue_head : var list;
      st_var_queue : var Queue.t;
      mutable st_cost : int;
      (* Total computational cost so far *)
      st_print_var : Format.formatter -> int -> unit;
      mutable st_coherent : bool;
      mutable st_buffer : (int * bool) list list
    }

  let copy_clause p =
    let n = Array.length p in
    let a = Array.make n None in
    Array.iteri
      (fun i c ->
        let copy = function
          | None -> None
          | Some cl -> Some { cl with lits = Array.copy cl.lits }
        in
        a.(i) <- copy c)
      p ;
    a

  let copy_simpl_prop p =
    let n = Array.length p in
    let a = Array.make n LitMap.empty in
    Array.iteri
      (fun i l ->
        let copy cl = { cl with lits = Array.copy cl.lits } in
        let l' = LitMap.map (fun clause -> copy clause) l in
        a.(i) <- l')
      p ;
    a

  let copy_watched p =
    let n = Array.length p in
    let a = Array.make n [] in
    Array.iteri
      (fun i l ->
        let copy cl = { cl with lits = Array.copy cl.lits } in
        let l' = List.map (fun clause -> copy clause) l in
        a.(i) <- l')
      p ;
    a

  let copy st =
    { st_assign = Array.copy st.st_assign;
      st_assign_true = IntHash.copy st.st_assign_true;
      st_reason = copy_clause st.st_reason;
      st_level = Array.copy st.st_level;
      st_seen_var = Array.copy st.st_seen_var;
      st_refs = Array.copy st.st_refs;
      st_pinned = Array.copy st.st_pinned;
      st_simpl_prop = copy_simpl_prop st.st_simpl_prop;
      st_watched = copy_watched st.st_watched;
      st_associated_vars = Array.copy st.st_associated_vars;
      st_trail = st.st_trail;
      st_trail_lim = st.st_trail_lim;
      st_prop_queue = Queue.copy st.st_prop_queue;
      st_cur_level = st.st_cur_level;
      st_min_level = st.st_min_level;
      st_seen = st.st_seen;
      st_var_queue_head = st.st_var_queue_head;
      st_var_queue = Queue.copy st.st_var_queue;
      st_cost = st.st_cost;
      st_print_var = st.st_print_var;
      st_coherent = st.st_coherent;
      st_buffer = st.st_buffer
    }

  (****)

  let charge st x = st.st_cost <- st.st_cost + x

  (* let get_bill st = st.st_cost *)

  (****)

  let pin_var st x = st.st_pinned.(x) <- true

  let unpin_var st x = st.st_pinned.(x) <- false

  let enqueue_var st x =
    charge st 1 ;
    pin_var st x ;
    Queue.push x st.st_var_queue

  (*
  let requeue_var st x =
    pin_var st x;
    st.st_var_queue_head <- x :: st.st_var_queue_head
*)

  (* Returns -1 if no variable remains *)
  let rec dequeue_var st =
    let x =
      match st.st_var_queue_head with
      | x :: r ->
          st.st_var_queue_head <- r ;
          x
      | [] -> ( try Queue.take st.st_var_queue with Queue.Empty -> -1)
    in
    if x = -1 then x
    else (
      unpin_var st x ;
      if st.st_refs.(x) = 0 || st.st_assign.(x) <> Unknown then dequeue_var st
      else x)

  (****)

  let var_of_lit p = p lsr 1

  let pol_of_lit p = p land 1 = 0

  let lit_of_var v s = if s then v + v else v + v + 1

  let lit_neg p = p lxor 1

  let val_neg v =
    match v with True -> False | False -> True | Unknown -> Unknown

  let val_of_bool b = if b then True else False

  let val_of_lit st p =
    let v = st.st_assign.(var_of_lit p) in
    if pol_of_lit p then v else val_neg v

