package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.0.tar.gz
sha256=36577b55f4a4b1c64682c387de7abea932d0fd42fc0cd5406927dca344f53587
doc/src/coq-core.kernel/declareops.ml.html
Source file declareops.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Declarations open Mod_subst open Util module RelDecl = Context.Rel.Declaration (** Operations concernings types in [Declarations] : [constant_body], [mutual_inductive_body], [module_body] ... *) let safe_flags oracle = { check_guarded = true; check_positive = true; check_universes = true; conv_oracle = oracle; share_reduction = true; enable_VM = true; enable_native_compiler = true; indices_matter = true; impredicative_set = false; sprop_allowed = true; cumulative_sprop = false; allow_uip = false; } (** {6 Arities } *) let subst_decl_arity f g subst ar = match ar with | RegularArity x -> let x' = f subst x in if x' == x then ar else RegularArity x' | TemplateArity x -> let x' = g subst x in if x' == x then ar else TemplateArity x' let map_decl_arity f g = function | RegularArity a -> RegularArity (f a) | TemplateArity a -> TemplateArity (g a) let hcons_template_arity ar = { template_level = Sorts.hcons ar.template_level; } let hcons_template_universe ar = { template_param_levels = ar.template_param_levels; template_context = Univ.hcons_universe_context_set ar.template_context } let universes_context = function | Monomorphic -> Univ.AbstractContext.empty | Polymorphic ctx -> ctx let abstract_universes = function | Entries.Monomorphic_entry -> Univ.empty_level_subst, Monomorphic | Entries.Polymorphic_entry uctx -> let (inst, auctx) = Univ.abstract_universes uctx in let inst = Univ.make_instance_subst inst in (inst, Polymorphic auctx) (** {6 Constants } *) let constant_is_polymorphic cb = match cb.const_universes with | Monomorphic -> false | Polymorphic _ -> true let constant_has_body cb = match cb.const_body with | Undef _ | Primitive _ -> false | Def _ | OpaqueDef _ -> true let constant_polymorphic_context cb = universes_context cb.const_universes let is_opaque cb = match cb.const_body with | OpaqueDef _ -> true | Undef _ | Def _ | Primitive _ -> false (** {7 Constant substitutions } *) let subst_rel_declaration subst = RelDecl.map_constr (subst_mps subst) let subst_rel_context subst = List.Smart.map (subst_rel_declaration subst) let subst_const_type subst arity = if is_empty_subst subst then arity else subst_mps subst arity (** No need here to check for physical equality after substitution, at least for Def due to the delayed substitution [subst_constr_subst]. *) let subst_const_def subst def = match def with | Undef _ | Primitive _ -> def | Def c -> Def (subst_mps subst c) | OpaqueDef o -> OpaqueDef (Opaqueproof.subst_opaque subst o) let subst_const_body subst cb = (* we're outside sections *) assert (List.is_empty cb.const_hyps && Univ.Instance.is_empty cb.const_univ_hyps); if is_empty_subst subst then cb else let body' = subst_const_def subst cb.const_body in let type' = subst_const_type subst cb.const_type in if body' == cb.const_body && type' == cb.const_type then cb else { const_hyps = []; const_univ_hyps = Univ.Instance.empty; const_body = body'; const_type = type'; const_body_code = Option.map (Vmemitcodes.subst_body_code subst) cb.const_body_code; const_universes = cb.const_universes; const_relevance = cb.const_relevance; const_inline_code = cb.const_inline_code; const_typing_flags = cb.const_typing_flags } (** {7 Hash-consing of constants } *) (** This hash-consing is