package coq-core

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file acyclicGraph.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

type constraint_type = Lt | Le | Eq

module type Point = sig
  type t

  module Set : CSig.USetS with type elt = t
  module Map : CMap.UExtS with type key = t and module Set := Set

  val equal : t -> t -> bool
  val compare : t -> t -> int

  val raw_pr : t -> Pp.t
end

module Make (Point:Point) = struct

  (* Created in Caml by Gérard Huet for CoC 4.8 [Dec 1988] *)
  (* Functional code by Jean-Christophe Filliâtre for Coq V7.0 [1999] *)
  (* Extension with algebraic universes by HH for Coq V7.0 [Sep 2001] *)
  (* Additional support for sort-polymorphic inductive types by HH [Mar 2006] *)
  (* Support for universe polymorphism by MS [2014] *)

  (* Revisions by Bruno Barras, Hugo Herbelin, Pierre Letouzey, Matthieu
     Sozeau, Pierre-Marie Pédrot, Jacques-Henri Jourdan *)

  (* Points are stratified by a partial ordering $\le$.
     Let $\~{}$ be the associated equivalence. We also have a strict ordering
     $<$ between equivalence classes, and we maintain that $<$ is acyclic,
     and contained in $\le$ in the sense that $[U]<[V]$ implies $U\le V$.

     At every moment, we have a finite number of points, and we
     maintain the ordering in the presence of assertions $U<V$ and $U\le V$.

     The equivalence $\~{}$ is represented by a tree structure, as in the
     union-find algorithm. The assertions $<$ and $\le$ are represented by
     adjacency lists.

     We use the algorithm described in the paper:

     Bender, M. A., Fineman, J. T., Gilbert, S., & Tarjan, R. E. (2011). A
     new approach to incremental cycle detection and related
     problems. arXiv preprint arXiv:1112.0784.

  *)

  module Index :
  sig
    type t
    val equal : t -> t -> bool
    module Set : CSig.SetS with type elt = t
    module Map : CMap.ExtS with type key = t and module Set := Set
    type table
    val empty : table
    val fresh : Point.t -> table -> t * table
    val mem : Point.t -> table -> bool
    val find : Point.t -> table -> t
    val repr : t -> table -> Point.t
    val hash : t -> int
  end =
  struct
    type t = int
    let equal = Int.equal
    module Set = Int.Set
    module Map = Int.Map

    type table = {
      tab_len : int;
      tab_fwd : Point.t Int.Map.t;
      tab_bwd : int Point.Map.t
    }

    let empty = {
      tab_len = 0;
      tab_fwd = Int.Map.empty;
      tab_bwd = Point.Map.empty;
    }
    let mem x t = Point.Map.mem x t.tab_bwd
    let find x t = Point.Map.find x t.tab_bwd
    let repr n t = Int.Map.find n t.tab_fwd

    let fresh x t =
      let () = assert (not @@ mem x t) in
      let n = t.tab_len in
      n, {
        tab_len = n + 1;
        tab_fwd = Int.Map.add n x t.tab_fwd;
        tab_bwd = Point.Map.add x n t.tab_bwd;
      }
    let hash x = x
  end

  module PMap = Index.Map
  module PSet = Index.Set

  (* Comparison on this type is pointer equality *)
  type canonical_node =
    { canon: Index.t;
      ltle: bool PMap.t;  (* true: strict (lt) constraint.
                             false: weak  (le) constraint. *)
      gtge: PSet.t;
      rank : int;
      klvl: int;
      ilvl: int;
    }

  (* A Point.t is either an alias for another one, or a canonical one,
     for which we know the points that are above *)

  type entry =
    | Canonical of canonical_node
    | Equiv of Index.t

  type t =
    { entries : entry PMap.t;
      index : int;
      n_nodes : int; n_edges : int;
      table : Index.table }

  module CN = struct
    type t = canonical_node
    let equal x y = x.canon == y.canon
    let hash x = Index.hash x.canon
  end

  module Status = struct
    module Internal = Hashtbl.Make(CN)

    (** we could experiment with creation size based on the size of [g] *)
    let create (g:t) = Internal.create 17

    let mem = Internal.mem
    let find = Internal.find
    let replace = Internal.replace
    let fold = Internal.fold
  end

  (* Every Point.t has a unique canonical arc representative *)