  (****)

  let print_val ch v =
    Format.fprintf
      ch
      "%s"
      (match v with True -> "True" | False -> "False" | Unknown -> "Unknown")

  let print_lits st ch lits =
    Format.fprintf ch "{" ;
    Array.iter
      (fun p ->
        if pol_of_lit p then
          Format.fprintf ch " +%a" st.st_print_var (var_of_lit p)
        else Format.fprintf ch " -%a" st.st_print_var (var_of_lit p))
      lits ;
    Format.fprintf ch " }"

  let print_rule st ch r = print_lits st ch r.lits

  (****)

  let store st r =
    let clause =
      Array.fold_left
        (fun acc p ->
          if pol_of_lit p then (var_of_lit p, true) :: acc
          else (var_of_lit p, false) :: acc)
        []
        r.lits
    in
    st.st_buffer <- clause :: st.st_buffer

  (* we reverse the list because we store literals in reverse order *)
  let dump st = List.rev_map (fun x -> List.rev x) st.st_buffer

  (****)

  exception Conflict of clause option

  let enqueue st p reason =
    charge st 1 ;
    (if !debug then
     match reason with
     | Some r -> Format.eprintf "Applying rule %a@." (print_rule st) r
     | _ -> ()) ;
    match val_of_lit st p with
    | False ->
        if !debug then
          if pol_of_lit p then
            Format.eprintf "Cannot install %a@." st.st_print_var (var_of_lit p)
          else
            Format.eprintf
              "Already installed %a@."
              st.st_print_var
              (var_of_lit p) ;
        raise (Conflict reason)
    | True -> ()
    | Unknown ->
        if !debug then
          if pol_of_lit p then
            Format.eprintf "Installing %a@." st.st_print_var (var_of_lit p)
          else
            Format.eprintf
              "Should not install %a@."
              st.st_print_var
              (var_of_lit p) ;
        let x = var_of_lit p in
        st.st_assign.(x) <- val_of_bool (pol_of_lit p) ;
        if st.st_assign.(x) = True then IntHash.add st.st_assign_true x () ;
        st.st_reason.(x) <- reason ;
        st.st_level.(x) <- st.st_cur_level ;
        st.st_trail <- p :: st.st_trail ;
        List.iter
          (fun x ->
            charge st 1 ;
            let refs = st.st_refs.(x) in
            if refs = 0 then enqueue_var st x ;
            st.st_refs.(x) <- st.st_refs.(x) + 1)
          st.st_associated_vars.(p) ;
        Queue.push p st.st_prop_queue

  let rec find_not_false st lits i l =
    if i = l then -1
    else if val_of_lit st lits.(i) <> False then i
    else find_not_false st lits (i + 1) l

  let propagate_in_clause st r p =
    charge st 1 ;
    let p' = lit_neg p in
    if r.lits.(0) = p' then (
      r.lits.(0) <- r.lits.(1) ;
      r.lits.(1) <- p') ;
    if val_of_lit st r.lits.(0) = True then
      st.st_watched.(p) <- r :: st.st_watched.(p)
    else
      let i = find_not_false st r.lits 2 (Array.length r.lits) in
      if i = -1 then (
        st.st_watched.(p) <- r :: st.st_watched.(p) ;
        enqueue st r.lits.(0) (Some r))
      else (
        r.lits.(1) <- r.lits.(i) ;
        r.lits.(i) <- p' ;
        let p = lit_neg r.lits.(1) in
        st.st_watched.(p) <- r :: st.st_watched.(p))

  let propagate st =
    try
      while not (Queue.is_empty st.st_prop_queue) do
        charge st 1 ;
        let p = Queue.take st.st_prop_queue in
        LitMap.iter (fun p r -> enqueue st p (Some r)) st.st_simpl_prop.(p) ;
        let l = ref st.st_watched.(p) in
        st.st_watched.(p) <- [] ;
        try
          while
            match !l with
            | r :: rem ->
                l := rem ;
                propagate_in_clause st r p ;
                true
            | [] -> false
          do
            ()
          done
        with Conflict _ as e ->
          st.st_watched.(p) <- !l @ st.st_watched.(p) ;
          raise e
      done
    with Conflict _ as e ->
      Queue.clear st.st_prop_queue ;
      raise e

