package coq-core

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file genlambda.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Pp
open Util
open Esubst
open Names
open Environ
open Declarations
open Constr

type reloc_table = (int * int) array

type case_annot = case_info * reloc_table * Declarations.recursivity_kind

type 'v lambda =
| Lrel          of Name.t * int
| Lvar          of Id.t
| Levar         of Evar.t * 'v lambda array (* arguments *)
| Lprod         of 'v lambda * 'v lambda
| Llam          of Name.t binder_annot array * 'v lambda
| Llet          of Name.t binder_annot * 'v lambda * 'v lambda
| Lapp          of 'v lambda * 'v lambda array
| Lconst        of pconstant
| Lproj         of Projection.Repr.t * 'v lambda
| Lprim         of pconstant * CPrimitives.t * 'v lambda array
| Lcase         of case_annot * 'v lambda * 'v lambda * 'v lam_branches
  (* annotations, term being matched, accu, branches *)
| Lfix          of (int array * inductive array * int) * 'v fix_decl
| Lcofix        of int * 'v fix_decl
| Lint          of int
| Lparray       of 'v lambda array * 'v lambda
| Lmakeblock    of inductive * int * 'v lambda array
  (* inductive name, constructor tag, arguments *)
| Luint         of Uint63.t
| Lfloat        of Float64.t
| Lstring       of Pstring.t
| Lval          of 'v
| Lsort         of Sorts.t
| Lind          of pinductive

and 'v lam_branches =
  { constant_branches : 'v lambda array;
    nonconstant_branches : (Name.t binder_annot array * 'v lambda) array }

and 'v fix_decl = Name.t binder_annot array * 'v lambda array * 'v lambda array

type evars =
  { evars_val : CClosure.evar_handler }

let empty_evars env =
  { evars_val = CClosure.default_evar_handler env }

(** Printing **)

let pr_annot x = Name.print x.Context.binder_name

let pp_names ids =
  prlist_with_sep (fun _ -> brk(1,1)) pr_annot (Array.to_list ids)

let pp_rel name n =
  Name.print name ++  str "##" ++ int n

let pp_sort s =
  match s with
  | Sorts.Set -> str "Set"
  | Sorts.Prop -> str "Prop"
  | Sorts.SProp -> str "SProp"
  | Sorts.Type _ | Sorts.QSort _ -> str "Type"

let pr_con sp = str(Names.Label.to_string (Constant.label sp))

let rec pp_lam lam =
  match lam with
  | Lrel (id,n) -> pp_rel id n
  | Lvar id -> Id.print id
  | Levar (evk, args) ->
    hov 1 (str "evar(" ++ Evar.print evk ++ str "," ++ spc () ++
      prlist_with_sep spc pp_lam (Array.to_list args) ++ str ")")
  | Lprod(dom,codom) -> hov 1
                          (str "forall(" ++
                           pp_lam dom ++
                           str "," ++ spc() ++
                           pp_lam codom ++
                           str ")")
  | Llam(ids,body) -> hov 1
                        (str "(fun " ++
                         pp_names ids ++
                         str " =>" ++
                         spc() ++
                         pp_lam body ++
                         str ")")
  | Llet(id,def,body) -> hov 0
                           (str "let " ++
                            pr_annot id ++
                            str ":=" ++
                            pp_lam def  ++
                            str " in" ++
                            spc() ++
                            pp_lam body)
  | Lapp(f, args) -> hov 1
                       (str "(" ++ pp_lam f ++ spc() ++
                        prlist_with_sep spc pp_lam (Array.to_list args) ++
                        str")")
  | Lconst (kn,_) -> pr_con kn
  | Lcase(_annot, t, a, branches) ->
    let ic = ref (-1) in
    let ib = ref 0 in
    v 0 (str"<" ++ pp_lam t ++ str">" ++ cut() ++
         str "Case" ++ spc () ++ pp_lam a ++ spc() ++ str "of" ++ cut() ++
         v 0
           ((prlist_with_sep (fun _ -> str "")
               (fun c ->
                  cut () ++ str "| " ++
                  int (incr ic; !ic) ++ str " => " ++ pp_lam c)
               (Array.to_list branches.constant_branches)) ++
            (prlist_with_sep (fun _ -> str "")
               (fun (ids,c) ->
                  cut () ++ str "| " ++
                  int (incr ib; !ib) ++ str " " ++
                  pp_names ids ++ str " => " ++ pp_lam c)
               (Array.to_list branches.nonconstant_branches)))
         ++ cut() ++ str "end")
  | Lfix ((t, _, i), (lna, tl, bl)) ->
    let fixl = Array.mapi (fun i id -> (id,t.(i),tl.(i),bl.(i))) lna in
    hov 1
      (str"fix " ++ int i ++ spc() ++  str"{" ++
       v 0
         (prlist_with_sep spc
            (fun (na,i,ty,bd) ->
               pr_annot na ++ str"/" ++ int i ++ str":" ++
               pp_lam ty ++ cut() ++ str":=" ++
               pp_lam bd) (Array.to_list fixl)) ++
       str"}")