  (* Low-level function : makes u an alias for v.
     Does not removes edges from n_edges, but decrements n_nodes.
     u should be entered as canonical before.  *)
  let enter_equiv g u v =
    { entries =
        PMap.modify u (fun _ a ->
            match a with
            | Canonical n ->
              Equiv v
            | _ -> assert false) g.entries;
      index = g.index;
      n_nodes = g.n_nodes - 1;
      n_edges = g.n_edges;
      table = g.table }

  (* Low-level function : changes data associated with a canonical node.
     Resets the mutable fields in the old record, in order to avoid breaking
     invariants for other users of this record.
     n.canon should already been inserted as a canonical node. *)
  let change_node g n =
    { g with entries =
               PMap.modify n.canon
                 (fun _ a ->
                    match a with
                    | Canonical _ ->
                      Canonical n
                    | _ -> assert false)
                 g.entries }

  (* canonical representative : we follow the Equiv links *)
  let rec repr g u =
    match PMap.find u g.entries with
    | Equiv v -> repr g v
    | Canonical arc -> arc

  let repr_node g u =
    try repr g (Index.find u g.table)
    with Not_found ->
      CErrors.anomaly ~label:"Univ.repr"
        Pp.(str"Universe " ++ Point.raw_pr u ++ str" undefined.")

  exception AlreadyDeclared

  (* Reindexes the given point, using the next available index. *)
  let use_index g u =
    let u = repr g u in
    let g = change_node g { u with ilvl = g.index } in
    assert (g.index > min_int);
    { g with index = g.index - 1 }

  (* Returns 1 if u is higher than v in topological order.
             -1        lower
             0 if u = v *)
  let topo_compare u v =
    if u.klvl > v.klvl then 1
    else if u.klvl < v.klvl then -1
    else if u.ilvl > v.ilvl then 1
    else if u.ilvl < v.ilvl then -1
    else (assert (u==v); 0)

  (* Checks most of the invariants of the graph. For debugging purposes. *)
  let check_invariants ~required_canonical g =
    let required_canonical u = required_canonical (Index.repr u g.table) in
    let n_edges = ref 0 in
    let n_nodes = ref 0 in
    PMap.iter (fun l u ->
        match u with
        | Canonical u ->
          PMap.iter (fun v _strict ->
              incr n_edges;
              let v = repr g v in
              assert (topo_compare u v = -1);
              if u.klvl = v.klvl then
                assert (PSet.mem u.canon v.gtge ||
                        PSet.exists (fun l -> u == repr g l) v.gtge))
            u.ltle;
          PSet.iter (fun v ->
              let v = repr g v in
              assert (v.klvl = u.klvl &&
                      (PMap.mem u.canon v.ltle ||
                       PMap.exists (fun l _ -> u == repr g l) v.ltle))
            ) u.gtge;
          assert (Index.equal l u.canon);
          assert (u.ilvl > g.index);
          assert (not (PMap.mem u.canon u.ltle));
          incr n_nodes
        | Equiv _ -> assert (not (required_canonical l)))
      g.entries;
    assert (!n_edges = g.n_edges);
    assert (!n_nodes = g.n_nodes)

  let clean_ltle g ltle =
    PMap.fold (fun u strict acc ->
        let uu = (repr g u).canon in
        if Index.equal uu u then acc
        else (
          let acc = PMap.remove u (fst acc) in
          if not strict && PMap.mem uu acc then (acc, true)
          else (PMap.add uu strict acc, true)))
      ltle (ltle, false)

  let clean_gtge g gtge =
    PSet.fold (fun u acc ->
        let uu = (repr g u).canon in
        if Index.equal uu u then acc
        else PSet.add uu (PSet.remove u (fst acc)), true)
      gtge (gtge, false)

  (* [get_ltle] and [get_gtge] return ltle and gtge arcs.
     Moreover, if one of these lists is dirty (e.g. points to a
     non-canonical node), these functions clean this node in the
     graph by removing some duplicate edges *)
  let get_ltle g u =
    let ltle, chgt_ltle = clean_ltle g u.ltle in
    if not chgt_ltle then u.ltle, u, g
    else
      let sz = PMap.cardinal u.ltle in
      let sz2 = PMap.cardinal ltle in
      let u = { u with ltle } in
      let g = change_node g u in
      let g = { g with n_edges = g.n_edges + sz2 - sz } in
      u.ltle, u, g

  let get_gtge g u =
    let gtge, chgt_gtge = clean_gtge g u.gtge in
    if not chgt_gtge then u.gtge, u, g
    else
      let u = { u with gtge } in
      let g = change_node g u in
      u.gtge, u, g

  exception AbortBackward of t
  exception CycleDetected

  (* Implementation of the algorithm described in § 5.1 of the following paper:

     Bender, M. A., Fineman, J. T., Gilbert, S., & Tarjan, R. E. (2011). A
     new approach to incremental cycle detection and related
     problems. arXiv preprint arXiv:1112.0784.