  (****)

  let raise_level st =
    st.st_cur_level <- st.st_cur_level + 1 ;
    st.st_trail_lim <- st.st_trail :: st.st_trail_lim ;
    st.st_trail <- []

  let assume st p =
    raise_level st ;
    enqueue st p None

  let protect st =
    propagate st ;
    raise_level st ;
    st.st_min_level <- st.st_cur_level

  let undo_one st p =
    let x = var_of_lit p in
    if !debug then Format.eprintf "Cancelling %a@." st.st_print_var x ;
    if st.st_assign.(x) = True then IntHash.remove st.st_assign_true x ;
    st.st_assign.(x) <- Unknown ;
    st.st_reason.(x) <- None ;
    st.st_level.(x) <- -1 ;
    List.iter
      (fun x ->
        charge st 1 ;
        st.st_refs.(x) <- st.st_refs.(x) - 1)
      st.st_associated_vars.(p) ;
    if st.st_refs.(x) > 0 && not st.st_pinned.(x) then enqueue_var st x

  let cancel st =
    st.st_cur_level <- st.st_cur_level - 1 ;
    List.iter (fun p -> undo_one st p) st.st_trail ;
    match st.st_trail_lim with
    | [] -> assert false
    | l :: r ->
        st.st_trail <- l ;
        st.st_trail_lim <- r

  let reset st =
    if !debug then Format.eprintf "Reset@." ;
    while st.st_trail_lim <> [] do
      cancel st
    done ;
    for i = 0 to Array.length st.st_refs - 1 do
      st.st_refs.(i) <- 0 ;
      st.st_pinned.(i) <- false
    done ;
    st.st_var_queue_head <- [] ;
    st.st_min_level <- 0 ;
    Queue.clear st.st_var_queue ;
    st.st_coherent <- true

  (****)

  let rec find_next_lit st =
    match st.st_trail with
    | [] -> assert false
    | p :: rem ->
        st.st_trail <- rem ;
        if st.st_seen_var.(var_of_lit p) = st.st_seen then (
          let reason = st.st_reason.(var_of_lit p) in
          undo_one st p ;
          (p, reason))
        else (
          undo_one st p ;
          find_next_lit st)

  let analyze st conflict =
    st.st_seen <- st.st_seen + 1 ;
    let counter = ref 0 in
    let learnt = ref [] in
    let bt_level = ref 0 in
    let reasons = ref [] in
    let r = ref conflict in
    while
      if !debug then (
        Array.iter
          (fun p ->
            Format.eprintf
              "%d:%a (%b/%d) "
              p
              print_val
              (val_of_lit st p)
              (st.st_reason.(var_of_lit p) <> None)
              st.st_level.(var_of_lit p))
          !r.lits ;
        Format.eprintf "@.") ;
      reasons := !r.reasons @ !reasons ;
      for i = 0 to Array.length !r.all_lits - 1 do
        let p = !r.all_lits.(i) in
        let x = var_of_lit p in
        if st.st_seen_var.(x) <> st.st_seen then (
          assert (val_of_lit st p = False) ;
          st.st_seen_var.(x) <- st.st_seen ;
          let level = st.st_level.(x) in
          if level = st.st_cur_level then incr counter
          else (
            (* if level > 0 then *)
            learnt := p :: !learnt ;
            bt_level := max level !bt_level))
      done ;
      let (p, reason) = find_next_lit st in
      decr counter ;
      (if !counter = 0 then learnt := lit_neg p :: !learnt
      else match reason with Some r' -> r := r' | None -> assert false) ;
      !counter > 0
    do
      ()
    done ;
    if !debug then (
      List.iter
        (fun p ->
          Format.eprintf
            "%d:%a/%d "
            p
            print_val
            (val_of_lit st p)
            st.st_level.(var_of_lit p))
        !learnt ;
      Format.eprintf "@.") ;
    (Array.of_list !learnt, !reasons, !bt_level)

  let find_highest_level st lits =
    let level = ref (-1) in
    let i = ref 0 in
    Array.iteri
      (fun j p ->
        if st.st_level.(var_of_lit p) > !level then (
          level := st.st_level.(var_of_lit p) ;
          i := j))
      lits ;
    !i

  let backjump f st r =
    let (learnt, reasons, level) = analyze st r in
    let level = max st.st_min_level level in
    while st.st_cur_level > level do
      cancel st
    done ;
    assert (val_of_lit st learnt.(0) = Unknown) ;
    let rule = { lits = learnt; all_lits = learnt; reasons } in
    if !debug then Format.eprintf "Learning %a@." (print_rule st) rule ;
    if Array.length learnt > 1 then (
      let i = find_highest_level st learnt in
      assert (i > 0) ;
      let p' = learnt.(i) in
      learnt.(i) <- learnt.(1) ;
      learnt.(1) <- p' ;
      let p = lit_neg learnt.(0) in
      let p' = lit_neg p' in
      st.st_watched.(p) <- rule :: st.st_watched.(p) ;
      st.st_watched.(p') <- rule :: st.st_watched.(p')) ;
    enqueue st learnt.(0) (Some rule) ;
    st.st_cur_level > st.st_min_level && f st