  | Lcofix (i,(lna,tl,bl)) ->
    let fixl = Array.mapi (fun i na -> (na,tl.(i),bl.(i))) lna in
    hov 1
      (str"cofix " ++ int i ++ spc() ++  str"{" ++
       v 0
         (prlist_with_sep spc
            (fun (na,ty,bd) ->
               pr_annot na ++ str":" ++ pp_lam ty ++
               cut() ++ str":=" ++ pp_lam bd) (Array.to_list fixl)) ++
       str"}")
  | Lparray (args, def) ->
    hov 1
      (str "(array " ++ spc() ++
       prlist_with_sep spc pp_lam (Array.to_list args) ++
       spc () ++ str "|" ++ spc () ++ pp_lam def ++ str")")
  | Lmakeblock(_, tag, args) ->
    hov 1
      (str "(makeblock " ++ int tag ++ spc() ++
       prlist_with_sep spc pp_lam (Array.to_list args) ++
       str")")
  | Luint i -> str (Uint63.to_string i)
  | Lfloat f -> str (Float64.to_string f)
  | Lstring s -> str (Printf.sprintf "%S" (Pstring.to_string s))
  | Lval _ -> str "values"
  | Lsort s -> pp_sort s
  | Lind ((mind,i), _) -> MutInd.print mind ++ str"#" ++ int i
  | Lprim ((kn,_u),_op,args) ->
     hov 1
         (str "(PRIM " ++ pr_con kn ++  spc() ++
            prlist_with_sep spc pp_lam  (Array.to_list args) ++
            str")")
  | Lproj(p,arg) ->
    hov 1
      (str "(proj " ++ str "{" ++ Projection.Repr.print p ++ str "}" ++ spc () ++ pp_lam arg
       ++ str ")")
  | Lint i ->
    Pp.(str "(int:" ++ int i ++ str ")")

(*s Constructors *)

let mkLapp f args =
  if Array.is_empty args then f
  else
    match f with
    | Lapp(f', args') -> Lapp (f', Array.append args' args)
    | _ -> Lapp(f, args)

let mkLlam ids body =
  if Array.is_empty ids then body
  else
    match body with
    | Llam(ids', body) -> Llam(Array.append ids ids', body)
    | _ -> Llam(ids, body)

let decompose_Llam lam =
  match lam with
  | Llam(ids,body) -> ids, body
  | _ -> [||], lam

let rec decompose_Llam_Llet lam =
  match lam with
  | Llam(ids,body) ->
      let vars, body = decompose_Llam_Llet body in
      Array.fold_right (fun x l -> (x, None) :: l) ids vars, body
  | Llet(id,def,body) ->
      let vars, body = decompose_Llam_Llet body in
      (id,Some def) :: vars, body
  | _ -> [], lam

let decompose_Llam_Llet lam =
  let vars, body = decompose_Llam_Llet lam in
  Array.of_list vars, body

