Source file depsolver_int.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
open ExtLib
open Dose_common
let progressbar_init = Util.Progress.create "Depsolver_int.init_solver"
let progressbar_univcheck = Util.Progress.create "Depsolver_int.univcheck"
include Util.Logging (struct
let label = "Depsolver_int.init_solver"
end)
module R = struct
type reason = Diagnostic.reason_int
end
module S = EdosSolver.M (R)
type solver =
{ constraints : S.state;
map : Util.projection;
globalid : (bool * bool) * int
}
type global_constraints = (Cudf_types.vpkglist * int list) list
type dep_t =
(Cudf_types.vpkg list * S.var list) list * (Cudf_types.vpkg * S.var list) list
and pool = dep_t array
and t = [ `SolverPool of pool | `CudfPool of bool * pool ]
type result =
| Success of (unit -> int list)
| Failure of (unit -> Diagnostic.reason_int list)
let init_pool_univ ~global_constraints univ =
let size = Cudf.universe_size univ in
let keep = Hashtbl.create 200 in
let pool =
Array.init (size + 1) (fun uid ->
try
if uid = size then ([], [])
else
let pkg = Cudf.package_by_uid univ uid in
let dll =
List.map
(fun vpkgs -> (vpkgs, CudfAdd.resolve_vpkgs_int univ vpkgs))
pkg.Cudf.depends
in
let cl =
List.filter_map
(fun vpkg ->
match CudfAdd.resolve_vpkg_int univ vpkg with
| [] -> None
| l -> Some (vpkg, l))
pkg.Cudf.conflicts
in
(if pkg.Cudf.installed then
match pkg.Cudf.keep with
| `Keep_none -> ()
| `Keep_package ->
List.iter
(fun id ->
CudfAdd.add_to_package_list
keep
(pkg.Cudf.package, None)
id)
(CudfAdd.resolve_vpkg_int univ (pkg.Cudf.package, None))
| `Keep_version ->
CudfAdd.add_to_package_list
keep
(pkg.Cudf.package, Some (`Eq, pkg.Cudf.version))
uid
| `Keep_feature ->
List.iter
(function
| (name, None) ->
List.iter
(fun id ->
CudfAdd.add_to_package_list keep (name, None) id)
(CudfAdd.resolve_vpkg_int univ (name, None))
| (name, Some (`Eq, v)) ->
List.iter
(fun id ->
CudfAdd.add_to_package_list
keep
(name, Some (`Eq, v))
id)
(CudfAdd.resolve_vpkg_int univ (name, Some (`Eq, v))))
pkg.Cudf.provides) ;
(dll, cl)
with Not_found ->
fatal
"Package uid (%d) not found during solver pool initialization. \
Packages uid must have no gaps in the given universe"
uid)
in
let keep_dll =
Hashtbl.fold
(fun cnstr { contents = l } acc -> ([cnstr], l) :: acc)
keep
global_constraints
in
pool.(size) <- (keep_dll, []) ;
`CudfPool (keep_dll <> [], pool)
(** this function creates an array indexed by solver ids that can be
used to init the edos solver *)
let init_solver_pool map (`CudfPool (_keep_constraints, cudfpool)) closure =
let convert (dll, cl) =
let sdll =
List.map (fun (vpkgs, uidl) -> (vpkgs, List.map map#vartoint uidl)) dll
in
let scl =
List.map
(fun (vpkg, uidl) ->
let l =
List.filter_map
(fun uid ->
try Some (map#vartoint uid)
with Not_found ->
debug
"Dropping Conflict %s"
(Cudf_types_pp.string_of_vpkg vpkg) ;
None)
uidl
in
(vpkg, l))
cl
in
(sdll, scl)
in
let solverpool =
Array.init (List.length closure) (fun sid ->
convert cudfpool.(map#inttovar sid))
in
`SolverPool solverpool
(** initalise the sat solver. operate only on solver ids *)
let init_solver_cache ?(buffer = false) ?(explain = true) (`SolverPool varpool)
=
let num_conflicts = ref 0 in
let num_disjunctions = ref 0 in
let num_dependencies = ref 0 in
let if_explain l = if explain then l else [] in
let varsize = Array.length varpool in
let add_depend constraints vpkgs pkg_id l =
let lit = S.lit_of_var pkg_id false in
if List.length l = 0 then
S.add_rule
constraints
[| lit |]
(if_explain [Diagnostic.MissingInt (pkg_id, vpkgs)])
else
let lits = List.map (fun id -> S.lit_of_var id true) l in
num_disjunctions := !num_disjunctions + List.length lits ;
S.add_rule
constraints