  (*
  let val_of = function
    |True -> true
    |False -> false
    |Unknown -> assert false
*)

  (* find all solutions *)
  let rec solve_all_rec callback st =
    match
      try
        propagate st ;
        None
      with Conflict r -> Some r
    with
    | None ->
        let x = dequeue_var st in
        if x < 0 then (
          (* we do something with the solution that we just found *)
          callback st ;
          if st.st_cur_level = 0 then (
            (* we exhausted the search space *)
            if !debug then Format.eprintf "Search Completed.@." ;
            true)
          else (
            if !debug then Format.eprintf "Solution found.@." ;
            (* we remove this solution from the search space and backjump *)
            let assignment =
              (* XXX : I should keep trace of this list incrementally *)
              let acc = ref [] in
              for v = 0 to Array.length st.st_assign - 1 do
                match st.st_assign.(v) with
                | True -> acc := lit_of_var v true :: !acc
                | False -> acc := lit_of_var v false :: !acc
                | Unknown -> ()
              done ;
              !acc
            in
            let m = Array.of_list (List.map lit_neg assignment) in
            let r = { lits = m; all_lits = m; reasons = [] } in
            backjump (solve_all_rec callback) st r))
        else (
          (* we didn't find any solution yet *)
          assume st (lit_of_var x false) ;
          solve_all_rec callback st)
    | Some r ->
        let r = match r with None -> assert false | Some r -> r in
        (* we found a conflict *)
        backjump (solve_all_rec callback) st r

  (* find one solution *)
  let rec solve_rec st =
    match
      try
        propagate st ;
        None
      with Conflict r -> Some r
    with
    | None ->
        let x = dequeue_var st in
        x < 0
        ||
        (assume st (lit_of_var x false) ;
         solve_rec st)
    | Some r ->
        let r = match r with None -> assert false | Some r -> r in
        backjump solve_rec st r

  let rec solve_aux ?callback st x =
    let s =
      if Option.is_none callback then solve_rec
      else solve_all_rec (Option.get callback)
    in
    assert (st.st_cur_level = st.st_min_level) ;
    propagate st ;
    try
      let p = lit_of_var x true in
      assume st p ;
      assert (st.st_cur_level = st.st_min_level + 1) ;
      if s st then (
        protect st ;
        true)
      else solve_aux st ?callback x
    with Conflict _ ->
      st.st_coherent <- false ;
      false

  let solve st x = solve_aux st x

  let solve_all callback st x = solve_aux ~callback st x

  let rec solve_lst_rec st l0 l =
    match l with
    | [] -> true
    | x :: r ->
        protect st ;
        List.iter (fun x -> enqueue st (lit_of_var x true) None) l0 ;
        propagate st ;
        if solve st x then (
          if r <> [] then reset st ;
          solve_lst_rec st (x :: l0) r)
        else false