(* A generic map function *)

let map_lam_with_binders g f n lam =
  match lam with
  | Lrel _ | Lvar _  | Lconst _ | Lval _ | Lsort _ | Lind _ | Lint _ | Luint _
  | Lfloat _ | Lstring _ -> lam
  | Levar (evk, args) ->
    let args' = Array.Smart.map (f n) args in
    if args == args' then lam else Levar (evk, args')
  | Lprod(dom,codom) ->
    let dom' = f n dom in
    let codom' = f n codom in
    if dom == dom' && codom == codom' then lam else Lprod(dom',codom')
  | Llam(ids,body) ->
    let body' = f (g (Array.length ids) n) body in
    if body == body' then lam else mkLlam ids body'
  | Llet(id,def,body) ->
    let def' = f n def in
    let body' = f (g 1 n) body in
    if body == body' && def == def' then lam else Llet(id,def',body')
  | Lapp(fct,args) ->
    let fct' = f n fct in
    let args' = Array.Smart.map (f n) args in
    if fct == fct' && args == args' then lam else mkLapp fct' args'
  | Lcase (annot, t, a, branches) ->
    let const = branches.constant_branches in
    let nonconst = branches.nonconstant_branches in
    let t' = f n t in
    let a' = f n a in
    let const' = Array.Smart.map (f n) const in
    let on_b b =
      let (ids,body) = b in
      let body' = f (g (Array.length ids) n) body in
      if body == body' then b else (ids,body') in
    let nonconst' = Array.Smart.map on_b nonconst in
    let branches' =
      if const == const' && nonconst == nonconst' then
        branches
      else
        { constant_branches = const';
          nonconstant_branches = nonconst' }
    in
    if t == t' && a == a' && branches == branches' then lam else
      Lcase(annot, t', a', branches')
  | Lfix(init,(ids,ltypes,lbodies)) ->
    let ltypes' = Array.Smart.map (f n) ltypes in
    let lbodies' = Array.Smart.map (f (g (Array.length ids) n)) lbodies in
    if ltypes == ltypes' && lbodies == lbodies' then lam
    else Lfix(init,(ids,ltypes',lbodies'))
  | Lcofix(init,(ids,ltypes,lbodies)) ->
    let ltypes' = Array.Smart.map (f n) ltypes in
    let lbodies' = Array.Smart.map (f (g (Array.length ids) n)) lbodies in
    if ltypes == ltypes' && lbodies == lbodies' then lam
    else Lcofix(init,(ids,ltypes',lbodies'))
  | Lparray (args, def) ->
    let args' = Array.Smart.map (f n) args in
    let def' = f n def in
    if args == args' && def == def' then lam else Lparray (args', def')
  | Lmakeblock (inds, tag, args) ->
    let args' = Array.Smart.map (f n) args in
    if args == args' then lam else Lmakeblock (inds, tag,args')
  | Lprim(kn,op,args) ->
    let args' = Array.Smart.map (f n) args in
    if args == args' then lam else Lprim(kn,op,args')
  | Lproj(p,arg) ->
    let arg' = f n arg in
    if arg == arg' then lam else Lproj(p,arg')

(* Free rels *)

