package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.0.tar.gz
sha256=36577b55f4a4b1c64682c387de7abea932d0fd42fc0cd5406927dca344f53587
doc/src/coq-core.kernel/safe_typing.ml.html
Source file safe_typing.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Jean-Christophe Filliâtre as part of the rebuilding of Coq around a purely functional abstract type-checker, Dec 1999 *) (* This file provides the entry points to the kernel type-checker. It defines the abstract type of well-formed environments and implements the rules that build well-formed environments. An environment is made of constants and inductive types (E), of section declarations (Delta), of local bound-by-index declarations (Gamma) and of universe constraints (C). Below E[Delta,Gamma] |-_C means that the tuple E, Delta, Gamma, C is a well-formed environment. Main rules are: empty_environment: ------ [,] |- push_named_assum(a,T): E[Delta,Gamma] |-_G ------------------------ E[Delta,Gamma,a:T] |-_G' push_named_def(a,t,T): E[Delta,Gamma] |-_G --------------------------- E[Delta,Gamma,a:=t:T] |-_G' add_constant(ConstantEntry(DefinitionEntry(c,t,T))): E[Delta,Gamma] |-_G --------------------------- E,c:=t:T[Delta,Gamma] |-_G' add_constant(ConstantEntry(ParameterEntry(c,T))): E[Delta,Gamma] |-_G ------------------------ E,c:T[Delta,Gamma] |-_G' add_mind(Ind(Ind[Gamma_p](Gamma_I:=Gamma_C))): E[Delta,Gamma] |-_G ------------------------ E,Ind[Gamma_p](Gamma_I:=Gamma_C)[Delta,Gamma] |-_G' etc. *) open Util open Names open Declarations open Constr open Context.Named.Declaration module NamedDecl = Context.Named.Declaration (** {6 Safe environments } Fields of [safe_environment] : - [env] : the underlying environment (cf Environ) - [modpath] : the current module name - [modvariant] : * NONE before coqtop initialization * LIBRARY at toplevel of a compilation or a regular coqtop session * STRUCT (params,oldsenv) : inside a local module, with module parameters [params] and earlier environment [oldsenv] * SIG (params,oldsenv) : same for a local module type - [modresolver] : delta_resolver concerning the module content, that needs to be marshalled on disk - [paramresolver] : delta_resolver in scope but not part of the library per se, that is from functor parameters and required libraries - [revstruct] : current module content, most recent declarations first - [modlabels] and [objlabels] : names defined in the current module, either for modules/modtypes or for constants/inductives. These fields could be deduced from [revstruct], but they allow faster name freshness checks. - [univ] : current universe constraints - [future_cst] : delayed opaque constants yet to be checked - [required] : names and digests of Require'd libraries since big-bang. This field will only grow - [loads] : list of libraries Require'd inside the current module. They will be propagated to the upper module level when the current module ends. - [local_retroknowledge] *) type vodigest = | Dvo_or_vi of Digest.t (* The digest of the seg_lib part *) | Dvivo of Digest.t * Digest.t (* The digest of the seg_lib + seg_univ part *) let digest_match ~actual ~required = match actual, required with | Dvo_or_vi d1, Dvo_or_vi d2 | Dvivo (d1,_), Dvo_or_vi d2 -> String.equal d1 d2 | Dvivo (d1,e1), Dvivo (d2,e2) -> String.equal d1 d2 && String.equal e1 e2 | Dvo_or_vi _, Dvivo _ -> false type library_info = DirPath.t * vodigest (** Functor and funsig parameters, most recent first *) type module_parameters = (MBId.t * module_type_body) list type compiled_library = { comp_name : DirPath.t; comp_mod : module_body; comp_univs : Univ.ContextSet.t; comp_deps : library_info array; } type reimport = compiled_library * Univ.ContextSet.t * vodigest (** Part of the safe_env at a section opening time to be backtracked *) type section_data = { rev_env : Environ.env; rev_univ : Univ.ContextSet.t; rev_objlabels : Label.Set.t; rev_reimport : reimport list; rev_revstruct : structure_body; } module HandleMap = Opaqueproof.HandleMap (** We rely on uniqueness of pointers to provide a simple implementation of kernel certificates. For this to work across processes, one needs the safe environments to be marshaled at the same time as their corresponding certificates and sharing to be preserved. *) module Nonce : sig type t val create : unit -> t val equal : t -> t -> bool end = struct type t = unit ref let create () = ref () let equal x y = x == y end type safe_environment = { env : Environ.env; sections : section_data Section.t option; modpath : ModPath.t; modvariant : modvariant; modresolver : Mod_subst.delta_resolver; paramresolver : Mod_subst.delta_resolver; revstruct : structure_body; modlabels : Label.Set.t; objlabels : Label.Set.t; univ : Univ.ContextSet.t; future_cst : (Term_typing.typing_context * safe_environment * Nonce.t) HandleMap.t; required : vodigest DPmap.t; loads : (ModPath.t * module_body) list; local_retroknowledge : Retroknowledge.action list; } and modvariant = | NONE | LIBRARY | SIG of module_parameters * safe_environment (** saved env *) | STRUCT of module_parameters * safe_environment (** saved env *) let rec library_dp_of_senv senv = match senv.modvariant with | NONE | LIBRARY -> ModPath.dp senv.modpath | SIG(_,senv) -> library_dp_of_senv senv | STRUCT(_,senv) -> library_dp_of_senv senv let empty_environment = { env = Environ.empty_env; modpath = ModPath.initial; modvariant = NONE; modresolver = Mod_subst.empty_delta_resolver; paramresolver = Mod_subst.empty_delta_resolver; revstruct = []; modlabels = Label.Set.empty; objlabels = Label.Set.empty; sections = None; future_cst = HandleMap.empty; univ = Univ.ContextSet.empty; required = DPmap.empty; loads = []; local_retroknowledge = []; } let is_initial senv = match senv.revstruct, senv.modvariant with | [], NONE -> ModPath.equal senv.modpath ModPath.initial | _ -> false let sections_are_opened senv = not (Option.is_empty senv.sections) let delta_of_senv senv = senv.modresolver,senv.paramresolver let constant_of_delta_kn_senv senv kn = Mod_subst.constant_of_deltas_kn senv.paramresolver senv.modresolver kn let mind_of_delta_kn_senv senv kn = Mod_subst.mind_of_deltas_kn senv.paramresolver senv.modresolver kn (** The safe_environment state monad *) type safe_transformer0 = safe_environment -> safe_environment type 'a safe_transformer = safe_environment -> 'a * safe_environment (** {6 Typing flags } *) let set_typing_flags c senv = let env = Environ.set_typing_flags c senv.env in if env == senv.env then senv else { senv with env } let set_typing_flags flags senv = (* NB: we allow changing the conv_oracle inside sections because it doesn't matter for consistency. *) if Option.has_some senv.sections && not (Environ.same_flags flags {(Environ.typing_flags senv.env) with conv_oracle = flags.conv_oracle; share_reduction = flags.share_reduction; }) then CErrors.user_err Pp.