package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.0.tar.gz
sha256=36577b55f4a4b1c64682c387de7abea932d0fd42fc0cd5406927dca344f53587
doc/src/coq-core.kernel/mod_typing.ml.html
Source file mod_typing.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Jacek Chrzaszcz, Aug 2002 as part of the implementation of the Coq module system *) (* This module provides the main functions for type-checking module declarations *) open Util open Names open Declarations open Entries open Environ open Modops open Mod_subst type 'alg translation = module_signature * 'alg * delta_resolver * Univ.Constraints.t let rec mp_from_mexpr = function | MEident mp -> mp | MEapply (expr,_) -> mp_from_mexpr expr | MEwith (expr,_) -> mp_from_mexpr expr let is_modular = function | SFBmodule _ | SFBmodtype _ -> true | SFBconst _ | SFBmind _ -> false (** Split a [structure_body] at some label corresponding to a modular definition or not. *) let split_struc k m struc = let rec split rev_before = function | [] -> raise Not_found | (k',b)::after when Label.equal k k' && (is_modular b) == (m : bool) -> List.rev rev_before,b,after | h::tail -> split (h::rev_before) tail in split [] struc let discr_resolver mtb = match mtb.mod_type with | NoFunctor _ -> mtb.mod_delta | MoreFunctor _ -> empty_delta_resolver let rec rebuild_mp mp l = match l with | []-> mp | i::r -> rebuild_mp (MPdot(mp,Label.of_id i)) r let infer_gen_conv state env c1 c2 = Reduction.generic_conv Reduction.CONV ~l2r:false (fun _ -> None) TransparentState.full env state c1 c2 let infer_gen_conv_leq state env c1 c2 = Reduction.generic_conv Reduction.CUMUL ~l2r:false (fun _ -> None) TransparentState.full env state c1 c2 let rec check_with_def (cst, ustate) env struc (idl,(c,ctx)) mp reso = let lab,idl = match idl with | [] -> assert false | id::idl -> Label.of_id id, idl in try let modular = not (List.is_empty idl) in let before,spec,after = split_struc lab modular struc in let env' = Modops.add_structure mp before reso env in if List.is_empty idl then (* Toplevel definition *) let cb = match spec with | SFBconst cb -> cb | _ -> error_not_a_constant lab in (* In the spirit of subtyping.check_constant, we accept any implementations of parameters and opaque terms, as long as they have the right type *) let univs, ctx' = match cb.const_universes, ctx with | Monomorphic, None -> let cst = match cb.const_body with | Undef _ | OpaqueDef _ -> let j = Typeops.infer env' c in assert (j.uj_val == c); (* relevances should already be correct here *) let typ = cb.const_type in let cst = infer_gen_conv_leq (cst, ustate) env' j.uj_type typ in cst | Def c' -> infer_gen_conv (cst, ustate) env' c c' | Primitive _ -> error_incorrect_with_constraint lab in Monomorphic, cst | Polymorphic uctx, Some ctx -> let () = if not (UGraph.check_subtype (Environ.universes env) uctx ctx) then error_incorrect_with_constraint lab in (** Terms are compared in a context with De Bruijn universe indices *) let env' = Environ.push_context ~strict:false (Univ.AbstractContext.repr uctx) env in let () = match cb.const_body with | Undef _ | OpaqueDef _ -> let j = Typeops.infer env' c in assert (j.uj_val == c); (* relevances should already be correct here *) let typ = cb.const_type in begin try Reduction.conv_leq env' j.uj_type typ with Reduction.NotConvertible -> error_incorrect_with_constraint lab end | Def c' -> begin try Reduction.conv env' c c' with Reduction.NotConvertible -> error_incorrect_with_constraint lab end | Primitive _ -> error_incorrect_with_constraint lab in Polymorphic ctx, cst | _ -> error_incorrect_with_constraint lab in let def = Def c in (* let ctx' = Univ.UContext.make (newus, cst) in *) let cb' = { cb with const_body = def; const_universes = univs ; const_body_code = (Vmbytegen.compile_constant_body ~fail_on_error:false env' cb.const_universes def) } in before@(lab,SFBconst(cb'))::after, ctx' else (* Definition inside a sub-module *) let mb = match spec with | SFBmodule mb -> mb | _ -> error_not_a_module_label lab in begin match mb.mod_expr with | Abstract -> let struc = Modops.destr_nofunctor (MPdot (mp,lab)) mb.mod_type in let struc', cst = check_with_def (cst, ustate) env' struc (idl,(c,ctx)) (MPdot(mp,lab)) mb.mod_delta in let mb' = { mb with mod_type = NoFunctor struc'; mod_type_alg = None } in before@(lab,SFBmodule