let free_rels lam =
  let rec aux k accu lam = match lam with
  | Lrel (_, n) -> if n >= k then Int.Set.add (n - k + 1) accu else accu
  | Lvar _  | Lconst _ | Lval _ | Lsort _ | Lind _ | Lint _ | Luint _
  | Lfloat _ | Lstring _ -> accu
  | Levar (_, args) ->
    Array.fold_left (fun accu lam -> aux k accu lam) accu args
  | Lprod (dom, codom) ->
    aux k (aux k accu dom) codom
  | Llam (ids, body) ->
    aux (k + Array.length ids) accu body
  | Llet (_, def, body) ->
    aux (k + 1) (aux k accu def) body
  | Lapp (fct, args) ->
    let accu = aux k accu fct in
    Array.fold_left (fun accu lam -> aux k accu lam) accu args
  | Lcase (_, t, a, branches) ->
    let const = branches.constant_branches in
    let nonconst = branches.nonconstant_branches in
    let accu = aux k accu t in
    let accu = aux k accu a in
    let accu = Array.fold_left (fun accu lam -> aux k accu lam) accu const in
    let accu = Array.fold_left (fun accu (ids, lam) -> aux (k + Array.length ids) accu lam) accu nonconst in
    accu
  | Lfix (_, (ids, ltypes, lbodies)) | Lcofix (_, (ids, ltypes, lbodies)) ->
    let accu = Array.fold_left (fun accu lam -> aux k accu lam) accu ltypes in
    let accu = Array.fold_left (fun accu lam -> aux (k + Array.length ids) accu lam) accu lbodies in
    accu
  | Lparray (args, def) ->
    let accu = Array.fold_left (fun accu lam -> aux k accu lam) accu args in
    aux k accu def
  | Lmakeblock (_, _, args) ->
    Array.fold_left (fun accu lam -> aux k accu lam) accu args
  | Lprim (_, _, args) ->
    Array.fold_left (fun accu lam -> aux k accu lam) accu args
  | Lproj (_, arg) ->
    aux k accu arg
  in
  aux 1 Int.Set.empty lam

(*s Operators on substitution *)
let lift = subs_lift
let liftn = subs_liftn
let cons v subst = subs_cons v subst
let shift subst = subs_shft (1, subst)

(*s Lift and substitution *)

let rec lam_exlift el lam =
  match lam with
  | Lrel(id,i) ->
    let i' = reloc_rel i el in
    if i == i' then lam else Lrel(id,i')
  | _ -> map_lam_with_binders el_liftn lam_exlift el lam

let lam_lift k lam =
  if Int.equal k 0 then lam
  else lam_exlift (el_shft k el_id) lam

let lam_subst_rel lam id n subst =
  match expand_rel n subst with
  | Inl(k,v) -> lam_lift k v
  | Inr(n',_) ->
      if n == n' then lam
      else Lrel(id, n')

let rec lam_exsubst subst lam =
  match lam with
  | Lrel(id,i) -> lam_subst_rel lam id i subst
  | _ -> map_lam_with_binders liftn lam_exsubst subst lam

let lam_subst_args subst args =
  if is_subs_id subst then args
  else Array.Smart.map (lam_exsubst subst) args

(* [simplify subst lam] simplifies the expression [lam_subst subst lam] by: *)
(* - Reducing [let] is the definition can be substituted *)
(* - Transforming beta redex into [let] expression *)
(* - Moving arguments under [let] *)
(* Invariant: Terms in [subst] are already simplified and can be substituted *)

let can_subst lam = match lam with
| Lrel _ | Lvar _ | Lconst _ | Luint _
| Lval _ | Lsort _ | Lind _ -> true
| Levar _ | Lprod _ | Llam _ | Llet _ | Lapp _ | Lcase _ | Lfix _ | Lcofix _
| Lparray _ | Lmakeblock _ | Lfloat _ | Lstring _ | Lprim _ | Lproj _ -> false
| Lint _ -> false (* TODO: allow substitution of integers *)

let simplify lam =
  let rec simplify subst lam =
    match lam with
    | Lrel(id,i) -> lam_subst_rel lam id i subst

    | Llet(id,def,body) ->
        let def' = simplify subst def in
        if can_subst def' then simplify (cons def' subst) body
        else
          let body' = simplify (lift subst) body in
          if def == def' && body == body' then lam
          else Llet(id,def',body')

    | Lapp(f,args) ->
        begin match simplify_app subst f subst args with
        | Lapp(f',args') when f == f' && args == args' -> lam
        | lam' -> lam'
        end