(str "Changing typing flags inside sections is not allowed."); set_typing_flags flags senv let set_impredicative_set b senv = let flags = Environ.typing_flags senv.env in set_typing_flags { flags with impredicative_set = b } senv let set_check_guarded b senv = let flags = Environ.typing_flags senv.env in set_typing_flags { flags with check_guarded = b } senv let set_check_positive b senv = let flags = Environ.typing_flags senv.env in set_typing_flags { flags with check_positive = b } senv let set_check_universes b senv = let flags = Environ.typing_flags senv.env in set_typing_flags { flags with check_universes = b } senv let set_indices_matter indices_matter senv = set_typing_flags { (Environ.typing_flags senv.env) with indices_matter } senv let b senv = let flags = Environ.typing_flags senv.env in set_typing_flags { flags with share_reduction = b } senv let set_VM b senv = let flags = Environ.typing_flags senv.env in set_typing_flags { flags with enable_VM = b } senv let set_native_compiler b senv = let flags = Environ.typing_flags senv.env in set_typing_flags { flags with enable_native_compiler = b } senv let set_allow_sprop b senv = { senv with env = Environ.set_allow_sprop b senv.env } (* Temporary sets custom typing flags *) let with_typing_flags ?typing_flags senv ~f = match typing_flags with | None -> f senv | Some typing_flags -> let orig_typing_flags = Environ.typing_flags senv.env in let res, senv = f (set_typing_flags typing_flags senv) in res, set_typing_flags orig_typing_flags senv (** {6 Stm machinery } *) module Certificate : sig type t val make : safe_environment -> t val universes : t -> Univ.ContextSet.t (** Checks whether [dst] is a valid extension of [src] *) val check : src:t -> dst:t -> bool end = struct type t = { certif_struc : Declarations.structure_body; certif_univs : Univ.ContextSet.t; } let make senv = { certif_struc = senv.revstruct; certif_univs = senv.univ; } let is_suffix l suf = match l with | [] -> false | _ :: l -> l == suf let is_subset (s1, cst1) (s2, cst2) = Univ.Level.Set.subset s1 s2 && Univ.Constraints.subset cst1 cst2 let check ~src ~dst = is_suffix dst.certif_struc src.certif_struc && is_subset src.certif_univs dst.certif_univs let universes c = c.certif_univs end type side_effect = { seff_certif : Certificate.t CEphemeron.key; seff_constant : Constant.t; seff_body : Constr.t Declarations.pconstant_body; seff_univs : Univ.ContextSet.t; } (* Invariant: For any senv, if [Certificate.check senv seff_certif] then senv where univs := Certificate.universes seff_certif] + (c.seff_constant -> seff_body) is well-formed. *) module SideEffects : sig type t val repr : t -> side_effect list val empty : t val is_empty : t -> bool val add : side_effect -> t -> t val concat : t -> t -> t end = struct module SeffOrd = struct type t = side_effect let compare e1 e2 = Constant.CanOrd.compare e1.seff_constant e2.seff_constant end module SeffSet = Set.Make(SeffOrd) type t = { seff : side_effect list; elts : SeffSet.t } (** Invariant: [seff] is a permutation of the elements of [elts] *) let repr eff = eff.seff let empty = { seff = []; elts = SeffSet.empty } let is_empty { seff; elts } = List.is_empty seff && SeffSet.is_empty elts let add x es = if SeffSet.mem x es.elts then es else { seff = x :: es.seff; elts = SeffSet.add x es.elts } let concat xes yes = List.fold_right add xes.seff yes end type private_constants = SideEffects.t let side_effects_of_private_constants l = List.rev (SideEffects.repr l) (* Only used to push in an Environ.env. *) let lift_constant c = let body = match c.const_body with | OpaqueDef _ -> Undef None | Def _ | Undef _ | Primitive _ as body -> body in { c with const_body = body } let push_private_constants env eff = let eff = side_effects_of_private_constants eff in let add_if_undefined env eff = if Environ.mem_constant eff.seff_constant env then env else Environ.add_constant eff.seff_constant (lift_constant eff.seff_body) env in List.fold_left add_if_undefined env eff let empty_private_constants = SideEffects.empty let is_empty_private_constants c = SideEffects.is_empty c let concat_private = SideEffects.concat let universes_of_private eff = let fold acc eff = Univ.ContextSet.union eff.seff_univs acc in List.fold_left fold Univ.ContextSet.empty (side_effects_of_private_constants eff) let env_of_safe_env senv = senv.env let env_of_senv = env_of_safe_env let structure_body_of_safe_env env = env.revstruct let sections_of_safe_env senv = senv.sections let get_section = function | None -> CErrors.user_err Pp.(str "No open section.") | Some s -> s let push_context_set ~strict cst senv = if Univ.ContextSet.is_empty cst then senv else let sections = Option.map (Section.push_constraints cst) senv.sections in { senv with env = Environ.push_context_set ~strict cst senv.env; univ = Univ.ContextSet.union cst senv.univ; sections } let add_constraints cst senv = push_context_set ~strict:true cst senv let is_curmod_library senv = match senv.modvariant with LIBRARY -> true | _ -> false let is_joined_environment e = HandleMap.is_empty e.future_cst (** {6 Various checks } *) let exists_modlabel l senv = Label.Set.mem l senv.modlabels let exists_objlabel l senv = Label.Set.mem l senv.objlabels let check_modlabel l senv = if exists_modlabel l senv then Modops.error_existing_label l let check_objlabel l senv = if exists_objlabel l senv then Modops.error_existing_label l let check_objlabels ls senv = Label.Set.iter (fun l -> check_objlabel l senv) ls (** Are we closing the right module / modtype ? No user error here, since the opening/ending coherence is now verified in [vernac_end_segment] *) let check_current_label lab = function | MPdot (_,l) -> assert (Label.equal lab l) | _ -> assert false let check_struct = function | STRUCT (params,oldsenv) -> params, oldsenv | NONE | LIBRARY | SIG _ -> assert false let check_sig = function | SIG (params,oldsenv) -> params, oldsenv | NONE | LIBRARY | STRUCT _ -> assert false let check_current_library dir senv = match senv.modvariant with | LIBRARY -> assert (ModPath.equal senv.modpath (MPfile dir)) | NONE | STRUCT _ | SIG _ -> assert false (* cf Lib.end_compilation *) (** When operating on modules, we're normally outside sections *) let check_empty_context senv = assert (Environ.empty_context senv.env && Option.is_empty senv.sections) (** When adding a parameter to the current module/modtype, it must have been freshly started *) let check_empty_struct senv = assert (List.is_empty senv.revstruct && List.is_empty senv.loads) (** When starting a library, the current environment should be initial i.e. only composed of Require's *) let check_initial senv = assert (is_initial senv) (** When loading a library, its dependencies should be already there, with the correct digests. *) let check_required current_libs needed = let check (id,required) = try let actual = DPmap.find id current_libs in if not(digest_match ~actual ~required) then CErrors.user_err Pp.(pr_sequence str ["Inconsistent assumptions over module"; DirPath.to_string id; "."]) with Not_found -> CErrors.user_err Pp.(pr_sequence str ["Reference to unknown module"; DirPath.to_string id; "."]) in Array.iter check needed (** {6 Insertion of section variables} *) (** They are now typed before being added to the environment. Same as push_named, but check that the variable is not already there. Should *not* be done in Environ because tactics add temporary hypothesis many many times, and the check performed here would cost too much. *) let safe_push_named d env = let id = NamedDecl.get_id d in let _ = try let _ = Environ.lookup_named id env in CErrors.user_err Pp.(pr_sequence str ["Identifier"; Id.to_string id; "already defined."]) with Not_found -> () in Environ.push_named d env let push_named_def (id,de) senv = let sections = get_section senv.sections in let c, r, typ = Term_typing.translate_local_def senv.env id de in let d = LocalDef (Context.make_annot id r, c, typ) in let env'' = safe_push_named d senv.env in let sections = Section.push_local d sections in { senv with sections=Some sections; env = env'' } let push_named_assum (x,t) senv = let sections = get_section senv.sections in let t, r = Term_typing.translate_local_assum senv.env t in let d = LocalAssum (Context.make_annot x r, t) in let sections = Section.push_local d sections in let env'' = safe_push_named d senv.env in { senv with sections=Some sections; env = env'' } let push_section_context uctx senv = let sections = get_section senv.sections in let sections = Section.push_local_universe_context uctx sections in let senv = { senv with sections=Some sections } in let ctx = Univ.ContextSet.of_context uctx in (* We check that the universes are fresh. FIXME: This should be done implicitly, but we have to work around the API. *) let () = assert (Univ.Level.Set.for_all (fun u -> not (Univ.Level.Set.mem u (fst senv.univ))) (fst ctx)) in { senv with env = Environ.push_context_set ~strict:false ctx senv.env; univ = Univ.ContextSet.union ctx senv.univ } (** {6 Insertion of new declarations to current environment } *) let labels_of_mib mib = let add,get = let labels = ref Label.Set.empty in (fun id -> labels := Label.Set.add (Label.of_id id) !labels), (fun () -> !labels) in let visit_mip mip = add mip.mind_typename; Array.iter add mip.mind_consnames in Array.iter visit_mip mib.mind_packets; get () let add_retroknowledge pttc senv = { senv with env = Primred.add_retroknowledge senv.env pttc; local_retroknowledge = pttc::senv.local_retroknowledge } (** A generic function for adding a new field in a same environment. It also performs the corresponding [add_constraints]. *) type generic_name = | C of Constant.t | I of MutInd.t | M (** name already known, cf the mod_mp field *) | MT (** name already known, cf the mod_mp field *) let add_field ((l,sfb) as field) gn senv = let mlabs,olabs = match sfb with | SFBmind mib -> let l = labels_of_mib mib in check_objlabels l senv; (Label.Set.empty,l) | SFBconst _ -> check_objlabel l senv; (Label.Set.empty, Label.Set.singleton l) | SFBmodule _ | SFBmodtype _ -> check_modlabel l senv; (Label.Set.singleton l, Label.Set.empty) in let env' = match sfb, gn with | SFBconst cb, C con -> Environ.add_constant con cb senv.env | SFBmind mib, I mind -> Environ.add_mind mind mib senv.env | SFBmodtype mtb, MT -> Environ.add_modtype mtb senv.env | SFBmodule mb, M -> Modops.add_module mb senv.env | _ -> assert false in let sections = match senv.sections with | None -> None | Some sections -> match sfb, gn with | SFBconst cb, C con -> let poly = Declareops.constant_is_polymorphic cb in Some Section.(push_global ~poly env' (SecDefinition con) sections) | SFBmind mib, I mind -> let poly = Declareops.inductive_is_polymorphic mib in Some Section.(push_global ~poly env' (SecInductive mind) sections) | _, (M | MT) -> Some sections | _ -> assert false in { senv with env = env'; sections; revstruct = field :: senv.revstruct; modlabels = Label.Set.union mlabs senv.modlabels; objlabels = Label.Set.union olabs senv.objlabels } (** Applying a certain function to the resolver of a safe environment *) let update_resolver f senv = { senv with modresolver = f senv.modresolver } type global_declaration = | ConstantEntry : Entries.constant_entry -> global_declaration | OpaqueEntry : unit Entries.opaque_entry -> global_declaration type exported_opaque = { exp_handle : Opaqueproof.opaque_handle; exp_body : Constr.t; exp_univs : int option; (* Minimal amount of data needed to rebuild the private universes. We enforce in the API that private constants have no internal constraints. *) } type exported_private_constant = Constant.t * exported_opaque option let repr_exported_opaque o = let priv = match o .exp_univs with | None -> Opaqueproof.PrivateMonomorphic () | Some _ -> Opaqueproof.PrivatePolymorphic Univ.ContextSet.empty in (o.exp_handle, (o.exp_body, priv)) let add_constant_aux senv (kn, cb) = let l = Constant.label kn in (* This is the only place where we hashcons the contents of a constant body *) let cb = if sections_are_opened senv then cb else Declareops.hcons_const_body cb in let senv' = add_field (l,SFBconst cb) (C kn) senv in let senv'' = match cb.const_body with | Undef (Some lev) -> update_resolver (Mod_subst.add_inline_delta_resolver (Constant.user kn) (lev,None)) senv' | _ -> senv' in senv'' let inline_side_effects env body side_eff = let open Constr in (** First step: remove the constants that are still in the environment *) let filter e = if Environ.mem_constant e.seff_constant env then None else Some e in (* CAVEAT: we assure that most recent effects come first *) let side_eff = List.map_filter filter (SideEffects.repr side_eff) in let sigs = List.rev_map (fun e -> e.seff_certif) side_eff in (** Most recent side-effects first in side_eff *) if List.is_empty side_eff then (body, Univ.ContextSet.empty, sigs, 0) else (** Second step: compute the lifts and substitutions to apply *) let cname c r = Context.make_annot (Name (Label.to_id (Constant.label c))) r in let fold (subst, var, ctx, args) { seff_constant = c; seff_body = cb; seff_univs = univs; _ } = let (b, opaque) = match cb.const_body with | Def b -> (b, false) | OpaqueDef b -> (b, true) | _ -> assert false in match cb.const_universes with | Monomorphic -> (** Abstract over the term at the top of the proof *) let ty = cb.const_type in let subst = Cmap_env.add c (Inr var) subst in let ctx = Univ.ContextSet.union ctx univs in (subst, var + 1, ctx, (cname c cb.const_relevance, b, ty, opaque) :: args) | Polymorphic _ -> let () = assert (Univ.ContextSet.is_empty univs) in (** Inline the term to emulate universe polymorphism *) let subst = Cmap_env.add c (Inl b) subst in (subst, var, ctx, args) in let (subst, len, ctx, args) = List.fold_left fold (Cmap_env.empty, 1, Univ.ContextSet.empty, []) side_eff in (** Third step: inline the definitions *) let rec subst_const i k t = match Constr.kind t with | Const (c, u) -> let data = try Some (Cmap_env.find c subst) with Not_found -> None in begin match data with | None -> t | Some (Inl b) -> (** [b] is closed but may refer to other constants *) subst_const i k (Vars.subst_instance_constr u b) | Some (Inr n) -> mkRel (k + n - i) end | Rel n -> (** Lift free rel variables *) if n <= k then t else mkRel (n + len - i - 1) | _ -> Constr.map_with_binders ((+) 1) (fun k t -> subst_const i k t) k t in let map_args i (na, b, ty, opaque) = (** Both the type and the body may mention other constants *) let ty = subst_const (len - i - 1) 0 ty in let b = subst_const (len - i - 1) 0 b in (na, b, ty, opaque) in let args = List.mapi map_args args in let body = subst_const 0 0 body in let fold_arg (na, b, ty, opaque) accu = if opaque then mkApp (mkLambda (na, ty, accu), [|b|]) else mkLetIn (na, b, ty, accu) in let body = List.fold_right fold_arg args body in (body, ctx, sigs, len - 1) let inline_private_constants env ((body, ctx), side_eff) = let body, ctx', _, _ = inline_side_effects env body side_eff in let ctx' = Univ.ContextSet.union ctx ctx' in (body, ctx') (* Given the list of signatures of side effects, checks if they match. * I.e. if they are ordered descendants of the current revstruct. Returns the number of effects that can be trusted. *) let check_signatures senv sl = let curmb = Certificate.make senv in let is_direct_ancestor accu mb = match accu with | None -> None | Some curmb -> try let mb = CEphemeron.get mb in if Certificate.check ~src:curmb ~dst:mb then Some mb else None with CEphemeron.InvalidKey -> None in let sl = List.fold_left is_direct_ancestor (Some curmb) sl in match sl with | None -> None | Some mb -> let univs = Certificate.universes mb in Some (Univ.ContextSet.diff univs senv.univ) type side_effect_declaration = | DefinitionEff : Entries.definition_entry -> side_effect_declaration | OpaqueEff : Constr.constr Entries.opaque_entry -> side_effect_declaration let constant_entry_of_side_effect eff = let cb = eff.seff_body in let open Entries in let univs = match cb.const_universes with | Monomorphic -> Monomorphic_entry | Polymorphic auctx -> Polymorphic_entry (Univ.AbstractContext.repr auctx) in let p = match cb.const_body with | OpaqueDef b -> b | Def b -> b | _ -> assert false in if Declareops.is_opaque cb then OpaqueEff { opaque_entry_body = p; opaque_entry_secctx = Context.Named.to_vars cb.const_hyps; opaque_entry_type = cb.const_type; opaque_entry_universes = univs; } else DefinitionEff { const_entry_body = p; const_entry_secctx = Some (Context.Named.to_vars cb.const_hyps); const_entry_type = Some cb.const_type; const_entry_universes = univs; const_entry_inline_code = cb.const_inline_code } let export_eff eff = (eff.seff_constant, eff.seff_body) let is_empty_private = function | Opaqueproof.PrivateMonomorphic ctx -> Univ.ContextSet.is_empty ctx | Opaqueproof.PrivatePolymorphic ctx -> Univ.ContextSet.is_empty ctx (* Special function to call when the body of an opaque definition is provided. It performs the type-checking of the body immediately. *) let translate_direct_opaque ~sec_univs env kn ce = let cb, ctx = Term_typing.translate_opaque ~sec_univs env kn ce in let body = ce.Entries.opaque_entry_body, Univ.ContextSet.empty in let handle _env c () = (c, Univ.ContextSet.empty, 0) in let (c, u) = Term_typing.check_delayed handle ctx (body, ()) in (* No constraints can be generated, we set it empty everywhere *) let () = assert (is_empty_private u) in { cb with const_body = OpaqueDef c } let export_side_effects senv eff = let sec_univs = Option.map Section.all_poly_univs senv.sections in let env = senv.env in let not_exists e = not (Environ.mem_constant e.seff_constant env) in let aux (acc,sl) e = if not (not_exists e) then acc, sl else e :: acc, e.seff_certif :: sl in let seff, signatures = List.fold_left aux ([],[]) (SideEffects.repr eff) in let trusted = check_signatures senv signatures in let push_seff env eff = let { seff_constant = kn; seff_body = cb ; _ } = eff in let env = Environ.add_constant kn (lift_constant cb) env in env in match trusted with | Some univs -> univs, List.map export_eff seff | None -> let rec recheck_seff seff univs acc env = match seff with | [] -> univs, List.rev acc | eff :: rest -> let uctx = eff.seff_univs