package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.19.2.tar.gz
md5=5d1187d5e44ed0163f76fb12dabf012e
sha512=91bc81530fa4f6498961583ad51eac5001f139881788b88e360a866ad8e2a6e2c5bce86d1a580ab4cd4782bf49d48318767df82471ce33ba3ac143e5569ad33c
doc/src/coq-core.kernel/genlambda.ml.html
Source file genlambda.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open Util open Esubst open Names open Environ open Declarations open Constr type reloc_table = (int * int) array type case_annot = case_info * reloc_table * Declarations.recursivity_kind type 'v lambda = | Lrel of Name.t * int | Lvar of Id.t | Levar of Evar.t * 'v lambda array (* arguments *) | Lprod of 'v lambda * 'v lambda | Llam of Name.t Context.binder_annot array * 'v lambda | Llet of Name.t Context.binder_annot * 'v lambda * 'v lambda | Lapp of 'v lambda * 'v lambda array | Lconst of pconstant | Lproj of Projection.Repr.t * 'v lambda | Lprim of pconstant * CPrimitives.t * 'v lambda array | Lcase of case_annot * 'v lambda * 'v lambda * 'v lam_branches (* annotations, term being matched, accu, branches *) | Lfix of (int array * inductive array * int) * 'v fix_decl | Lcofix of int * 'v fix_decl | Lint of int | Lparray of 'v lambda array * 'v lambda | Lmakeblock of inductive * int * 'v lambda array (* inductive name, constructor tag, arguments *) | Luint of Uint63.t | Lfloat of Float64.t | Lval of 'v | Lsort of Sorts.t | Lind of pinductive | Lforce and 'v lam_branches = { constant_branches : 'v lambda array; nonconstant_branches : (Name.t Context.binder_annot array * 'v lambda) array } and 'v fix_decl = Name.t Context.binder_annot array * 'v lambda array * 'v lambda array type evars = { evars_val : constr CClosure.evar_handler } let empty_evars env = { evars_val = CClosure.default_evar_handler env } (** Printing **) let pr_annot x = Name.print x.Context.binder_name let pp_names ids = prlist_with_sep (fun _ -> brk(1,1)) pr_annot (Array.to_list ids) let pp_rel name n = Name.print name ++ str "##" ++ int n let pp_sort s = match s with | Sorts.Set -> str "Set" | Sorts.Prop -> str "Prop" | Sorts.SProp -> str "SProp" | Sorts.Type _ | Sorts.QSort _ -> str "Type" let pr_con sp = str(Names.Label.to_string (Constant.label sp)) let rec pp_lam lam = match lam with | Lrel (id,n) -> pp_rel id n | Lvar id -> Id.print id | Levar (evk, args) -> hov 1 (str "evar(" ++ Evar.print evk ++ str "," ++ spc () ++ prlist_with_sep spc pp_lam (Array.to_list args) ++ str ")") | Lprod(dom,codom) -> hov 1 (str "forall(" ++ pp_lam dom ++ str "," ++ spc() ++ pp_lam codom ++ str ")") | Llam(ids,body) -> hov 1 (str "(fun " ++ pp_names ids ++ str " =>" ++ spc() ++ pp_lam body ++ str ")") | Llet(id,def,body) -> hov 0 (str "let " ++ pr_annot id ++ str ":=" ++ pp_lam def ++ str " in" ++ spc() ++ pp_lam body) | Lapp(f, args) -> hov 1 (str "(" ++ pp_lam f ++ spc() ++ prlist_with_sep spc pp_lam (Array.to_list args) ++ str")") | Lconst (kn,_) -> pr_con kn | Lcase(_annot, t, a, branches) -> let ic = ref (-1) in let ib = ref 0 in v 0 (str"<" ++ pp_lam t ++ str">" ++ cut() ++ str "Case" ++ spc () ++ pp_lam a ++ spc() ++ str "of" ++ cut() ++ v 0 ((prlist_with_sep (fun _ -> str "") (fun c -> cut () ++ str "| " ++ int (incr ic; !ic) ++ str " => " ++ pp_lam c) (Array.to_list branches.constant_branches)) ++ (prlist_with_sep (fun _ -> str "") (fun (ids,c) -> cut () ++ str "| " ++ int (incr ib; !ib) ++ str " " ++ pp_names ids ++ str " => " ++ pp_lam c) (Array.to_list branches.nonconstant_branches))) ++ cut() ++ str "end") | Lfix ((t, _, i), (lna, tl, bl)) -> let fixl = Array.mapi (fun i id -> (id,t.(i),tl.(i),bl.