    | _ -> map_lam_with_binders liftn simplify subst lam

  and simplify_app substf f substa args =
    match f with
    | Lrel(id, i) ->
      begin match lam_subst_rel f id i substf with
        | Llam(ids, body) ->
          reduce_lapp
            (subs_id 0) (Array.to_list ids) body
            substa (Array.to_list args)
        | f' -> mkLapp f' (simplify_args substa args)
      end
    | Llam(ids, body) ->
      reduce_lapp substf (Array.to_list ids) body substa (Array.to_list args)
    | Llet(id, def, body) ->
      let def' = simplify substf def in
      if can_subst def' then
        simplify_app (cons def' substf) body substa args
      else
        Llet(id, def', simplify_app (lift substf) body (shift substa) args)
    | Lapp(f, args') ->
      let args = Array.append
          (lam_subst_args substf args') (lam_subst_args substa args) in
      simplify_app substf f (subs_id 0) args
    | _ -> mkLapp (simplify substf f) (simplify_args substa args)

  and simplify_args subst args = Array.Smart.map (fun c -> simplify subst c) args

  and reduce_lapp substf lids body substa largs =
    match lids, largs with
    | id::lids, a::largs ->
      let a = simplify substa a in
      if can_subst a then
        reduce_lapp (subs_cons a substf) lids body substa largs
      else
        let body = reduce_lapp (lift substf) lids body (shift substa) largs in
        Llet(id, a, body)
    | [], [] -> simplify substf body
    | _::_, _ ->
      Llam(Array.of_list lids, simplify (liftn (List.length lids) substf) body)
    | [], _ -> simplify_app substf body substa (Array.of_list largs)
  in
  simplify (subs_id 0) lam

(* [occurrence kind k lam]:
   If [kind] is [true] return [true] if the variable [k] does not appear in
   [lam], return [false] if the variable appear one time and not
   under a lambda, a fixpoint, a cofixpoint; else raise Not_found.
   If [kind] is [false] return [false] if the variable does not appear in [lam]
   else raise [Not_found]
*)

let rec occurrence k kind lam =
  match lam with
  | Lrel (_,n) ->
    if n = k then
      if kind then false else raise Not_found
    else kind
  | Lvar _  | Lconst _  | Lval _ | Lsort _ | Lind _ | Lint _ | Luint _
  | Lfloat _ | Lstring _ -> kind
  | Levar (_, args) ->
    occurrence_args k kind args
  | Lprod(dom, codom) ->
    occurrence k (occurrence k kind dom) codom
  | Llam(ids,body) ->
    let _ = occurrence (k+Array.length ids) false body in kind
  | Llet(_,def,body) ->
    occurrence (k+1) (occurrence k kind def) body
  | Lapp(f, args) ->
    occurrence_args k (occurrence k kind f) args
  | Lparray (args, def) ->
    occurrence_args k (occurrence k kind def) args
  | Lprim(_,_,args) | Lmakeblock(_, _,args) ->
    occurrence_args k kind args
  | Lcase(_, t, a, branches) ->
    let kind = occurrence k (occurrence k kind t) a in
    let r = ref kind in
    Array.iter (fun c -> r := occurrence k kind c  && !r) branches.constant_branches;
    let on_b (ids,c) =
      r := occurrence (k+Array.length ids) kind c && !r
    in
    Array.iter on_b branches.nonconstant_branches;
    !r
  | Lfix(_,(ids,ltypes,lbodies))
  | Lcofix(_,(ids,ltypes,lbodies)) ->
    let kind = occurrence_args k kind ltypes in
    let _ = occurrence_args (k+Array.length ids) false lbodies in
    kind
  | Lproj(_,arg) ->
    occurrence k kind arg

and occurrence_args k kind args =
  Array.fold_left (occurrence k) kind args

let occur_once lam =
  try let _ = occurrence 1 true lam in true
  with Not_found -> false