in let env = Environ.push_context_set ~strict:true uctx env in let univs = Univ.ContextSet.union uctx univs in let env, cb = let kn = eff.seff_constant in let ce = constant_entry_of_side_effect eff in let open Entries in let cb = match ce with | DefinitionEff ce -> Term_typing.translate_constant ~sec_univs env kn (DefinitionEntry ce) | OpaqueEff ce -> translate_direct_opaque ~sec_univs env kn ce in let eff = { eff with seff_body = cb } in (push_seff env eff, export_eff eff) in recheck_seff rest univs (cb :: acc) env in recheck_seff seff Univ.ContextSet.empty [] env let push_opaque_proof senv = let o, otab = Opaqueproof.create (library_dp_of_senv senv) (Environ.opaque_tables senv.env) in let senv = { senv with env = Environ.set_opaque_tables senv.env otab } in senv, o let export_private_constants eff senv = let uctx, exported = export_side_effects senv eff in let senv = push_context_set ~strict:true uctx senv in let map senv (kn, c) = match c.const_body with | OpaqueDef body -> (* Don't care about the body, it has been checked by {!translate_direct_opaque} *) let senv, o = push_opaque_proof senv in let (_, _, _, h) = Opaqueproof.repr o in let univs = match c.const_universes with | Monomorphic -> None | Polymorphic auctx -> Some (Univ.AbstractContext.size auctx) in let body = Constr.hcons body in let opaque = { exp_body = body; exp_handle = h; exp_univs = univs } in senv, (kn, { c with const_body = OpaqueDef o }, Some opaque) | Def _ | Undef _ | Primitive _ as body -> senv, (kn, { c with const_body = body }, None) in let senv, bodies = List.fold_left_map map senv exported in let exported = List.map (fun (kn, _, opaque) -> kn, opaque) bodies in (* No delayed constants to declare *) let fold senv (kn, cb, _) = add_constant_aux senv (kn, cb) in let senv = List.fold_left fold senv bodies in exported, senv let add_constant l decl senv = let kn = Constant.make2 senv.modpath l in let senv, cb = let sec_univs = Option.map Section.all_poly_univs senv.sections in match decl with | OpaqueEntry ce -> let senv, o = push_opaque_proof senv in let cb, ctx = Term_typing.translate_opaque ~sec_univs senv.env kn ce in (* Push the delayed data in the environment *) let (_, _, _, i) = Opaqueproof.repr o in let nonce = Nonce.create () in let future_cst = HandleMap.add i (ctx, senv, nonce) senv.future_cst in let senv = { senv with future_cst } in senv, { cb with const_body = OpaqueDef o } | ConstantEntry ce -> senv, Term_typing.translate_constant ~sec_univs senv.env kn ce in let senv = add_constant_aux senv (kn, cb) in let senv = match decl with | ConstantEntry (Entries.PrimitiveEntry { Entries.prim_entry_content = CPrimitives.OT_type t; _ }) -> if sections_are_opened senv then CErrors.anomaly (Pp.str "Primitive type not allowed in sections"); add_retroknowledge (Retroknowledge.Register_type(t,kn)) senv | _ -> senv in kn, senv let add_constant ?typing_flags l decl senv = with_typing_flags ?typing_flags senv ~f:(add_constant l decl) type opaque_certificate = { opq_body : Constr.t; opq_univs : Univ.ContextSet.t Opaqueproof.delayed_universes; opq_handle : Opaqueproof.opaque_handle; opq_nonce : Nonce.t; } let check_opaque senv (i : Opaqueproof.opaque_handle) pf = let ty_ctx, trust, nonce = try HandleMap.find i senv.future_cst with Not_found -> CErrors.anomaly Pp.(str "Missing opaque with identifier " ++ int (Opaqueproof.repr_handle i)) in let handle env body eff = let body, uctx, signatures, skip = inline_side_effects env body eff in let trusted = check_signatures trust signatures in let trusted, uctx = match trusted with | None -> 0, uctx | Some univs -> skip, Univ.ContextSet.union univs uctx in body, uctx, trusted in let (c, ctx) = Term_typing.check_delayed handle ty_ctx pf in let c = Constr.hcons c in let ctx = match ctx with | Opaqueproof.PrivateMonomorphic u -> Opaqueproof.PrivateMonomorphic (Univ.hcons_universe_context_set u) | Opaqueproof.PrivatePolymorphic u -> Opaqueproof.PrivatePolymorphic (Univ.hcons_universe_context_set u) in { opq_body = c; opq_univs = ctx; opq_handle = i; opq_nonce = nonce } let fill_opaque { opq_univs = ctx; opq_handle = i; opq_nonce = n; _ } senv = let () = if not @@ HandleMap.mem i senv.future_cst then CErrors.anomaly Pp.(str "Missing opaque handle" ++ spc () ++ int (Opaqueproof.repr_handle i)) in let _, _, nonce = HandleMap.find i senv.future_cst in let () = if not (Nonce.equal n nonce) then CErrors.anomaly Pp.(str "Invalid opaque certificate") in (* TODO: Drop the the monomorphic constraints, they should really be internal but the higher levels use them haphazardly. *) let senv = match ctx with | Opaqueproof.PrivateMonomorphic ctx -> add_constraints ctx senv | Opaqueproof.PrivatePolymorphic _ -> senv in (* Mark the constant as having been checked *) { senv with future_cst = HandleMap.remove i senv.future_cst } let is_filled_opaque i senv = let () = assert (Opaqueproof.mem_handle i (Environ.opaque_tables senv.env)) in not (HandleMap.mem i senv.future_cst) let repr_certificate { opq_body = body; opq_univs = ctx; _ } = body, ctx let check_constraints uctx = function | Entries.Polymorphic_entry _ -> Univ.ContextSet.is_empty uctx | Entries.Monomorphic_entry -> true let add_private_constant l uctx decl senv : (Constant.t * private_constants) * safe_environment = let kn = Constant.make2 senv.modpath l in let senv = push_context_set ~strict:true uctx senv in let cb = let sec_univs = Option.map Section.all_poly_univs senv.sections in match decl with | OpaqueEff ce -> let () = assert (check_constraints uctx ce.Entries.opaque_entry_universes) in translate_direct_opaque ~sec_univs senv.env kn ce | DefinitionEff ce -> let () = assert (check_constraints uctx ce.Entries.const_entry_universes) in Term_typing.translate_constant ~sec_univs senv.env kn (Entries.DefinitionEntry ce) in let dcb = match cb.const_body with | Def _ as const_body -> { cb with const_body } | OpaqueDef _ -> (* We drop the body, to save the definition of an opaque and thus its hashconsing. It does not matter since this only happens inside a proof, and depending of the opaque status of the latter, this proof term will be either inlined or reexported. *) { cb with const_body = Undef None } | Undef _ | Primitive _ -> assert false in let senv = add_constant_aux senv (kn, dcb) in