     The "STEP X" comments contained in this file refers to the
     corresponding step numbers of the algorithm described in Section
     5.1 of this paper.  *)

  let rec backward_traverse status b_traversed count g x =
    let count = count - 1 in
    if count < 0 then begin
      raise_notrace (AbortBackward g)
    end;
    if Status.mem status x then b_traversed, count, g
    else begin
      Status.replace status x ();
      let gtge, x, g = get_gtge g x in
      let b_traversed, count, g =
        PSet.fold (fun y (b_traversed, count, g) ->
            let y = repr g y in
            backward_traverse status b_traversed count g y)
          gtge (b_traversed, count, g)
      in
      x.canon::b_traversed, count, g
    end

  let backward_traverse count g x = backward_traverse (Status.create g) [] count g x

  let rec forward_traverse f_traversed g v_klvl x y =
    let y = repr g y in
    if y.klvl < v_klvl then begin
      let y = { y with klvl = v_klvl;
                       gtge = if x == y then PSet.empty
                         else PSet.singleton x.canon }
      in
      let g = change_node g y in
      let ltle, y, g = get_ltle g y in
      let f_traversed, g =
        PMap.fold (fun z _ (f_traversed, g) ->
            forward_traverse f_traversed g v_klvl y z)
          ltle (f_traversed, g)
      in
      y.canon::f_traversed, g
    end else if y.klvl = v_klvl && x != y then
      let g = change_node g
          { y with gtge = PSet.add x.canon y.gtge } in
      f_traversed, g
    else f_traversed, g

  let rec find_to_merge status g x v =
    let x = repr g x in
    match Status.find status x with
    | merge -> merge
    | exception Not_found ->
      if Index.equal x.canon v then begin
        Status.replace status x true;
        true
      end
      else
        begin
          let merge = PSet.fold
              (fun y merge ->
                 let merge' = find_to_merge status g y v in
                 merge' || merge) x.gtge false
          in
          Status.replace status x merge;
          merge
        end

  let find_to_merge g x v =
    let status = Status.create g in
    status, find_to_merge status g x v

  let get_new_edges g to_merge =
    (* Computing edge sets. *)
    let ltle =
      let fold acc n =
        let fold u strict acc =
          match PMap.find u acc with
          | true -> acc
          | false -> if strict then PMap.add u true acc else acc
          | exception Not_found -> PMap.add u strict acc
        in
        PMap.fold fold n.ltle acc
      in
      match to_merge with
      | [] -> assert false
      | hd :: tl -> List.fold_left fold hd.ltle tl
    in
    let ltle, _ = clean_ltle g ltle in
    let fold accu a =
      match PMap.find a.canon ltle with
      | true ->
        (* There is a lt edge inside the new component. This is a
            "bad cycle". *)
        raise_notrace CycleDetected
      | false -> PMap.remove a.canon accu
      | exception Not_found -> accu
    in
    let ltle = List.fold_left fold ltle to_merge in
    let gtge =
      List.fold_left (fun acc n -> PSet.union acc n.gtge)
        PSet.empty to_merge
    in
    let gtge, _ = clean_gtge g gtge in
    let gtge = List.fold_left (fun acc n -> PSet.remove n.canon acc) gtge to_merge in
    (ltle, gtge)


  let reorder g u v =
    (* STEP 2: backward search in the k-level of u. *)

    (* [v_klvl] is the chosen future level for u, v and all
        traversed nodes. *)
    let b_traversed, v_klvl, g =
      let u = repr g u in
      try
        let b_traversed, _, g = backward_traverse (u.klvl + 1) g u in
        let v_klvl = u.klvl in
        b_traversed, v_klvl, g
      with AbortBackward g ->
        (* Backward search was too long, use the next k-level. *)
        let v_klvl = u.klvl + 1 in
        [], v_klvl, g
    in
    let f_traversed, g =
      (* STEP 3: forward search. Contrary to what is described in
          the paper, we do not test whether v_klvl = u.klvl nor we assign
          v_klvl to v.klvl. Indeed, the first call to forward_traverse
          will do all that. *)
      forward_traverse [] g v_klvl (repr g v) v
    in