(* [remove_let lam] remove let expression in [lam] if the variable is *)
(* used at most once time in the body, and does not appear under      *)
(* a lambda or a fix or a cofix                                       *)

let is_value lam = match lam with
| Lrel _ | Lvar _ | Lconst _ | Luint _
| Lval _ | Lsort _ | Lind _ | Lint _ | Llam _ | Lfix _ | Lcofix _ | Lfloat _ | Lstring _ -> true
| Levar _ | Lprod _ | Llet _ | Lapp _ | Lcase _
| Lparray _ | Lmakeblock _ | Lprim _ | Lproj _ -> false

let rec remove_let subst lam =
  match lam with
  | Lrel(id,i) -> lam_subst_rel lam id i subst
  | Llet(id,def,body) ->
    let def' = remove_let subst def in
    if occur_once body && is_value body then remove_let (cons def' subst) body
    else
      let body' = remove_let (lift subst) body in
      if def == def' && body == body' then lam else Llet(id,def',body')
  | _ -> map_lam_with_binders liftn remove_let subst lam

let optimize lam =
  let lam = simplify lam in
  let lam = remove_let (subs_id 0) lam in
  lam

(* Compiling constants *)

let rec get_alias env kn =
  let cb = lookup_constant kn env in
  let tps = cb.const_body_code in
  match tps with
  | None -> kn, [||]
  | Some tps ->
    match tps with
    | Vmemitcodes.BCalias kn' -> get_alias env kn'
    | Vmemitcodes.BCconstant -> kn, [||]
    | Vmemitcodes.BCdefined (mask, _, _) -> kn, mask

(* Translation of constructors *)

let make_args start _end =
  Array.init (start - _end + 1) (fun i -> Lrel (Anonymous, start - i))

let expand_constructor ind tag nparams arity =
  let anon = Context.make_annot Anonymous Sorts.Relevant in (* TODO relevance *)
  let ids = Array.make (nparams + arity) anon in
  if Int.equal arity 0 then mkLlam ids (Lint tag)
  else
  let args = make_args arity 1 in
  Llam(ids, Lmakeblock (ind, tag, args))

let makeblock as_val ind tag nparams arity args =
  let nargs = Array.length args in
  if nparams > 0 || nargs < arity then
    mkLapp (expand_constructor ind tag nparams arity) args
  else
    (* The constructor is fully applied *)
  if arity = 0 then Lint tag
  else match as_val tag args with
  | Some v -> Lval v
  | None -> Lmakeblock (ind, tag, args)

(* Compilation of primitive *)

let prim _env kn p args =
  Lprim (kn, p, args)

let expand_prim env kn op arity =
  (* primitives are always Relevant *)
  let ids = Array.make arity Context.anonR in
  let args = make_args arity 1 in
  Llam(ids, prim env kn op args)

let lambda_of_prim env kn op args =
  let arity = CPrimitives.arity op in
  match Int.compare (Array.length args) arity with
  | 0 -> prim env kn op args
  | x when x > 0 ->
    let prim_args = Array.sub args 0 arity in
    let extra_args = Array.sub args arity (Array.length args - arity) in
    mkLapp(prim env kn op prim_args) extra_args
  | _ -> mkLapp (expand_prim env kn op arity) args

module RelDecl = Context.Rel.Declaration

type tag = int

module type S =
sig
  type value
  val as_value : int -> value lambda array -> value option
  val check_inductive : inductive -> mutual_inductive_body -> unit
end

module Make (Val : S) =
struct

(* [nparams] is the number of parameters still expected *)
let makeblock _env ind tag nparams arity args =
  makeblock Val.as_value ind tag nparams arity args

(*i Global environment *)

let get_names decl =
  let decl = Array.of_list decl in
  Array.map fst decl

let empty_args = [||]

module Cache =
  struct

    module ConstrHash =
    struct
      type t = constructor
      let equal = Construct.CanOrd.equal
      let hash = Construct.CanOrd.hash
    end

    module ConstrTable = Hashtbl.Make(ConstrHash)

    type constructor_info = tag * int * int (* nparam nrealargs *)