(i))) lna in hov 1 (str"fix " ++ int i ++ spc() ++ str"{" ++ v 0 (prlist_with_sep spc (fun (na,i,ty,bd) -> pr_annot na ++ str"/" ++ int i ++ str":" ++ pp_lam ty ++ cut() ++ str":=" ++ pp_lam bd) (Array.to_list fixl)) ++ str"}") | Lcofix (i,(lna,tl,bl)) -> let fixl = Array.mapi (fun i na -> (na,tl.(i),bl.(i))) lna in hov 1 (str"cofix " ++ int i ++ spc() ++ str"{" ++ v 0 (prlist_with_sep spc (fun (na,ty,bd) -> pr_annot na ++ str":" ++ pp_lam ty ++ cut() ++ str":=" ++ pp_lam bd) (Array.to_list fixl)) ++ str"}") | Lparray (args, def) -> hov 1 (str "(array " ++ spc() ++ prlist_with_sep spc pp_lam (Array.to_list args) ++ spc () ++ str "|" ++ spc () ++ pp_lam def ++ str")") | Lmakeblock(_, tag, args) -> hov 1 (str "(makeblock " ++ int tag ++ spc() ++ prlist_with_sep spc pp_lam (Array.to_list args) ++ str")") | Luint i -> str (Uint63.to_string i) | Lfloat f -> str (Float64.to_string f) | Lval _ -> str "values" | Lsort s -> pp_sort s | Lind ((mind,i), _) -> MutInd.print mind ++ str"#" ++ int i | Lprim ((kn,_u),_op,args) -> hov 1 (str "(PRIM " ++ pr_con kn ++ spc() ++ prlist_with_sep spc pp_lam (Array.to_list args) ++ str")") | Lproj(p,arg) -> hov 1 (str "(proj " ++ Projection.Repr.print p ++ str "(" ++ pp_lam arg ++ str ")") | Lint i -> Pp.(str "(int:" ++ int i ++ str ")") | Lforce -> Pp.str "force" (*s Constructors *) let mkLapp f args = if Array.is_empty args then f else match f with | Lapp(f', args') -> Lapp (f', Array.append args' args) | _ -> Lapp(f, args) let mkLlam ids body = if Array.is_empty ids then body else match body with | Llam(ids', body) -> Llam(Array.append ids ids', body) | _ -> Llam(ids, body) let decompose_Llam lam = match lam with | Llam(ids,body) -> ids, body | _ -> [||], lam let rec decompose_Llam_Llet lam = match lam with | Llam(ids,body) -> let vars, body = decompose_Llam_Llet body in Array.fold_right (fun x l -> (x, None) :: l) ids vars, body | Llet(id,def,body) -> let vars, body = decompose_Llam_Llet body in (id,Some def) :: vars, body | _ -> [], lam let decompose_Llam_Llet lam = let vars, body = decompose_Llam_Llet lam in Array.of_list vars, body (* A generic map function *) let map_lam_with_binders g f n lam = match lam with | Lrel _ | Lvar _ | Lconst _ | Lval _ | Lsort _ | Lind _ | Lint _ | Luint _ | Lfloat _ -> lam | Levar (evk, args) -> let args' = Array.Smart.map (f n) args in if args == args' then lam else Levar (evk, args') | Lprod(dom,codom) -> let dom' = f n dom in let codom' = f n codom in if dom == dom' && codom == codom' then lam else Lprod(dom',codom') | Llam(ids,body) -> let body' = f (g (Array.length ids) n) body in if body == body' then lam else mkLlam ids body' | Llet(id,def,body) -> let def' = f n def in let body' = f (g 1 n) body in if body == body' && def == def' then lam else Llet(id,def',body') | Lapp(fct,args) -> let fct' = f n fct in let args' = Array.Smart.map (f n) args in if fct == fct' && args == args' then lam else mkLapp fct' args' | Lcase (annot, t, a, branches) -> let const = branches.constant_branches in let nonconst = branches.nonconstant_branches in let t' = f n t in let a' = f n a in let const' = Array.Smart.map (f n) const in let on_b b = let (ids,body) = b in let body' = f (g (Array.length ids) n) body in if body == body' then b else (ids,body') in let nonconst' = Array.Smart.map on_b nonconst in let branches' = if const == const' && nonconst == nonconst' then branches else { constant_branches = const'; nonconstant_branches = nonconst' } in if t == t' && a == a' && branches == branches' then lam else Lcase(annot, t', a', branches') | Lfix(init,(ids,ltypes,lbodies)) -> let ltypes' = Array.Smart.map (f n) ltypes in let lbodies' = Array.Smart.map (f (g (Array.length ids) n)) lbodies in if ltypes == ltypes' && lbodies == lbodies' then lam else