  let solve_lst st l = solve_lst_rec st [] l

  let debug b = debug := b

  let set_buffer b = buffer := b

  let initialize_problem ?(print_var = fun fmt -> Format.fprintf fmt "%d")
      ?(buffer = false) n =
    if buffer then set_buffer true ;
    (* Remove Gc settings for the moment as they are not adapted to small
          opam repositories
       Gc.set { (Gc.get()) with
         Gc.minor_heap_size = 4 * 1024 * 1024; (*4M*)
         Gc.major_heap_increment = 32 * 1024 * 1024; (*32M*)
         Gc.max_overhead = 150;
       } ;
    *)
    { st_assign = Array.make n Unknown;
      st_assign_true = IntHash.create n;
      st_reason = Array.make n None;
      st_level = Array.make n (-1);
      st_seen_var = Array.make n (-1);
      st_refs = Array.make n 0;
      st_pinned = Array.make n false;
      (* to each literal, positive or negative,
       * we associate the list of rules where it appears *)
      st_simpl_prop = Array.make (2 * n) LitMap.empty;
      st_watched = Array.make (2 * n) [];
      (* to each literal we associate the list of assiciated variables *)
      st_associated_vars = Array.make (2 * n) [];
      st_trail = [];
      st_trail_lim = [];
      st_prop_queue = Queue.create ();
      st_cur_level = 0;
      st_min_level = 0;
      st_seen = 0;
      st_var_queue_head = [];
      st_var_queue = Queue.create ();
      st_cost = 0;
      st_print_var = print_var;
      st_coherent = true;
      st_buffer = []
    }

  let insert_simpl_prop st r p p' =
    let p = lit_neg p in
    if not (LitMap.mem p' st.st_simpl_prop.(p)) then
      st.st_simpl_prop.(p) <- LitMap.add p' r st.st_simpl_prop.(p)

  let add_bin_rule st lits p p' reasons =
    let r = { lits = [| p; p' |]; all_lits = lits; reasons } in
    if !buffer then store st r ;
    insert_simpl_prop st r p p' ;
    insert_simpl_prop st r p' p

  let add_un_rule st lits p reasons =
    let r = { lits = [| p |]; all_lits = lits; reasons } in
    if !buffer then store st r ;
    enqueue st p (Some r)

  let add_rule st lits reasons =
    let is_true = ref false in
    let all_lits = Array.copy lits in
    let j = ref 0 in
    for i = 0 to Array.length lits - 1 do
      match val_of_lit st lits.(i) with
      | True -> is_true := true
      | False -> ()
      | Unknown ->
          lits.(!j) <- lits.(i) ;
          incr j
    done ;
    let lits = Array.sub lits 0 !j in
    if not !is_true then
      match Array.length lits with
      | 0 -> assert false
      | 1 -> add_un_rule st all_lits lits.(0) reasons
      | 2 -> add_bin_rule st all_lits lits.(0) lits.(1) reasons
      | _ ->
          let rule = { lits; all_lits; reasons } in
          let p = lit_neg rule.lits.(0) in
          let p' = lit_neg rule.lits.(1) in
          if !buffer then store st rule ;
          assert (val_of_lit st p <> False) ;
          assert (val_of_lit st p' <> False) ;
          st.st_watched.(p) <- rule :: st.st_watched.(p) ;
          st.st_watched.(p') <- rule :: st.st_watched.(p')

  let associate_vars st lit l =
    st.st_associated_vars.(lit) <- l @ st.st_associated_vars.(lit)

  let rec collect_rec st x l =
    if st.st_seen_var.(x) = st.st_seen then l
    else (
      st.st_seen_var.(x) <- st.st_seen ;
      match st.st_reason.(x) with
      | None -> l
      | Some r ->
          r.reasons
          @ Array.fold_left
              (fun l p -> collect_rec st (var_of_lit p) l)
              l
              r.all_lits)

  let collect_reasons st x =
    st.st_seen <- st.st_seen + 1 ;
    collect_rec st x []

  let collect_reasons_lst st l =
    st.st_seen <- st.st_seen + 1 ;
    let x = List.find (fun x -> st.st_assign.(x) = False) l in
    collect_rec st x []

  let assignment st = st.st_assign

  let assignment_true st =
    IntHash.fold (fun k _ acc -> k :: acc) st.st_assign_true []

  let stats st =
    let (t, f, u) =
      Array.fold_left
        (fun (t, f, u) -> function
          | True -> (t + 1, f, u)
          | False -> (t, f + 1, u)
          | Unknown -> (t, f, u + 1))
        (0, 0, 0)
        st.st_assign
    in
    Format.eprintf "Variables %d@." (Array.length st.st_assign) ;
    Format.eprintf "st_assign: True: %d False: %d Unknown: %d@." t f u ;
    Format.eprintf
      "st_associated_vars %d@."
      (Array.length st.st_associated_vars) ;
    Format.eprintf "st_cost %d@." st.st_cost
end
OCaml

Innovation. Community. Security.