    (* STEP 4: merge nodes if needed. *)
    let to_merge, b_reindex, f_reindex =
      if (repr g u).klvl = v_klvl then
        begin
          let status, merge = find_to_merge g u v in
          if merge then
            let not_merged u = try not (Status.find status (repr g u)) with Not_found -> true in
            Status.fold (fun u merged acc -> if merged then u::acc else acc) status [],
            List.filter not_merged b_traversed,
            List.filter not_merged f_traversed
          else [], b_traversed, f_traversed
        end
      else [], b_traversed, f_traversed
    in
    let to_reindex, g =
      match to_merge with
      | [] -> List.rev_append f_reindex b_reindex, g
      | n0::q0 ->
        (* Computing new root. *)
        let root, rank_rest =
          List.fold_left (fun ((best, _rank_rest) as acc) n ->
              if n.rank >= best.rank then n, best.rank else acc)
            (n0, min_int) q0
        in
        let ltle, gtge = get_new_edges g to_merge in
        (* Inserting the new root. *)
        let g = change_node g
            { root with ltle; gtge;
                        rank = max root.rank (rank_rest + 1); }
        in

        (* Inserting shortcuts for old nodes. *)
        let g = List.fold_left (fun g n ->
            if Index.equal n.canon root.canon then g else enter_equiv g n.canon root.canon)
            g to_merge
        in

        (* Updating g.n_edges *)
        let oldsz =
          List.fold_left (fun sz u -> sz+PMap.cardinal u.ltle)
            0 to_merge
        in
        let sz = PMap.cardinal ltle in
        let g = { g with n_edges = g.n_edges + sz - oldsz } in

        (* Not clear in the paper: we have to put the newly
            created component just between B and F. *)
        List.rev_append f_reindex (root.canon::b_reindex), g

    in

    (* STEP 5: reindex traversed nodes. *)
    List.fold_left use_index g to_reindex

  (* Assumes [u] and [v] are already in the graph. *)
  (* Does NOT assume that ucan != vcan. *)
  let insert_edge strict ucan vcan g =
    try
      let u = ucan.canon and v = vcan.canon in
      (* STEP 1: do we need to reorder nodes ? *)
      let g = if topo_compare ucan vcan <= 0 then g else reorder g u v in

      (* STEP 6: insert the new edge in the graph. *)
      let u = repr g u in
      let v = repr g v in
      if u == v then
        if strict then raise_notrace CycleDetected else g
      else
        let g =
          try let oldstrict = PMap.find v.canon u.ltle in
            if strict && not oldstrict then
              change_node g { u with ltle = PMap.add v.canon true u.ltle }
            else g
          with Not_found ->
            { (change_node g { u with ltle = PMap.add v.canon strict u.ltle })
              with n_edges = g.n_edges + 1 }
        in
        if u.klvl <> v.klvl || PSet.mem u.canon v.gtge then g
        else
          let v = { v with gtge = PSet.add u.canon v.gtge } in
          change_node g v
    with
    | CycleDetected as e -> raise_notrace e

  let add ?(rank=0) v g =
    if Index.mem v g.table then raise AlreadyDeclared
    else
      let () = assert (g.index > min_int) in
      let v, table = Index.fresh v g.table in
      let node = {
        canon = v;
        ltle = PMap.empty;
        gtge = PSet.empty;
        rank;
        klvl = 0;
        ilvl = g.index;
      }
      in
      let entries = PMap.add v (Canonical node) g.entries in
      { entries; index = g.index - 1; n_nodes = g.n_nodes + 1; n_edges = g.n_edges; table }

  exception Undeclared of Point.t
  let check_declared g us =
    let check l = if not (Index.mem l g.table) then raise (Undeclared l) in
    Point.Set.iter check us