    let get_construct_info cache env c : constructor_info =
      try ConstrTable.find cache c
      with Not_found ->
        let ((mind,j), i) = c in
        let oib = lookup_mind mind env in
        let oip = oib.mind_packets.(j) in
        let () = Val.check_inductive (mind, j) oib in
        let tag,arity = oip.mind_reloc_tbl.(i-1) in
        let nparams = oib.mind_nparams in
        let r = (tag, nparams, arity) in
        ConstrTable.add cache c r;
        r
  end

let evar_value sigma ev = sigma.evars_val.CClosure.evar_expand ev

(** Extract the inductive type over which a fixpoint is decreasing *)
let rec get_fix_struct env i t = match kind (Reduction.whd_all env t) with
| Prod (na, dom, t) ->
  if Int.equal i 0 then
    let dom = Reduction.whd_all env dom in
    let (dom, _) = decompose_app dom in
    match kind dom with
    | Ind (ind, _) -> ind
    | _ -> assert false
  else
    let env = Environ.push_rel (RelDecl.LocalAssum (na, dom)) env in
    get_fix_struct env (i - 1) t
| _ -> assert false

let rec lambda_of_constr cache env sigma c =
  match kind c with
  | Meta _ ->
    raise (Invalid_argument "lambda_of_constr: Meta")

  | Evar ev ->
     (match evar_value sigma ev with
     | CClosure.EvarUndefined (evk, args) ->
        let args = Array.map_of_list (fun c -> lambda_of_constr cache env sigma c) args in
        Levar(evk, args)
     | CClosure.EvarDefined t -> lambda_of_constr cache env sigma t)

  | Cast (c, _, _) -> lambda_of_constr cache env sigma c

  | Rel i -> Lrel (RelDecl.get_name (Environ.lookup_rel i env), i)

  | Var id -> Lvar id

  | Sort s -> Lsort s

  | Ind pind -> Lind pind

  | Prod(id, dom, codom) ->
      let ld = lambda_of_constr cache env sigma dom in
      let env = Environ.push_rel (RelDecl.LocalAssum (id, dom)) env in
      let lc = lambda_of_constr cache env sigma codom in
      Lprod(ld,  Llam([|id|], lc))

  | Lambda _ ->
      let params, body = Term.decompose_lambda c in
      let fold (na, t) env = Environ.push_rel (RelDecl.LocalAssum (na, t)) env in
      let env = List.fold_right fold params env in
      let lb = lambda_of_constr cache env sigma body in
      let ids = get_names (List.rev params) in
      mkLlam ids lb

  | LetIn(id, def, t, body) ->
      let ld = lambda_of_constr cache env sigma def in
      let env = Environ.push_rel (RelDecl.LocalDef (id, def, t)) env in
      let lb = lambda_of_constr cache env sigma body in
      Llet(id, ld, lb)

  | App(f, args) -> lambda_of_app cache env sigma f args

  | Const _ -> lambda_of_app cache env sigma c empty_args

  | Construct _ ->  lambda_of_app cache env sigma c empty_args

  | Proj (p, _, c) ->
    let c = lambda_of_constr cache env sigma c in
    Lproj (Projection.repr p, c)

  | Case (ci, u, pms, t, iv, a, br) -> (* XXX handle iv *)
    let (ci, (t,_), _iv, a, branches) = Inductive.expand_case env (ci, u, pms, t, iv, a, br) in
    let (mind, i) = ci.ci_ind in
    let mib = lookup_mind mind env in
    let oib = mib.mind_packets.(i) in
    let tbl = oib.mind_reloc_tbl in
    (* Building info *)
    let annot_sw = (ci, tbl, mib.mind_finite) in
    (* translation of the argument *)
    let la = lambda_of_constr cache env sigma a in
    (* translation of the type *)
    let lt = lambda_of_constr cache env sigma t in
    (* translation of branches *)
    let dummy = Lrel(Anonymous,0) in
    let consts = Array.make oib.mind_nb_constant dummy in
    let blocks = Array.make oib.mind_nb_args ([||],dummy) in
    let rtbl = oib.mind_reloc_tbl in
    for i = 0 to Array.length rtbl - 1 do
      let tag, arity = rtbl.(i) in
      let b = lambda_of_constr cache env sigma branches.(i) in
      if arity = 0 then consts.(tag) <- b
      else
        let b =
          match b with
          | Llam(ids, body) when Array.length ids = arity -> (ids, body)
          | _ ->
            let anon = Context.make_annot Anonymous Sorts.Relevant in (* TODO relevance *)
            let ids = Array.make arity anon in
            let args = make_args arity 1 in
            let ll = lam_lift arity b in
            (ids, mkLapp  ll args)
        in blocks.(tag-1) <- b
    done;
    let branches =
      { constant_branches = consts;
        nonconstant_branches = blocks }
    in
    Lcase(annot_sw, lt, la, branches)