(Array.of_list (lit :: lits))
(if_explain [Diagnostic.DependencyInt (pkg_id, vpkgs, l)]) ;
if List.length lits > 1 then
S.associate_vars constraints (S.lit_of_var pkg_id true) l
in
let conflicts = Util.IntPairHashtbl.create (varsize / 10) in
let add_conflict constraints vpkg (i, j) =
if i <> j then
let pair = (min i j, max i j) in
if not (Util.IntPairHashtbl.mem conflicts pair) then (
incr num_conflicts ;
Util.IntPairHashtbl.add conflicts pair () ;
let p = S.lit_of_var i false in
let q = S.lit_of_var j false in
S.add_rule
constraints
[| p; q |]
(if_explain [Diagnostic.ConflictInt (i, j, vpkg)]))
in
let exec_depends constraints pkg_id dll =
List.iter
(fun (vpkgs, dl) ->
incr num_dependencies ;
add_depend constraints vpkgs pkg_id dl)
dll
in
let exec_conflicts constraints pkg_id cl =
List.iter
(fun (vpkg, l) ->
List.iter (fun id -> add_conflict constraints vpkg (pkg_id, id)) l)
cl
in
Util.Progress.set_total progressbar_init varsize ;
let constraints = S.initialize_problem ~buffer varsize in
Array.iteri
(fun id (dll, cl) ->
Util.Progress.progress progressbar_init ;
exec_depends constraints id dll ;
exec_conflicts constraints id cl)
varpool ;
Util.IntPairHashtbl.clear conflicts ;
debug "n. disjunctions %d" !num_disjunctions ;
debug "n. dependencies %d" !num_dependencies ;
debug "n. conflicts %d" !num_conflicts ;
S.propagate constraints ;
constraints
(** low level call to the sat solver
@param tested: optional int array used to cache older results
*)
let solve ?tested ~explain solver request =
S.reset solver.constraints ;
let result solve collect var =
if solve solver.constraints var then
if explain then (
let l = S.assignment_true solver.constraints in
if not (Option.is_none tested) then
List.iter (fun i -> (Option.get tested).(i) <- true) l ;
Diagnostic.SuccessInt
(fun [@ocaml.warning "-27"] ?(all = false) () -> l))
else (
(if not (Option.is_none tested) then
let l = S.assignment_true solver.constraints in
List.iter (fun i -> (Option.get tested).(i) <- true) l) ;
Diagnostic.SuccessInt
(fun [@ocaml.warning "-27"] ?(all = false) () -> []))
else if explain then
Diagnostic.FailureInt (fun () -> collect solver.constraints var)
else Diagnostic.FailureInt (fun () -> [])
in
match (request, solver.globalid) with
| ([], ((false, false), _)) ->
Diagnostic.SuccessInt (fun [@ocaml.warning "-27"] ?(all = false) () -> [])
| ([], (((_, true) | (true, _)), gid)) ->
result S.solve S.collect_reasons (solver.map#vartoint gid)
| ([i], ((false, false), _)) ->
result S.solve S.collect_reasons (solver.map#vartoint i)
| (l, ((false, false), _)) ->
let il = List.map solver.map#vartoint l in
result S.solve_lst S.collect_reasons_lst il
| (l, (_, gid)) ->
let il = List.map solver.map#vartoint (gid :: l) in
result S.solve_lst S.collect_reasons_lst il
let pkgcheck callback explain solver tested id =
let res =
Util.Progress.progress progressbar_univcheck ;
if not tested.(id) then solve ~tested ~explain solver [id]
else if
explain
then
let f ?(all = false) () =
if all then
match solve solver ~explain [id] with
| Diagnostic.SuccessInt f_int -> f_int ()
| Diagnostic.FailureInt _ -> assert false
else []
in
Diagnostic.SuccessInt f
else
Diagnostic.SuccessInt (fun [@ocaml.warning "-27"] ?(all = false) () -> [])
in
match (callback, res) with
| (None, Diagnostic.SuccessInt _) -> true
| (None, Diagnostic.FailureInt _) -> false
| (Some f, Diagnostic.SuccessInt _) ->
f (res, [id]) ;
true
| (Some f, Diagnostic.FailureInt _) ->
f (res, [id]) ;
false
(** low level constraint solver initialization
@param buffer debug buffer to print out debug messages
@param univ cudf package universe
*)
let init_solver_univ ~global_constraints ?(buffer = false) ?(explain = true)