  exception Found_explanation of (constraint_type * Point.t) list

  type explanation = Point.t * (constraint_type * Point.t) list

  let get_explanation strict pu pv g =
    let v = repr_node g pv in
    let visited_strict = ref PMap.empty in
    let rec traverse strict u =
      if u == v then
        if strict then None else Some []
      else if topo_compare u v = 1 then None
      else
        let visited =
          try not (PMap.find u.canon !visited_strict) || strict
          with Not_found -> false
        in
        if visited then None
        else begin
          visited_strict := PMap.add u.canon strict !visited_strict;
          try
            PMap.iter (fun u' strictu' ->
                match traverse (strict && not strictu') (repr g u') with
                | None -> ()
                | Some exp ->
                  let typ = if strictu' then Lt else Le in
                  let exp = if CList.is_empty exp then [typ, pv] else
                      let u' = Index.repr u' g.table in
                      (typ, u') :: exp
                  in
                  raise_notrace (Found_explanation exp))
              u.ltle;
            None
          with Found_explanation exp -> Some exp
        end
    in
    let u = repr_node g pu in
    if u == v then begin assert (not strict); [(Eq, pv)] end
    else match traverse strict u with Some exp -> exp | None -> assert false

  let get_explanation strict u v g = u, get_explanation strict u v g

  (* To compare two nodes, we simply do a forward search.
     We implement two improvements:
     - we ignore nodes that are higher than the destination;
     - we do a BFS rather than a DFS because we expect to have a short
         path (typically, the shortest path has length 1)
  *)
  exception Found
  type visited = WeakVisited | Visited
  let search_path strict u v g =
    let rec loop status todo next_todo =
      match todo, next_todo with
      | [], [] -> () (* No path found *)
      | [], _ -> loop status next_todo []
      | (u, strict)::todo, _ ->
        let is_visited = match Status.find status u with
          | Visited -> true
          | WeakVisited -> strict
          | exception Not_found -> false
        in
        if is_visited
        then loop status todo next_todo
        else begin
          Status.replace status u (if strict then WeakVisited else Visited);
          if try PMap.find v.canon u.ltle || not strict
            with Not_found -> false
          then raise_notrace Found
          else
            begin
              let next_todo =
                PMap.fold (fun u strictu next_todo ->
                    let strict = not strictu && strict in
                    let u = repr g u in
                    if u == v && not strict then raise_notrace Found
                    else if topo_compare u v = 1 then next_todo
                    else (u, strict)::next_todo)
                  u.ltle next_todo
              in
              loop status todo next_todo
            end
        end
    in
    if u == v then not strict
    else
      try loop (Status.create g) [u, strict] []; false
      with Found -> true

  (** Uncomment to debug the cycle detection algorithm. *)
  (*let insert_edge strict ucan vcan g =
    let check_invariants = check_invariants ~required_canonical:(fun _ -> false) in
    check_invariants g;
    let g = insert_edge strict ucan vcan g in
    check_invariants g;
    let ucan = repr g ucan.canon in
    let vcan = repr g vcan.canon in
    assert (search_path strict ucan vcan g);
    g*)

  (** User interface *)

  type 'a check_function = t -> 'a -> 'a -> bool

  let check_eq g u v =
    u == v ||
    let arcu = repr_node g u and arcv = repr_node g v in
    arcu == arcv

  let check_smaller g strict u v =
    search_path strict (repr_node g u) (repr_node g v) g

  let check_leq g u v = check_smaller g false u v
  let check_lt g u v = check_smaller g true u v

  let get_explanation (u, c, v) g = match c with
  | Eq ->
    (* Redo the search, not important because this is only used for display. *)
    if check_lt g u v then get_explanation true u v g else get_explanation true v u g
  | Le -> get_explanation true v u g
  | Lt -> get_explanation false v u g

  (* enforce_eq g u v will force u=v if possible, will fail otherwise *)

  let enforce_eq u v g =
    let ucan = repr_node g u in
    let vcan = repr_node g v in
    if ucan == vcan then Some g
    else if topo_compare ucan vcan = 1 then
      let ucan = vcan and vcan = ucan in
      let g = insert_edge false ucan vcan g in  (* Cannot fail *)
      try Some (insert_edge false vcan ucan g)
      with CycleDetected -> None
    else
      let g = insert_edge false ucan vcan g in  (* Cannot fail *)
      try Some (insert_edge false vcan ucan g)
      with CycleDetected -> None