let eff = let from_env = CEphemeron.create (Certificate.make senv) in let eff = { seff_certif = from_env; seff_constant = kn; seff_body = cb; seff_univs = uctx; } in SideEffects.add eff empty_private_constants in (kn, eff), senv (** Insertion of inductive types *) let check_mind mie lab = let open Entries in match mie.mind_entry_inds with | [] -> assert false (* empty inductive entry *) | oie::_ -> (* The label and the first inductive type name should match *) assert (Id.equal (Label.to_id lab) oie.mind_entry_typename) let add_checked_mind kn mib senv = let mib = match mib.mind_hyps with [] -> Declareops.hcons_mind mib | _ -> mib in add_field (MutInd.label kn,SFBmind mib) (I kn) senv let add_mind l mie senv = let () = check_mind mie l in let kn = MutInd.make2 senv.modpath l in let sec_univs = Option.map Section.all_poly_univs senv.sections in let mib = Indtypes.check_inductive senv.env ~sec_univs kn mie in (* We still have to add the template monomorphic constraints, and only those ones. In all other cases, they are already part of the environment at this point. *) let senv = match mib.mind_template with | None -> senv | Some { template_context = ctx; _ } -> push_context_set ~strict:true ctx senv in kn, add_checked_mind kn mib senv let add_mind ?typing_flags l mie senv = with_typing_flags ?typing_flags senv ~f:(add_mind l mie) (** Insertion of module types *) let check_state senv = (Environ.universes senv.env, Reduction.checked_universes) let add_modtype l params_mte inl senv = let mp = MPdot(senv.modpath, l) in let state = check_state senv in let mtb, _ = Mod_typing.translate_modtype state senv.env mp inl params_mte in let mtb = Declareops.hcons_module_type mtb in let senv = add_field (l,SFBmodtype mtb) MT senv in mp, senv (** full_add_module adds module with universes and constraints *) let full_add_module mb senv = let dp = ModPath.dp mb.mod_mp in let linkinfo = Nativecode.link_info_of_dirpath dp in { senv with env = Modops.add_linked_module mb linkinfo senv.env } let full_add_module_type mp mt senv = { senv with env = Modops.add_module_type mp mt senv.env } (** Insertion of modules *) let add_module l me inl senv = let mp = MPdot(senv.modpath, l) in let state = check_state senv in let mb, _ = Mod_typing.translate_module state senv.env mp inl me in let mb = Declareops.hcons_module_body mb in let senv = add_field (l,SFBmodule mb) M senv in let senv = if Modops.is_functor mb.mod_type then senv else update_resolver (Mod_subst.add_delta_resolver mb.mod_delta) senv in (mp,mb.mod_delta),senv (** {6 Starting / ending interactive modules and module types } *) let start_module l senv = let () = check_modlabel l senv in let () = check_empty_context senv in let mp = MPdot(senv.modpath, l) in mp, { empty_environment with env = senv.env; future_cst = senv.future_cst; modresolver = senv.modresolver; paramresolver = senv.paramresolver; modpath = mp; modvariant = STRUCT ([],senv); univ = senv.univ; required = senv.required } let start_modtype l senv = let () = check_modlabel l senv in let () = check_empty_context senv in let mp = MPdot(senv.modpath, l) in mp, { empty_environment with env = senv.env; future_cst = senv.future_cst; modresolver = senv.modresolver; paramresolver = senv.paramresolver; modpath = mp; modvariant = SIG ([], senv); univ = senv.univ; required = senv.required } (** Adding parameters to the current module or module type. This module should have been freshly started. *) let add_module_parameter mbid mte inl senv = let () = check_empty_struct senv in let mp = MPbound mbid in let state = check_state senv in let mtb, _ = Mod_typing.translate_modtype state senv.env mp inl ([],mte) in let senv = full_add_module_type mp mtb senv in let new_variant = match senv.modvariant with | STRUCT (params,oldenv) -> STRUCT ((mbid,mtb) :: params, oldenv) | SIG (params,oldenv) -> SIG ((mbid,mtb) :: params, oldenv) | _ -> assert false in let new_paramresolver = if Modops.is_functor mtb.mod_type then senv.paramresolver else Mod_subst.add_delta_resolver mtb.mod_delta senv.paramresolver in mtb.mod_delta, { senv with modvariant = new_variant; paramresolver = new_paramresolver } let rec module_num_parameters senv = match senv.modvariant with | STRUCT (params,senv) -> List.length params :: module_num_parameters senv | SIG (params,senv) -> List.length params :: module_num_parameters senv | _ -> [] let rec module_is_modtype senv = match senv.modvariant with | STRUCT (_,senv) -> false :: module_is_modtype senv | SIG (_,senv) -> true :: module_is_modtype senv | _ -> [] let functorize params init = List.fold_left (fun e (mbid,mt) -> MoreFunctor(mbid,mt,e)) init params let propagate_loads senv = List.fold_left (fun env (_,mb) -> full_add_module mb env) senv (List.rev senv.loads) (** Build the module body of the current module, taking in account a possible return type (_:T) *) let functorize_module params mb = let f x = functorize params x in { mb with mod_expr = Modops.implem_smart_map f f mb.mod_expr; mod_type = f mb.mod_type; mod_type_alg = Option.map f mb.mod_type_alg } let build_module_body params restype senv = let struc = NoFunctor (List.rev senv.revstruct) in let restype' = Option.map (fun (ty,inl) -> (([],ty),inl)) restype in let state = check_state senv in let mb, _ = Mod_typing.finalize_module state senv.env senv.modpath (struc,None,senv.modresolver) restype' in let mb' = functorize_module params mb in { mb' with mod_retroknowledge = ModBodyRK senv.local_retroknowledge } (** Returning back to the old pre-interactive-module environment, with one extra component and some updated fields (constraints, required, etc) *) let allow_delayed_constants = ref false let propagate_senv newdef newenv newresolver senv oldsenv = (* This asserts that after Paral-ITP, standard vo compilation is behaving * exctly as before: the same universe constraints are added to modules *) if not !allow_delayed_constants && not (HandleMap.is_empty senv.future_cst) then CErrors.anomaly ~label:"safe_typing" Pp.