mb')::after, cst | _ -> error_generative_module_expected lab end with | Not_found -> error_no_such_label lab mp | Reduction.NotConvertible -> error_incorrect_with_constraint lab let rec check_with_mod (cst, ustate) env struc (idl,new_mp) mp reso = let lab,idl = match idl with | [] -> assert false | id::idl -> Label.of_id id, idl in try let before,spec,after = split_struc lab true struc in let env' = Modops.add_structure mp before reso env in let old = match spec with | SFBmodule mb -> mb | _ -> error_not_a_module_label lab in if List.is_empty idl then (* Toplevel module definition *) let new_mb = lookup_module new_mp env in let new_mtb = module_type_of_module new_mb in let cst = match old.mod_expr with | Abstract -> let mtb_old = module_type_of_module old in let cst = Subtyping.check_subtypes (cst, ustate) env' new_mtb mtb_old in cst | Algebraic (NoFunctor (MEident(mp'))) -> check_modpath_equiv env' new_mp mp'; cst | _ -> error_generative_module_expected lab in let mp' = MPdot (mp,lab) in let new_mb = strengthen_and_subst_module_body new_mb mp' false in let new_mb' = { new_mb with mod_mp = mp'; mod_expr = Algebraic (NoFunctor (MEident new_mp)); } in let new_reso = add_delta_resolver reso new_mb.mod_delta in (* we propagate the new equality in the rest of the signature with the identity substitution accompanied by the new resolver*) let id_subst = map_mp mp' mp' new_mb.mod_delta in let new_after = subst_structure id_subst after in before@(lab,SFBmodule new_mb')::new_after, new_reso, cst else (* Module definition of a sub-module *) let mp' = MPdot (mp,lab) in let old = match spec with | SFBmodule msb -> msb | _ -> error_not_a_module_label lab in begin match old.mod_expr with | Abstract -> let struc = destr_nofunctor mp' old.mod_type in let struc',reso',cst = check_with_mod (cst, ustate) env' struc (idl,new_mp) mp' old.mod_delta in let new_mb = { old with mod_type = NoFunctor struc'; mod_type_alg = None; mod_delta = reso' } in let new_reso = add_delta_resolver reso reso' in let id_subst = map_mp mp' mp' reso' in let new_after = subst_structure id_subst after in before@(lab,SFBmodule new_mb)::new_after, new_reso, cst | Algebraic (NoFunctor (MEident mp0)) -> let mpnew = rebuild_mp mp0 idl in check_modpath_equiv env' mpnew mp; before@(lab,spec)::after, reso, cst | _ -> error_generative_module_expected lab end with | Not_found -> error_no_such_label lab mp | Reduction.NotConvertible -> error_incorrect_with_constraint lab let check_with ustate env mp (sign,reso,cst) = function | WithDef(idl, (c, ctx)) -> let struc = destr_nofunctor mp sign in let struc', cst = check_with_def (cst, ustate) env struc (idl, (c, ctx)) mp reso in NoFunctor struc', reso, cst | WithMod(idl,new_mp) -> let struc = destr_nofunctor mp sign in let struc',reso',cst = check_with_mod (cst, ustate) env struc (idl,new_mp) mp reso in NoFunctor struc', reso', cst let check_with_alg ustate env mp (sign,alg,reso,cst) wd = let struc, reso, cst = check_with ustate env mp (sign, reso, cst) wd in struc, MEwith (alg, wd), reso, cst let translate_apply ustate env inl (sign,alg,reso,cst) mp1 mkalg = let farg_id, farg_b, fbody_b = destr_functor sign in let mtb = module_type_of_module (lookup_module mp1 env) in let cst = Subtyping.check_subtypes (cst, ustate) env mtb farg_b in let mp_delta = discr_resolver mtb in let mp_delta = inline_delta_resolver env inl mp1 farg_id farg_b mp_delta in let subst = map_mbid farg_id mp1 mp_delta in let body = subst_signature subst fbody_b in let alg' = mkalg alg mp1 in let reso' = subst_codom_delta_resolver subst reso in body, alg', reso', cst (** Translation of a module struct entry : - We translate to a module when a [module_path] is given, otherwise to a module type. - The first output is the expanded signature - The second output is the algebraic expression, kept for the extraction. *) let mk_alg_app alg arg = MEapply (alg,arg) let rec translate_mse (cst, ustate) env mpo inl = function | MEident mp1 as me -> let mb = match mpo with | Some mp -> strengthen_and_subst_module_body (lookup_module mp1 env) mp false | None -> let mt = lookup_modtype mp1 env in module_body_of_type mt.mod_mp mt in mb.mod_type, me, mb.mod_delta, cst | MEapply (fe,mp1) -> translate_apply ustate env inl (translate_mse (cst, ustate) env mpo inl fe) mp1 mk_alg_app |MEwith(me, with_decl) -> assert (Option.is_empty mpo); (* No 'with' syntax for modules *) let mp = mp_from_mexpr me in check_with_alg ustate env mp (translate_mse (cst, ustate) env None inl me) with_decl let mk_mod mp e ty reso = { mod_mp = mp; mod_expr = e; mod_type = ty; mod_type_alg = None; mod_delta = reso; mod_retroknowledge = ModBodyRK []; } let mk_modtype mp ty reso = let mb = mk_mod mp Abstract ty reso in { mb with mod_expr = (); mod_retroknowledge = ModTypeRK } let rec translate_mse_funct (cst, ustate) env ~is_mod mp inl mse = function |[] -> let sign,alg,reso,cst = translate_mse (cst, ustate) env (if is_mod then Some mp else None) inl mse in let sign,reso = if is_mod then sign,reso else subst_modtype_signature_and_resolver (mp_from_mexpr mse) mp sign reso in sign, NoFunctor alg, reso, cst |(mbid, ty, ty_inl) :: params -> let mp_id = MPbound mbid in let mtb, cst = translate_modtype (cst, ustate) env mp_id ty_inl ([],ty) in let env' = add_module_type mp_id mtb env in let sign,alg,reso,cst = translate_mse_funct (cst, ustate) env' ~is_mod mp inl mse params in let alg' = MoreFunctor (mbid,mtb,alg) in MoreFunctor (mbid, mtb, sign), alg',reso, cst and translate_modtype state env mp inl (params,mte) = let sign,alg,reso,cst = translate_mse_funct state env ~is_mod:false mp inl mte params in let mtb = mk_modtype mp sign reso in { mtb with mod_type_alg = Some alg }, cst (** [finalize_module] : from an already-translated (or interactive) implementation and an (optional) signature entry, produces a final [module_body] *) let finalize_module (cst, ustate) env mp (sign,alg,reso) restype = match restype with | None -> let impl = match alg with Some e -> Algebraic e | None -> FullStruct in mk_mod mp impl sign reso, cst | Some (params_mte,inl) -> let res_mtb, cst = translate_modtype (cst, ustate) env mp inl params_mte in let auto_mtb = mk_modtype mp sign reso in let cst = Subtyping.check_subtypes (cst, ustate) env auto_mtb res_mtb in let impl = match alg with Some e -> Algebraic e | None -> Struct sign in { res_mtb with mod_mp = mp; mod_expr = impl; mod_retroknowledge = ModBodyRK []; }, (** constraints from module body typing + subtyping + module type. *) cst let translate_module (cst, ustate) env mp inl = function | MType (params,ty) -> let mtb, cst = translate_modtype (cst, ustate) env mp inl (params,ty) in module_body_of_type mp mtb, cst |MExpr (params,mse,oty) -> let (sg,alg,reso,cst) = translate_mse_funct (cst, ustate) env ~is_mod:true mp inl mse params in let restype = Option.map (fun ty -> ((params,ty),inl)) oty in finalize_module (cst, ustate) env mp (sg,Some alg,reso) restype (** We now forbid any Include of functors with restricted signatures. Otherwise, we could end with the creation of undesired axioms (see #3746). Note that restricted non-functorized modules are ok, thanks to strengthening. *) let rec unfunct = function | NoFunctor me -> me | MoreFunctor(_,_,me) -> unfunct me let rec forbid_incl_signed_functor env = function | MEapply(fe,_) -> forbid_incl_signed_functor env fe | MEwith _ -> assert false (* No 'with' syntax for modules *) | MEident mp1 -> let mb = lookup_module mp1 env in match mb.mod_type, mb.mod_type_alg, mb.mod_expr with | MoreFunctor _, Some _, _ -> (* functor + restricted signature = error *) error_include_restricted_functor mp1 | MoreFunctor _, None, Algebraic me -> (* functor, no signature yet, a definition which may be restricted *) forbid_incl_signed_functor env (unfunct me) |_ -> () let rec translate_mse_include_module (cst, ustate) env mp inl = function | MEident mp1 -> let mb = strengthen_and_subst_module_body (lookup_module mp1 env) mp true in let sign = clean_bounded_mod_expr mb.mod_type in sign,(),mb.mod_delta,cst | MEapply (fe,arg) -> let ftrans = translate_mse_include_module (cst, ustate) env mp inl fe in translate_apply ustate env inl ftrans arg (fun _ _ -> ()) | MEwith _ -> assert false (* No 'with' syntax for modules *) let translate_mse_include is_mod (cst, ustate) env mp inl me = if is_mod then let () = forbid_incl_signed_functor env me in translate_mse_include_module (cst, ustate) env mp inl me else let mtb, cst = translate_modtype (cst, ustate) env mp inl ([],me) in let sign = clean_bounded_mod_expr mtb.mod_type in sign, (), mtb.mod_delta, cst
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>