Lfix(init,(ids,ltypes',lbodies')) | Lcofix(init,(ids,ltypes,lbodies)) -> let ltypes' = Array.Smart.map (f n) ltypes in let lbodies' = Array.Smart.map (f (g (Array.length ids) n)) lbodies in if ltypes == ltypes' && lbodies == lbodies' then lam else Lcofix(init,(ids,ltypes',lbodies')) | Lparray (args, def) -> let args' = Array.Smart.map (f n) args in let def' = f n def in if args == args' && def == def' then lam else Lparray (args', def') | Lmakeblock (inds, tag, args) -> let args' = Array.Smart.map (f n) args in if args == args' then lam else Lmakeblock (inds, tag,args') | Lprim(kn,op,args) -> let args' = Array.Smart.map (f n) args in if args == args' then lam else Lprim(kn,op,args') | Lproj(p,arg) -> let arg' = f n arg in if arg == arg' then lam else Lproj(p,arg') | Lforce -> Lforce (*s Operators on substitution *) let lift = subs_lift let liftn = subs_liftn let cons v subst = subs_cons v subst let shift subst = subs_shft (1, subst) (*s Lift and substitution *) let rec lam_exlift el lam = match lam with | Lrel(id,i) -> let i' = reloc_rel i el in if i == i' then lam else Lrel(id,i') | _ -> map_lam_with_binders el_liftn lam_exlift el lam let lam_lift k lam = if Int.equal k 0 then lam else lam_exlift (el_shft k el_id) lam let lam_subst_rel lam id n subst = match expand_rel n subst with | Inl(k,v) -> lam_lift k v | Inr(n',_) -> if n == n' then lam else Lrel(id, n') let rec lam_exsubst subst lam = match lam with | Lrel(id,i) -> lam_subst_rel lam id i subst | _ -> map_lam_with_binders liftn lam_exsubst subst lam let lam_subst_args subst args = if is_subs_id subst then args else Array.Smart.map (lam_exsubst subst) args (* [simplify can_subst subst lam] simplifies the expression [lam_subst subst lam] by: *) (* - Reducing [let] is the definition can be substituted *) (* - Transforming beta redex into [let] expression *) (* - Moving arguments under [let] *) (* Invariant: Terms in [subst] are already simplified and can be substituted *) let simplify can_subst subst lam = let rec simplify subst lam = match lam with | Lrel(id,i) -> lam_subst_rel lam id i subst | Llet(id,def,body) -> let def' = simplify subst def in if can_subst def' then simplify (cons def' subst) body else let body' = simplify (lift subst) body in if def == def' && body == body' then lam else Llet(id,def',body') | Lapp(f,args) -> begin match simplify_app subst f subst args with | Lapp(f',args') when f == f' && args == args' -> lam | lam' -> lam' end | _ -> map_lam_with_binders liftn simplify subst lam and simplify_app substf f substa args = match f with | Lrel(id, i) -> begin match lam_subst_rel f id i substf with | Llam(ids, body) -> reduce_lapp (subs_id 0) (Array.to_list ids) body substa (Array.to_list args) | f' -> mkLapp f' (simplify_args substa args) end | Llam(ids, body) -> reduce_lapp substf (Array.to_list ids) body substa (Array.to_list args) | Llet(id, def, body) -> let def' = simplify substf def in if can_subst def' then simplify_app (cons def' substf) body substa args else Llet(id, def', simplify_app (lift substf) body (shift substa) args) | Lapp(f, args') -> let args = Array.append (lam_subst_args substf args') (lam_subst_args substa args) in simplify_app substf f (subs_id 0) args | _ -> mkLapp (simplify substf f) (simplify_args substa args) and simplify_args subst args = Array.Smart.map (fun c -> simplify subst c) args and reduce_lapp substf lids body substa largs = match lids, largs with | id::lids, a::largs -> let a = simplify substa a in if can_subst a then reduce_lapp (subs_cons a substf) lids body substa largs else let body = reduce_lapp (lift substf) lids body (shift substa) largs in Llet(id, a, body) | [], [] -> simplify substf body | _::_, _ -> Llam(Array.of_list lids, simplify (liftn (List.length lids) substf) body) | [], _ -> simplify_app substf body substa (Array.of_list largs) in simplify subst lam (* [occurrence kind k lam]: If [kind] is [true] return [true] if the variable [k] does not appear in [lam], return [false] if the variable appear one time and not under a lambda, a fixpoint, a cofixpoint; else raise Not_found. If [kind] is [false] return [false] if the variable does not appear in [lam] else raise [Not_found] *) let rec occurrence k kind lam = match lam with | Lrel (_,n) -> if n = k then if kind then false else raise Not_found else kind | Lvar _ | Lconst _ | Lval _ | Lsort _ | Lind _ | Lint _ | Luint _ | Lfloat _ | Lforce -> kind | Levar (_, args) -> occurrence_args k kind args | Lprod(dom, codom) -> occurrence k (occurrence k kind dom) codom | Llam(ids,body) -> let _ = occurrence (k+Array.length ids) false body in kind | Llet(_,def,body) -> occurrence (k+1) (occurrence k kind def) body | Lapp(f, args) -> occurrence_args k (occurrence k kind f) args | Lparray (args, def) -> occurrence_args k (occurrence k kind def) args | Lprim(_,_,args) | Lmakeblock(_, _,args) -> occurrence_args k kind args | Lcase(_, t, a, branches) -> let kind = occurrence k (occurrence k kind t) a in let r = ref kind in Array.iter (fun c -> r := occurrence k kind c && !r) branches.constant_branches; let on_b (ids,c) = r := occurrence (k+Array.length ids) kind c && !r in Array.iter on_b branches.nonconstant_branches; !r | Lfix(_,(ids,ltypes,lbodies)) | Lcofix(_,(ids,ltypes,lbodies)) -> let kind = occurrence_args k kind ltypes in let _ = occurrence_args (k+Array.length ids) false lbodies in kind | Lproj(_,arg) -> occurrence k kind arg and occurrence_args k kind args = Array.fold_left (occurrence k) kind args let occur_once lam = try let _ = occurrence 1 true lam in true with Not_found -> false (* [remove_let lam] remove let expression in [lam] if the variable is *) (* used at most once time in the body, and does not appear under *) (* a lambda or a fix or a cofix *) let rec remove_let subst lam = match lam with | Lrel(id,i) -> lam_subst_rel lam id i subst | Llet(id,def,body) -> let def' = remove_let subst def in if occur_once body then remove_let (cons def' subst) body else let body' = remove_let (lift subst) body in if def == def' && body == body' then lam else Llet(id,def',body') | _ -> map_lam_with_binders liftn remove_let subst lam (* Compiling constants *) let rec get_alias env kn = let cb = lookup_constant kn env in let tps = cb.const_body_code in match tps with | None -> kn | Some tps -> (match tps with | Vmemitcodes.BCalias kn' -> get_alias env kn' | _ -> kn) (* Translation of constructors *) let make_args start _end = Array.init (start - _end + 1) (fun i -> Lrel (Anonymous, start - i)) let expand_constructor ind tag nparams arity = let anon = Context.make_annot Anonymous Sorts.Relevant in (* TODO relevance *) let ids = Array.make (nparams + arity) anon in if Int.equal arity 0 then mkLlam ids (Lint tag) else let args = make_args arity 1 in Llam(ids, Lmakeblock (ind, tag, args)) let makeblock as_val ind tag nparams arity args = let nargs = Array.length args in if nparams > 0 || nargs < arity then mkLapp (expand_constructor ind tag nparams arity) args else (* The constructor is fully applied *) if arity = 0 then Lint tag else match as_val tag args with | Some v -> Lval v | None -> Lmakeblock (ind, tag, args) (* Compilation of primitive *) let prim _env kn p args = Lprim (kn, p, args) let expand_prim env kn op arity = (* primitives are always Relevant *) let ids = Array.make arity Context.anonR in let args = make_args arity 1 in Llam(ids, prim env kn op