currently quite partial : we only share internal fields (e.g. constr), and not the records themselves. But would it really bring substantial gains ? *) let hcons_rel_decl = RelDecl.map_name Names.Name.hcons %> RelDecl.map_value Constr.hcons %> RelDecl.map_type Constr.hcons let hcons_rel_context l = List.Smart.map hcons_rel_decl l let hcons_const_def = function | Undef inl -> Undef inl | Primitive p -> Primitive p | Def l_constr -> Def (Constr.hcons l_constr) | OpaqueDef _ as x -> x (* hashconsed when turned indirect *) let hcons_universes cbu = match cbu with | Monomorphic -> Monomorphic | Polymorphic ctx -> Polymorphic (Univ.hcons_abstract_universe_context ctx) let hcons_const_body cb = { cb with const_body = hcons_const_def cb.const_body; const_type = Constr.hcons cb.const_type; const_universes = hcons_universes cb.const_universes; } (** {6 Inductive types } *) let eq_nested_type t1 t2 = match t1, t2 with | NestedInd ind1, NestedInd ind2 -> Names.Ind.CanOrd.equal ind1 ind2 | NestedInd _, _ -> false | NestedPrimitive c1, NestedPrimitive c2 -> Names.Constant.CanOrd.equal c1 c2 | NestedPrimitive _, _ -> false let eq_recarg r1 r2 = match r1, r2 with | Norec, Norec -> true | Norec, _ -> false | Mrec i1, Mrec i2 -> Names.Ind.CanOrd.equal i1 i2 | Mrec _, _ -> false | Nested ty1, Nested ty2 -> eq_nested_type ty1 ty2 | Nested _, _ -> false let pp_recarg = let open Pp in function | Declarations.Norec -> str "Norec" | Declarations.Mrec (mind,i) -> str "Mrec[" ++ Names.MutInd.print mind ++ pr_comma () ++ int i ++ str "]" | Declarations.(Nested (NestedInd (mind,i))) -> str "Nested[" ++ Names.MutInd.print mind ++ pr_comma () ++ int i ++ str "]" | Declarations.(Nested (NestedPrimitive c)) -> str "Nested[" ++ Names.Constant.print c ++ str "]" let pp_wf_paths x = Rtree.pp_tree pp_recarg x let subst_nested_type subst ty = match ty with | NestedInd (kn,i) -> let kn' = subst_mind subst kn in if kn==kn' then ty else NestedInd (kn',i) | NestedPrimitive c -> let c',_ = subst_con subst c in if c==c' then ty else NestedPrimitive c' let subst_recarg subst r = match r with | Norec -> r | Mrec (kn,i) -> let kn' = subst_mind subst kn in if kn==kn' then r else Mrec (kn',i) | Nested ty -> let ty' = subst_nested_type subst ty in if ty==ty' then r else Nested ty' let mk_norec = Rtree.mk_node Norec [||] let mk_paths r recargs = Rtree.mk_node r (Array.map (fun l -> Rtree.mk_node Norec (Array.of_list l)) recargs) let dest_recarg p = fst (Rtree.dest_node p) (* dest_subterms returns the sizes of each argument of each constructor of an inductive object of size [p]. This should never be done for Norec, because the number of sons does not correspond to the number of constructors. *) let dest_subterms p = let (ra,cstrs) = Rtree.dest_node p in assert (match ra with Norec -> false | _ -> true); Array.map (fun t -> Array.to_list (snd (Rtree.dest_node t))) cstrs let recarg_length p j = let (_,cstrs) = Rtree.dest_node p in Array.length (snd (Rtree.dest_node cstrs.