(str "True Future.t were created for opaque constants even if -async-proofs is off"); { oldsenv with env = newenv; modresolver = newresolver; revstruct = newdef::oldsenv.revstruct; modlabels = Label.Set.add (fst newdef) oldsenv.modlabels; univ = senv.univ; future_cst = senv.future_cst; required = senv.required; loads = senv.loads@oldsenv.loads; local_retroknowledge = senv.local_retroknowledge@oldsenv.local_retroknowledge; } let end_module l restype senv = let mp = senv.modpath in let params, oldsenv = check_struct senv.modvariant in let () = check_current_label l mp in let () = check_empty_context senv in let mbids = List.rev_map fst params in let mb = build_module_body params restype senv in let newenv = Environ.set_opaque_tables oldsenv.env (Environ.opaque_tables senv.env) in let newenv = Environ.set_universes (Environ.universes senv.env) newenv in let senv' = propagate_loads { senv with env = newenv } in let newenv = Modops.add_module mb newenv in let newresolver = if Modops.is_functor mb.mod_type then oldsenv.modresolver else Mod_subst.add_delta_resolver mb.mod_delta oldsenv.modresolver in (mp,mbids,mb.mod_delta), propagate_senv (l,SFBmodule mb) newenv newresolver senv' oldsenv let build_mtb mp sign delta = { mod_mp = mp; mod_expr = (); mod_type = sign; mod_type_alg = None; mod_delta = delta; mod_retroknowledge = ModTypeRK } let end_modtype l senv = let mp = senv.modpath in let params, oldsenv = check_sig senv.modvariant in let () = check_current_label l mp in let () = check_empty_context senv in let mbids = List.rev_map fst params in let newenv = Environ.set_opaque_tables oldsenv.env (Environ.opaque_tables senv.env) in let newenv = Environ.set_universes (Environ.universes senv.env) newenv in let senv' = propagate_loads {senv with env=newenv} in let auto_tb = functorize params (NoFunctor (List.rev senv.revstruct)) in let mtb = build_mtb mp auto_tb senv.modresolver in let newenv = Environ.add_modtype mtb senv'.env in let newresolver = oldsenv.modresolver in (mp,mbids), propagate_senv (l,SFBmodtype mtb) newenv newresolver senv' oldsenv (** {6 Inclusion of module or module type } *) let add_include me is_module inl senv = let open Mod_typing in let mp_sup = senv.modpath in let state = check_state senv in let sign,(),resolver, _ = translate_mse_include is_module state senv.env mp_sup inl me in (* Include Self support *) let struc = NoFunctor (List.rev senv.revstruct) in let mb = build_mtb mp_sup struc senv.modresolver in let rec compute_sign sign resolver = match sign with | MoreFunctor(mbid,mtb,str) -> let state = check_state senv in let (_ : UGraph.t) = Subtyping.check_subtypes state senv.env mb mtb in let mpsup_delta = Modops.inline_delta_resolver senv.env inl mp_sup mbid mtb senv.modresolver in let subst = Mod_subst.map_mbid mbid mp_sup mpsup_delta in let resolver = Mod_subst.subst_codom_delta_resolver subst resolver in compute_sign (Modops.subst_signature subst str) resolver | NoFunctor str -> resolver, str in let resolver, str = compute_sign sign resolver in let senv = update_resolver (Mod_subst.add_delta_resolver resolver) senv in let add senv ((l,elem) as field) = let new_name = match elem with | SFBconst _ -> C (Mod_subst.constant_of_delta_kn resolver (KerName.make mp_sup l)) | SFBmind _ -> I (Mod_subst.mind_of_delta_kn resolver (KerName.make mp_sup l)) | SFBmodule _ -> M | SFBmodtype _ -> MT in add_field field new_name senv in resolver, List.fold_left add senv str (** {6 Libraries, i.e. compiled modules } *) let module_of_library lib = lib.comp_mod let univs_of_library lib = lib.comp_univs (** FIXME: MS: remove?*) let current_modpath senv = senv.modpath let current_dirpath senv = Names.ModPath.dp (current_modpath senv) let start_library dir senv = check_initial senv; assert (not (DirPath.is_empty dir)); let mp = MPfile dir in mp, { empty_environment with env = senv.env; modpath = mp; modvariant = LIBRARY; required = senv.required } let export ~output_native_objects senv dir = let () = check_current_library dir senv in let mp = senv.modpath in let str = NoFunctor (List.rev senv.revstruct) in let mb = { mod_mp = mp; mod_expr = FullStruct; mod_type = str; mod_type_alg = None; mod_delta = senv.modresolver; mod_retroknowledge = ModBodyRK senv.local_retroknowledge } in let ast, symbols = if output_native_objects then Nativelibrary.dump_library mp senv.env str else [], Nativevalues.empty_symbols in let lib = { comp_name = dir; comp_mod = mb; comp_univs = senv.univ; comp_deps = Array.of_list (DPmap.bindings senv.required); } in mp, lib, (ast, symbols) (* cst are the constraints that were computed by the vi2vo step and hence are * not part of the [lib.comp_univs] field (but morally should be) *) let import lib cst vodigest senv = check_required senv.required lib.comp_deps; if DirPath.equal (ModPath.dp senv.modpath) lib.comp_name then CErrors.user_err Pp.(strbrk "Cannot load a library with the same name as the current one (" ++ DirPath.print lib.comp_name ++ str")."); let mp = MPfile lib.comp_name in let mb = lib.comp_mod in let env = Environ.push_context_set ~strict:true (Univ.ContextSet.union lib.comp_univs cst) senv.env in let env = let linkinfo = Nativecode.link_info_of_dirpath lib.comp_name in Modops.add_linked_module mb linkinfo env in let sections = Option.map (Section.map_custom (fun custom -> {custom with rev_reimport = (lib,cst,vodigest) :: custom.rev_reimport})) senv.sections in mp, { senv with env; (* Do NOT store the name quotient from the dependencies in the set of constraints that will be marshalled on disk. *) paramresolver = Mod_subst.add_delta_resolver mb.mod_delta senv.paramresolver; required = DPmap.add lib.comp_name vodigest senv.required; loads = (mp,mb)::senv.loads; sections; } (** {6 Interactive sections *) let open_section senv = let custom = { rev_env = senv.env; rev_univ = senv.univ; rev_objlabels = senv.objlabels; rev_reimport = []; rev_revstruct = senv.revstruct; } in let sections = Section.open_section ~custom senv.sections in { senv with sections=Some sections } let close_section senv = let open Section in let sections0 = get_section senv.sections in let env0 = senv.env in (* First phase: revert the declarations added in the section *) let sections, entries, cstrs, revert = Section.close_section sections0 in (* Don't revert the delayed constraints (future_cst). If some delayed constraints were forced inside the section, they have been turned into global monomorphic that are going to be replayed. Those that are not forced are not readded by {!add_constant_aux}. *) let { rev_env = env; rev_univ = univ; rev_objlabels = objlabels; rev_reimport; rev_revstruct = revstruct } = revert in (* Do not revert the opaque table, the discharged opaque constants are referring to it. *) let env = Environ.set_opaque_tables env (Environ.opaque_tables env0) in let senv = { senv with env; revstruct; sections; univ; objlabels; } in (* Second phase: replay Requires *) let senv = List.fold_left (fun senv (lib,cst,vodigest) -> snd (import lib cst vodigest senv)) senv (List.rev rev_reimport) in (* Third phase: replay the discharged section contents *) let senv = push_context_set ~strict:true cstrs senv in let fold entry senv = match entry with | SecDefinition kn -> let cb = Environ.lookup_constant kn env0 in let info = Section.segment_of_constant kn sections0 in let cb = Discharge.cook_constant senv.env info cb in (* Delayed constants are already in the global environment *) add_constant_aux senv (kn, cb) | SecInductive ind -> let mib = Environ.lookup_mind ind env0 in let info = Section.segment_of_inductive ind sections0 in let mib = Discharge.cook_inductive info mib in add_checked_mind ind mib senv in List.fold_right fold entries senv (** {6 Safe typing } *) type judgment = Environ.unsafe_judgment let j_val j = j.Environ.uj_val let j_type j = j.Environ.uj_type let typing senv = Typeops.infer (env_of_senv senv) (** {6 Retroknowledge / native compiler } *) let register_inline kn senv = let open Environ in if not (evaluable_constant kn senv.env) then CErrors.user_err Pp.(str "Register inline: an evaluable constant is expected"); let env = senv.env in let cb = lookup_constant kn env in let cb = {cb with const_inline_code = true} in let env = add_constant kn cb env in { senv with env} let check_register_ind (type t) ind (r : t CPrimitives.prim_ind) env = let (mb,ob as spec) = Inductive.lookup_mind_specif env ind in let check_if b msg = if not b then CErrors.user_err msg in check_if (Int.equal (Array.length mb.mind_packets) 1) Pp.(str "A non mutual inductive is expected."); let is_monomorphic = function Monomorphic -> true | Polymorphic _ -> false in check_if (is_monomorphic mb.mind_universes) Pp.(str "A universe monomorphic inductive type is expected."); check_if (not @@ Inductive.is_private spec) Pp.(str "A non-private inductive type is expected"); let check_nparams n = check_if (Int.equal mb.mind_nparams n) Pp.(str "An inductive type with " ++ int n ++ str " parameters is expected") in let check_nconstr n = check_if (Int.equal (Array.length ob.mind_consnames) n) Pp.(str "an inductive type with " ++ int n ++ str " constructors is expected") in let check_name pos s = check_if (Id.equal ob.mind_consnames.(pos) (Id.of_string s)) Pp.(str"the " ++ int (pos + 1) ++ str "th constructor does not have the expected name: " ++ str s) in let check_type pos t = check_if (Constr.equal t ob.mind_user_lc.(pos)) Pp.(str"the " ++ int (pos + 1) ++ str "th constructor does not have the expected type") in let check_type_cte pos = check_type pos (Constr.mkInd ind) in match r with | CPrimitives.PIT_bool -> check_nparams 0; check_nconstr 2; check_name 0 "true"; check_type_cte 0; check_name 1 "false"; check_type_cte 1 | CPrimitives.PIT_carry -> check_nparams 1; check_nconstr 2; let test_type pos = let c = ob.mind_user_lc.(pos) in let s = Pp.(str"the " ++ int (pos + 1) ++ str "th constructor does not have the expected type") in check_if (Constr.isProd c) s; let (_,d,cd) = Constr.destProd c in check_if (Constr.is_Type d) s; check_if (Constr.equal (mkProd (Context.anonR,mkRel 1, mkApp (mkInd ind,[|mkRel 2|]))) cd) s in check_name 0 "C0"; test_type 0; check_name 1 "C1"; test_type 1; | CPrimitives.PIT_pair -> check_nparams 2; check_nconstr 1; check_name 0 "pair"; let c = ob.mind_user_lc.(0) in let s = Pp.str "the constructor does not have the expected type" in begin match Term.decompose_prod c with | ([_,b;_,a;_,_B;_,_A], codom) -> check_if (is_Type _A) s; check_if (is_Type _B) s; check_if (Constr.equal a (mkRel 2)) s; check_if (Constr.equal b (mkRel 2)) s; check_if (Constr.equal codom (mkApp (mkInd ind,[|mkRel 4; mkRel 3|]))) s | _ -> check_if false s end | CPrimitives.PIT_cmp -> check_nparams 0; check_nconstr 3; check_name 0 "Eq"; check_type_cte 0; check_name 1 "Lt"; check_type_cte 1; check_name 2 "Gt"; check_type_cte 2 | CPrimitives.PIT_f_cmp -> check_nconstr 4; check_name 0 "FEq"; check_type_cte 0; check_name 1 "FLt"; check_type_cte 1; check_name 2 "FGt"; check_type_cte 2; check_name 3 "FNotComparable"; check_type_cte 3 | CPrimitives.PIT_f_class -> check_nconstr 9; check_name 0 "PNormal"; check_type_cte 0; check_name 1 "NNormal"; check_type_cte 1; check_name 2 "PSubn"; check_type_cte 2; check_name 3 "NSubn"; check_type_cte 3; check_name 4 "PZero"; check_type_cte 4; check_name 5 "NZero"; check_type_cte 5; check_name 6 "PInf"; check_type_cte 6; check_name 7 "NInf"; check_type_cte 7; check_name 8 "NaN"; check_type_cte 8 let register_inductive ind prim senv = check_register_ind ind prim senv.env; let action = Retroknowledge.Register_ind(prim,ind) in add_retroknowledge action senv let add_constraints c = add_constraints (Univ.ContextSet.add_constraints c Univ.ContextSet.empty) (* NB: The next old comment probably refers to [propagate_loads] above. When a Require is done inside a module, we'll redo this require at the upper level after the module is ended, and so on. This is probably not a big deal anyway, since these Require's inside modules should be pretty rare. Maybe someday we could brutally forbid this tricky "feature"... *) (* we have an inefficiency: Since loaded files are added to the environment every time a module is closed, their components are calculated many times. This could be avoided in several ways: 1 - for each file create a dummy environment containing only this file's components, merge this environment with the global environment, and store for the future (instead of just its type) 2 - create "persistent modules" environment table in Environ add put loaded by side-effect once and for all (like it is done in OCaml). Would this be correct with respect to undo's and stuff ? *) let set_strategy k l e = { e with env = (Environ.set_oracle e.env (Conv_oracle.set_strategy (Environ.oracle e.env) k l)) }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>