args) let lambda_of_prim env kn op args = let arity = CPrimitives.arity op in match Int.compare (Array.length args) arity with | 0 -> prim env kn op args | x when x > 0 -> let prim_args = Array.sub args 0 arity in let extra_args = Array.sub args arity (Array.length args - arity) in mkLapp(prim env kn op prim_args) extra_args | _ -> mkLapp (expand_prim env kn op arity) args module RelDecl = Context.Rel.Declaration type tag = int module type S = sig type value val as_value : int -> value lambda array -> value option val get_constant : pconstant -> constant_body -> value lambda val check_inductive : inductive -> mutual_inductive_body -> unit end module Make (Val : S) = struct (* [nparams] is the number of parameters still expected *) let makeblock _env ind tag nparams arity args = makeblock Val.as_value ind tag nparams arity args (*i Global environment *) let get_names decl = let decl = Array.of_list decl in Array.map fst decl let empty_args = [||] module Cache = struct module ConstrHash = struct type t = constructor let equal = Construct.CanOrd.equal let hash = Construct.CanOrd.hash end module ConstrTable = Hashtbl.Make(ConstrHash) type constructor_info = tag * int * int (* nparam nrealargs *) let get_construct_info cache env c : constructor_info = try ConstrTable.find cache c with Not_found -> let ((mind,j), i) = c in let oib = lookup_mind mind env in let oip = oib.mind_packets.(j) in let () = Val.check_inductive (mind, j) oib in let tag,arity = oip.mind_reloc_tbl.(i-1) in let nparams = oib.mind_nparams in let r = (tag, nparams, arity) in ConstrTable.add cache c r; r end let evar_value sigma ev = sigma.evars_val.CClosure.evar_expand ev (** Extract the inductive type over which a fixpoint is decreasing *) let rec get_fix_struct env i t = match kind (Reduction.whd_all env t) with | Prod (na, dom, t) -> if Int.equal i 0 then let dom = Reduction.whd_all env dom in let (dom, _) = decompose_app dom in match kind dom with | Ind (ind, _) -> ind | _ -> assert false else let env = Environ.push_rel (RelDecl.LocalAssum (na, dom)) env in get_fix_struct env (i - 1) t | _ -> assert false let rec lambda_of_constr cache env sigma c = match kind c with | Meta _ -> raise (Invalid_argument "lambda_of_constr: Meta") | Evar ev -> (match evar_value sigma ev with | CClosure.EvarUndefined (evk, args) -> let args = Array.map_of_list (fun c -> lambda_of_constr cache env sigma c) args in Levar(evk, args) | CClosure.EvarDefined t -> lambda_of_constr cache env sigma t) | Cast (c, _, _) -> lambda_of_constr cache env sigma c | Rel i -> Lrel (RelDecl.get_name (Environ.lookup_rel i env), i) | Var id -> Lvar id | Sort s -> Lsort s | Ind pind -> Lind pind | Prod(id, dom, codom) -> let ld = lambda_of_constr cache env sigma dom in let env = Environ.push_rel (RelDecl.LocalAssum (id, dom)) env in let lc = lambda_of_constr cache env sigma codom in Lprod(ld, Llam([|id|], lc)) | Lambda _ -> let params, body = Term.decompose_lambda c in let fold (na, t) env = Environ.push_rel (RelDecl.LocalAssum (na, t)) env in let env = List.fold_right fold params env in let lb = lambda_of_constr cache env sigma body in let ids = get_names (List.rev params) in mkLlam ids lb | LetIn(id, def, t, body) -> let ld = lambda_of_constr cache env sigma def in let env = Environ.push_rel (RelDecl.LocalDef (id, def, t)) env in let lb = lambda_of_constr cache env sigma body in Llet(id, ld, lb) | App(f, args) -> lambda_of_app cache env sigma f args | Const _ -> lambda_of_app cache env sigma c empty_args | Construct _ -> lambda_of_app cache env sigma c empty_args | Proj (p, _, c) -> let c = lambda_of_constr cache env sigma c in Lproj (Projection.repr p, c) | Case (ci, u, pms, t, iv, a, br) -> (* XXX handle iv *) let (ci, (t,_), _iv, a, branches) = Inductive.expand_case env (ci, u, pms, t, iv, a, br) in let (mind, i) = ci.ci_ind in let mib = lookup_mind mind env in let oib = mib.mind_packets.