(j-1))) let subst_wf_paths subst p = Rtree.Smart.map (subst_recarg subst) p (** {7 Substitution of inductive declarations } *) let subst_regular_ind_arity subst s = let uar' = subst_mps subst s.mind_user_arity in if uar' == s.mind_user_arity then s else { mind_user_arity = uar'; mind_sort = s.mind_sort } let subst_template_ind_arity _sub s = s (* FIXME records *) let subst_ind_arity = subst_decl_arity subst_regular_ind_arity subst_template_ind_arity let subst_mind_packet subst mbp = { mind_consnames = mbp.mind_consnames; mind_consnrealdecls = mbp.mind_consnrealdecls; mind_consnrealargs = mbp.mind_consnrealargs; mind_typename = mbp.mind_typename; mind_nf_lc = Array.Smart.map (fun (ctx, c) -> Context.Rel.map (subst_mps subst) ctx, subst_mps subst c) mbp.mind_nf_lc; mind_arity_ctxt = subst_rel_context subst mbp.mind_arity_ctxt; mind_arity = subst_ind_arity subst mbp.mind_arity; mind_user_lc = Array.Smart.map (subst_mps subst) mbp.mind_user_lc; mind_nrealargs = mbp.mind_nrealargs; mind_nrealdecls = mbp.mind_nrealdecls; mind_kelim = mbp.mind_kelim; mind_recargs = subst_wf_paths subst mbp.mind_recargs (*wf_paths*); mind_relevance = mbp.mind_relevance; mind_nb_constant = mbp.mind_nb_constant; mind_nb_args = mbp.mind_nb_args; mind_reloc_tbl = mbp.mind_reloc_tbl } let subst_mind_record subst r = match r with | NotRecord -> NotRecord | FakeRecord -> FakeRecord | PrimRecord infos -> let map (id, ps, rs, pb as info) = let pb' = Array.Smart.map (subst_mps subst) pb in if pb' == pb then info else (id, ps, rs, pb') in let infos' = Array.Smart.map map infos in if infos' == infos then r else PrimRecord infos' let subst_mind_body subst mib = (* we're outside sections *) assert (List.is_empty mib.mind_hyps && Univ.Instance.is_empty mib.mind_univ_hyps); { mind_record = subst_mind_record subst mib.mind_record ; mind_finite = mib.mind_finite ; mind_ntypes = mib.mind_ntypes ; mind_hyps = []; mind_univ_hyps = Univ.Instance.empty; mind_nparams = mib.mind_nparams; mind_nparams_rec = mib.mind_nparams_rec; mind_params_ctxt = Context.Rel.map (subst_mps subst) mib.mind_params_ctxt; mind_packets = Array.Smart.map (subst_mind_packet subst) mib.mind_packets ; mind_universes = mib.mind_universes; mind_template = mib.mind_template; mind_variance = mib.mind_variance; mind_sec_variance = mib.mind_sec_variance; mind_private = mib.mind_private; mind_typing_flags = mib.mind_typing_flags; } let inductive_polymorphic_context mib = universes_context mib.mind_universes let inductive_is_polymorphic mib = match mib.mind_universes with | Monomorphic -> false | Polymorphic _ctx -> true let inductive_is_cumulative mib = Option.has_some mib.mind_variance let inductive_make_projection ind mib ~proj_arg = match mib.mind_record with | NotRecord | FakeRecord -> CErrors.anomaly Pp.(str "inductive_make_projection: not a primitive record.") | PrimRecord infos -> let _, labs, relevances, _ = infos.(snd ind) in let proj_relevant = match relevances.(proj_arg) with | Sorts.Irrelevant -> false | Sorts.Relevant -> true in if proj_arg < 0 || Array.length labs <= proj_arg then CErrors.anomaly Pp.(str "inductive_make_projection: invalid proj_arg."); Names.Projection.Repr.make ind ~proj_relevant ~proj_npars:mib.mind_nparams ~proj_arg labs.(proj_arg) let inductive_make_projections ind mib = match mib.mind_record with | NotRecord | FakeRecord -> None | PrimRecord infos -> let _, labs, relevances, _ = infos.(snd ind) in let projs = Array.mapi (fun proj_arg lab -> let proj_relevant = match relevances.(proj_arg) with | Sorts.Irrelevant -> false | Sorts.Relevant -> true in Names.Projection.Repr.make ind ~proj_relevant ~proj_npars:mib.mind_nparams ~proj_arg lab) labs in Some projs let relevance_of_projection_repr mib p = let _mind,i = Names.Projection.Repr.inductive p in match mib.mind_record with | NotRecord | FakeRecord -> CErrors.anomaly ~label:"relevance_of_projection" Pp.(str "not a projection") | PrimRecord infos -> let _,_,rs,_ = infos.(i) in rs.