  | Fix((pos, i), (names,type_bodies,rec_bodies)) ->
      let ltypes = lambda_of_args cache env sigma 0 type_bodies in
      let map i t = get_fix_struct env i t in
      let inds = Array.map2 map pos type_bodies in
      let env = Environ.push_rec_types (names, type_bodies, rec_bodies) env in
      let lbodies = lambda_of_args cache env sigma 0 rec_bodies in
      Lfix((pos, inds, i), (names, ltypes, lbodies))

  | CoFix(init,(names,type_bodies,rec_bodies)) ->
      let ltypes = lambda_of_args cache env sigma 0 type_bodies in
      let env = Environ.push_rec_types (names, type_bodies, rec_bodies) env in
      let map c ty = Reduction.eta_expand env c (Vars.lift (Array.length type_bodies) ty) in
      let rec_bodies = Array.map2 map rec_bodies type_bodies in
      let lbodies = lambda_of_args cache env sigma 0 rec_bodies in
      Lcofix(init, (names, ltypes, lbodies))

  | Int i -> Luint i

  | Float f -> Lfloat f

  | String s -> Lstring s

  | Array (_u, t, def, _ty) ->
    let def = lambda_of_constr cache env sigma def in
    Lparray (lambda_of_args cache env sigma 0 t, def)

and lambda_of_app cache env sigma f args =
  match kind f with
  | Const (kn, u as c) ->
      let kn, mask = get_alias env kn in
      let cb = lookup_constant kn env in
      begin match cb.const_body with
      | Primitive op -> lambda_of_prim env c op (lambda_of_args cache env sigma 0 args)
      | Def csubst -> (* TODO optimize if f is a proj and argument is known *)
        if cb.const_inline_code then lambda_of_app cache env sigma csubst args
        else
          (* Erase unused arguments *)
          let mapi i arg =
            let keep = if i < Array.length mask then mask.(i) else true in
            if keep then lambda_of_constr cache env sigma arg
            else Lint 0 (* dummy *)
          in
          let args = Array.mapi mapi args in
          mkLapp (Lconst (kn, u)) args
      | OpaqueDef _ | Undef _ | Symbol _ ->
          mkLapp (Lconst (kn, u)) (lambda_of_args cache env sigma 0 args)
      end
  | Construct ((ind,_ as c),_) ->
    let tag, nparams, arity = Cache.get_construct_info cache env c in
    let nargs = Array.length args in
    if nparams < nargs then (* got all parameters *)
      let args = lambda_of_args cache env sigma nparams args in
      makeblock env ind tag 0 arity args
    else makeblock env ind tag (nparams - nargs) arity empty_args
  | _ ->
      let f = lambda_of_constr cache env sigma f in
      let args = lambda_of_args cache env sigma 0 args in
      mkLapp f args

and lambda_of_args cache env sigma start args =
  let nargs = Array.length args in
  if start < nargs then
    Array.init (nargs - start)
      (fun i -> lambda_of_constr cache env sigma args.(start + i))
  else empty_args

let lambda_of_constr env sigma c =
  let cache = Cache.ConstrTable.create 91 in
  lambda_of_constr cache env sigma c

end
OCaml

Innovation. Community. Security.