univ =
let map = new Util.identity in
let (`CudfPool (keep_constraints, pool)) =
init_pool_univ ~global_constraints univ
in
let varpool = `SolverPool pool in
let constraints = init_solver_cache ~buffer ~explain varpool in
let gid = Cudf.universe_size univ in
let global_constraints = global_constraints <> [] in
{ constraints; map; globalid = ((keep_constraints, global_constraints), gid) }
(** low level constraint solver initialization
@param buffer debug buffer to print out debug messages
@param pool dependencies and conflicts array idexed by package id
@param closure subset of packages used to initialize the solver
*)
let init_solver_closure ~global_constraints ?(buffer = false)
(`CudfPool (keep_constraints, cudfpool)) closure =
let gid = Array.length cudfpool - 1 in
let global_constraints = global_constraints <> [] in
let map = new Util.intprojection (List.length closure) in
List.iter map#add closure ;
let varpool =
init_solver_pool map (`CudfPool (keep_constraints, cudfpool)) closure
in
let constraints = init_solver_cache ~buffer varpool in
{ constraints; map; globalid = ((keep_constraints, global_constraints), gid) }
(** return a copy of the state of the solver *)
let copy_solver solver = { solver with constraints = S.copy solver.constraints }
(** [reverse_dependencies index] return an array that associates to a package id
[i] the list of all packages ids that have a dependency on [i].
@param mdf the package universe
*)
let reverse_dependencies univ =
let size = Cudf.universe_size univ in
let reverse = Array.create size [] in
Cudf.iteri_packages
(fun i p ->
List.iter
(fun ll ->
List.iter
(fun q ->
let j = CudfAdd.pkgtoint univ q in
if i <> j then
if not (List.mem i reverse.(j)) then
reverse.(j) <- i :: reverse.(j))
ll)
(CudfAdd.who_depends univ p))
univ ;
reverse
let dependency_closure_cache ?(maxdepth = max_int) ?(conjunctive = false)
(`CudfPool (_, cudfpool)) idlist =
let queue = Queue.create () in
let globalid = Array.length cudfpool - 1 in
let visited = Hashtbl.create (2 * List.length idlist) in
List.iter
(fun e -> Queue.add (e, 0) queue)
(CudfAdd.normalize_set (globalid :: idlist)) ;
while Queue.length queue > 0 do
let (id, level) = Queue.take queue in
if (not (Hashtbl.mem visited id)) && level < maxdepth then (
Hashtbl.add visited id () ;
let (l, _) = cudfpool.(id) in
List.iter
(function
| (_, [i]) when conjunctive = true ->
if not (Hashtbl.mem visited i) then Queue.add (i, level + 1) queue
| (_, dsj) when conjunctive = false ->
List.iter
(fun i ->
if not (Hashtbl.mem visited i) then
Queue.add (i, level + 1) queue)
dsj
| _ -> ())
l)
done ;
Hashtbl.fold (fun k _ l -> k :: l) visited []
(** return the dependency closure of the reverse dependency graph.
The visit is bfs.
@param maxdepth the maximum cone depth (infinite by default)
@param index the package universe
@param idlist a subset of [index]
This function use a memoization strategy.
*)
let reverse_dependency_closure ?(maxdepth = max_int) reverse =
let h = Hashtbl.create (Array.length reverse) in
let cmp : int -> int -> bool = ( = ) in
fun idlist ->
try Hashtbl.find h (idlist, maxdepth)
with Not_found ->
let queue = Queue.create () in
let visited = Hashtbl.create (List.length idlist) in
List.iter (fun e -> Queue.add (e, 0) queue) (List.unique ~cmp idlist) ;
while Queue.length queue > 0 do
let (id, level) = Queue.take queue in
if (not (Hashtbl.mem visited id)) && level < maxdepth then (
Hashtbl.add visited id () ;
List.iter
(fun i ->
if not (Hashtbl.mem visited i) then Queue.add (i, level + 1) queue)
reverse.(id))
done ;
let result = Hashtbl.fold (fun k _ l -> k :: l) visited [] in
Hashtbl.add h (idlist, maxdepth) result ;
result