(Names.Projection.Repr.arg p) (** {6 Hash-consing of inductive declarations } *) let hcons_regular_ind_arity a = { mind_user_arity = Constr.hcons a.mind_user_arity; mind_sort = Sorts.hcons a.mind_sort } (** Just as for constants, this hash-consing is quite partial *) let hcons_ind_arity = map_decl_arity hcons_regular_ind_arity hcons_template_arity (** Substitution of inductive declarations *) let hcons_mind_packet oib = let user = Array.Smart.map Constr.hcons oib.mind_user_lc in let map (ctx, c) = Context.Rel.map Constr.hcons ctx, Constr.hcons c in let nf = Array.Smart.map map oib.mind_nf_lc in { oib with mind_typename = Names.Id.hcons oib.mind_typename; mind_arity_ctxt = hcons_rel_context oib.mind_arity_ctxt; mind_arity = hcons_ind_arity oib.mind_arity; mind_consnames = Array.Smart.map Names.Id.hcons oib.mind_consnames; mind_user_lc = user; mind_nf_lc = nf } let hcons_mind mib = { mib with mind_packets = Array.Smart.map hcons_mind_packet mib.mind_packets; mind_params_ctxt = hcons_rel_context mib.mind_params_ctxt; mind_template = Option.Smart.map hcons_template_universe mib.mind_template; mind_universes = hcons_universes mib.mind_universes } (** Hashconsing of modules *) let hcons_functorize hty he hself f = match f with | NoFunctor e -> let e' = he e in if e == e' then f else NoFunctor e' | MoreFunctor (mid, ty, nf) -> (** FIXME *) let mid' = mid in let ty' = hty ty in let nf' = hself nf in if mid == mid' && ty == ty' && nf == nf' then f else MoreFunctor (mid, ty', nf') let hcons_module_alg_expr me = me let rec hcons_structure_field_body sb = match sb with | SFBconst cb -> let cb' = hcons_const_body cb in if cb == cb' then sb else SFBconst cb' | SFBmind mib -> let mib' = hcons_mind mib in if mib == mib' then sb else SFBmind mib' | SFBmodule mb -> let mb' = hcons_module_body mb in if mb == mb' then sb else SFBmodule mb' | SFBmodtype mb -> let mb' = hcons_module_type mb in if mb == mb' then sb else SFBmodtype mb' and hcons_structure_body sb = (** FIXME *) let map (l, sfb as fb) = let l' = Names.Label.hcons l in let sfb' = hcons_structure_field_body sfb in if l == l' && sfb == sfb' then fb else (l', sfb') in List.Smart.map map sb and hcons_module_signature ms = hcons_functorize hcons_module_type hcons_structure_body hcons_module_signature ms and hcons_module_expression me = hcons_functorize hcons_module_type hcons_module_alg_expr hcons_module_expression me and hcons_module_implementation mip = match mip with | Abstract -> Abstract | Algebraic me -> let me' = hcons_module_expression me in if me == me' then mip else Algebraic me' | Struct ms -> let ms' = hcons_module_signature ms in if ms == ms' then mip else Struct ms | FullStruct -> FullStruct and hcons_generic_module_body : 'a. ('a -> 'a) -> 'a generic_module_body -> 'a generic_module_body = fun hcons_impl mb -> let mp' = mb.mod_mp in let expr' = hcons_impl mb.mod_expr in let type' = hcons_module_signature mb.mod_type in let type_alg' = mb.mod_type_alg in let delta' = mb.mod_delta in let retroknowledge' = mb.mod_retroknowledge in if mb.mod_mp == mp' && mb.mod_expr == expr' && mb.mod_type == type' && mb.mod_type_alg == type_alg' && mb.mod_delta == delta' && mb.mod_retroknowledge == retroknowledge' then mb else { mod_mp = mp'; mod_expr = expr'; mod_type = type'; mod_type_alg = type_alg'; mod_delta = delta'; mod_retroknowledge = retroknowledge'; } and hcons_module_body mb = hcons_generic_module_body hcons_module_implementation mb and hcons_module_type mb = hcons_generic_module_body (fun () -> ()) mb
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>