  (* enforce_leq g u v will force u<=v if possible, will fail otherwise *)
  let enforce_leq u v g =
    let ucan = repr_node g u in
    let vcan = repr_node g v in
    try Some (insert_edge false ucan vcan g)
    with CycleDetected -> None

  (* enforce_lt u v will force u<v if possible, will fail otherwise *)
  let enforce_lt u v g =
    let ucan = repr_node g u in
    let vcan = repr_node g v in
    try Some (insert_edge true ucan vcan g)
    with CycleDetected -> None

  let empty =
    { entries = PMap.empty; index = 0; n_nodes = 0; n_edges = 0; table = Index.empty }

  (* Normalization *)

  type 'a constraint_fold = Point.t * constraint_type * Point.t -> 'a -> 'a

  let constraints_of g fold accu =
    let module UF = Unionfind.Make (Point.Set) (Point.Map) in
    let uf = UF.create () in
    let constraints_of u v acc =
      match v with
      | Canonical {canon=u; ltle; _} ->
        PMap.fold (fun v strict acc->
            let typ = if strict then Lt else Le in
            let u = Index.repr u g.table in
            let v = Index.repr v g.table in
            fold (u,typ,v) acc) ltle acc
      | Equiv v ->
        let u = Index.repr u g.table in
        let v = Index.repr v g.table in
        UF.union u v uf; acc
    in
    let csts = PMap.fold constraints_of g.entries accu in
    csts, UF.partition uf

  (* domain g.entries = kept + removed *)
  let constraints_for ~kept g fold accu =
    (* rmap: partial map from canonical points to kept points *)
    let add_cst u knd v cst =
      fold (Index.repr u g.table, knd, Index.repr v g.table) cst
    in
    let kept = Point.Set.fold (fun u accu -> PSet.add (Index.find u g.table) accu) kept PSet.empty in
    let rmap, csts = PSet.fold (fun u (rmap,csts) ->
        let arcu = repr g u in
        if PSet.mem arcu.canon kept then
          let csts = if Index.equal u arcu.canon then csts
            else add_cst u Eq arcu.canon csts
          in
          PMap.add arcu.canon arcu.canon rmap, csts
        else
          match PMap.find arcu.canon rmap with
          | v -> rmap, add_cst u Eq v csts
          | exception Not_found -> PMap.add arcu.canon u rmap, csts)
        kept (PMap.empty, accu)
    in
    let rec add_from u csts todo = match todo with
      | [] -> csts
      | (v,strict)::todo ->
        let v = repr g v in
        (match PMap.find v.canon rmap with
         | v ->
           let d = if strict then Lt else Le in
           let csts = add_cst u d v csts in
           add_from u csts todo
         | exception Not_found ->
           (* v is not equal to any kept point *)
           let todo = PMap.fold (fun v' strict' todo ->
               (v',strict || strict') :: todo)
               v.ltle todo
           in
           add_from u csts todo)
    in
    PSet.fold (fun u csts ->
        let arc = repr g u in
        PMap.fold (fun v strict csts -> add_from u csts [v,strict])
          arc.ltle csts)
      kept csts

  let domain g =
    let fold u _ accu = Point.Set.add (Index.repr u g.table) accu in
    PMap.fold fold g.entries Point.Set.empty

  let choose p g u =
    let exception Found of Point.t in
    let ru = (repr_node g u).canon in
    let ruv = Index.repr ru g.table in
    if p ruv then Some ruv
    else
      try PMap.iter (fun v -> function
          | Canonical _ -> () (* we already tried [p ru] *)
          | Equiv v' ->
            let rv = (repr g v').canon in
            if rv == ru then
              let v = Index.repr v g.table in
              if p v then raise_notrace (Found v)
            (* NB: we could also try [p v'] but it will come up in the
               rest of the iteration regardless. *)
        ) g.entries; None
      with Found v -> Some v

  type node = Alias of Point.t | Node of bool Point.Map.t
  type repr = node Point.Map.t

  let repr g =
    let fold u n accu =
      let n = match n with
      | Canonical n ->
        let fold u lt accu = Point.Map.add (Index.repr u g.table) lt accu in
        let ltle = PMap.fold fold n.ltle Point.Map.empty in
        Node ltle
      | Equiv u -> Alias (Index.repr u g.table)
      in
      Point.Map.add (Index.repr u g.table) n accu
    in
    PMap.fold fold g.entries Point.Map.empty

end
OCaml

Innovation. Community. Security.