(i) in let tbl = oib.mind_reloc_tbl in (* Building info *) let annot_sw = (ci, tbl, mib.mind_finite) in (* translation of the argument *) let la = lambda_of_constr cache env sigma a in (* translation of the type *) let lt = lambda_of_constr cache env sigma t in (* translation of branches *) let dummy = Lrel(Anonymous,0) in let consts = Array.make oib.mind_nb_constant dummy in let blocks = Array.make oib.mind_nb_args ([||],dummy) in let rtbl = oib.mind_reloc_tbl in for i = 0 to Array.length rtbl - 1 do let tag, arity = rtbl.(i) in let b = lambda_of_constr cache env sigma branches.(i) in if arity = 0 then consts.(tag) <- b else let b = match b with | Llam(ids, body) when Array.length ids = arity -> (ids, body) | _ -> let anon = Context.make_annot Anonymous Sorts.Relevant in (* TODO relevance *) let ids = Array.make arity anon in let args = make_args arity 1 in let ll = lam_lift arity b in (ids, mkLapp ll args) in blocks.(tag-1) <- b done; let branches = { constant_branches = consts; nonconstant_branches = blocks } in Lcase(annot_sw, lt, la, branches) | Fix((pos, i), (names,type_bodies,rec_bodies)) -> let ltypes = lambda_of_args cache env sigma 0 type_bodies in let map i t = get_fix_struct env i t in let inds = Array.map2 map pos type_bodies in let env = Environ.push_rec_types (names, type_bodies, rec_bodies) env in let lbodies = lambda_of_args cache env sigma 0 rec_bodies in Lfix((pos, inds, i), (names, ltypes, lbodies)) | CoFix(init,(names,type_bodies,rec_bodies)) -> let ltypes = lambda_of_args cache env sigma 0 type_bodies in let env = Environ.push_rec_types (names, type_bodies, rec_bodies) env in let map c ty = Reduction.eta_expand env c (Vars.lift (Array.length type_bodies) ty) in let rec_bodies = Array.map2 map rec_bodies type_bodies in let lbodies = lambda_of_args cache env sigma 0 rec_bodies in Lcofix(init, (names, ltypes, lbodies)) | Int i -> Luint i | Float f -> Lfloat f | Array (_u, t, def, _ty) -> let def = lambda_of_constr cache env sigma def in Lparray (lambda_of_args cache env sigma 0 t, def) and lambda_of_app cache env sigma f args = match kind f with | Const (kn, u as c) -> let kn = get_alias env kn in let cb = lookup_constant kn env in begin match cb.const_body with | Primitive op -> lambda_of_prim env c op (lambda_of_args cache env sigma 0 args) | Def csubst -> (* TODO optimize if f is a proj and argument is known *) if cb.const_inline_code then lambda_of_app cache env sigma csubst args else let t = Val.get_constant (kn, u) cb in mkLapp t (lambda_of_args cache env sigma 0 args) | OpaqueDef _ | Undef _ -> mkLapp (Lconst (kn, u)) (lambda_of_args cache env sigma 0 args) end | Construct ((ind,_ as c),_) -> let tag, nparams, arity = Cache.get_construct_info cache env c in let nargs = Array.length args in if nparams < nargs then (* got all parameters *) let args = lambda_of_args cache env sigma nparams args in makeblock env ind tag 0 arity args else makeblock env ind tag (nparams - nargs) arity empty_args | _ -> let f = lambda_of_constr cache env sigma f in let args = lambda_of_args cache env sigma 0 args in mkLapp f args and lambda_of_args cache env sigma start args = let nargs = Array.length args in if start < nargs then Array.init (nargs - start) (fun i -> lambda_of_constr cache env sigma args.(start + i)) else empty_args let lambda_of_constr env sigma c = let cache = Cache.ConstrTable.create 91 in lambda_of_constr cache env sigma c end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>