package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.19.2.tar.gz
md5=5d1187d5e44ed0163f76fb12dabf012e
sha512=91bc81530fa4f6498961583ad51eac5001f139881788b88e360a866ad8e2a6e2c5bce86d1a580ab4cd4782bf49d48318767df82471ce33ba3ac143e5569ad33c
doc/src/coq-core.lib/util.ml.html
Source file util.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Mapping under pairs *) let on_fst f (a,b) = (f a,b) let on_snd f (a,b) = (a,f b) let map_pair f (a,b) = (f a,f b) (* Folding under pairs *) let fold_fst f acc (a,b) = let acc, a = f acc a in acc, (a, b) let fold_snd f acc (a,b) = let acc, b = f acc b in acc, (a, b) (* Equality on pairs *) let eq_pair eq1 eq2 (a,b) (a',b') = eq1 a a' && eq2 b b' (* Mapping under triplets *) let on_pi1 f (a,b,c) = (f a,b,c) let on_pi2 f (a,b,c) = (a,f b,c) let on_pi3 f (a,b,c) = (a,b,f c) (* Projections from triplets *) let pi1 (a,_,_) = a let pi2 (_,a,_) = a let pi3 (_,_,a) = a (* Characters *) let is_letter c = (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') let is_digit c = (c >= '0' && c <= '9') let is_ident_tail c = is_letter c || is_digit c || c = '\'' || c = '_' let is_blank = function | ' ' | '\r' | '\t' | '\n' -> true | _ -> false module Empty = struct type t = { abort : 'a. 'a } let abort (x : t) = x.abort end (* Strings *) module String = CString let subst_command_placeholder s t = let buff = Buffer.create (String.length s + String.length t) in let i = ref 0 in while (!i < String.length s) do if s.[!i] = '%' && !i+1 < String.length s && s.[!i+1] = 's' then (Buffer.add_string buff t;incr i) else Buffer.add_char buff s.[!i]; incr i done; Buffer.contents buff (* Lists *) module List = CList let (@) = CList.append (* Arrays *) module Array : CArray.ExtS = CArray (* Sets *) module Set = CSet (* Maps *) module Map = CMap (* Matrices *) let matrix_transpose mat = List.fold_right (List.map2 (fun p c -> p::c)) mat (if List.is_empty mat then [] else List.map (fun _ -> []) (List.hd mat)) (* Functions *) let identity x = x (** Left-to-right function composition: [f1 %> f2] is [fun x -> f2 (f1 x)]. [f1 %> f2 %> f3] is [fun x -> f3 (f2 (f1 x))]. [f1 %> f2 %> f3 %> f4] is [fun x -> f4 (f3 (f2 (f1 x)))] etc. *) let (%>) f g x = g (f x) let const x _ = x let iterate = let rec iterate_f f n x = if n <= 0 then x else iterate_f f (pred n) (f x) in iterate_f let repeat n f x = let rec loop i = if i <> 0 then (f x; loop (i - 1)) in loop n let app_opt f x = match f with | Some f -> f x | None -> x (* Delayed computations *) type 'a delayed = unit -> 'a let delayed_force f = f () (* finalize - Credit X.Leroy, D.Remy. , adapted to Coq's exn handling *) let try_finally f x finally y = let res = try f x with exn -> let exn, info = Exninfo.capture exn in finally y; Exninfo.iraise (exn, info) in finally y; res (* Misc *) type ('a, 'b) union = ('a, 'b) CSig.union = Inl of 'a | Inr of 'b type 'a until = 'a CSig.until = Stop of 'a | Cont of 'a type ('a, 'b) eq = ('a, 'b) CSig.eq = Refl : ('a, 'a) eq let sym : type a b. (a, b) eq -> (b, a) eq = fun Refl -> Refl module Union = struct let map f g = function | Inl a -> Inl (f a) | Inr b -> Inr (g b) (** Lifting equality onto union types. *) let equal f g x y = match x, y with | Inl x, Inl y -> f x y | Inr x, Inr y -> g x y | _, _ -> false let fold_left f g a = function | Inl y -> f a y | Inr y -> g a y end module Compare = struct type list = [] | (::) : (('a -> 'a -> int) * 'a * 'a) * list -> list let rec compare = function | [] -> 0 | (cmp,x,y) :: rest -> let c = cmp x y in if c <> 0 then c else compare rest end let map_union = Union.map type iexn = Exninfo.iexn let iraise = Exninfo.iraise let open_utf8_file_in fname = let is_bom s = Int.equal (Char.code (Bytes.get s 0)) 0xEF && Int.equal (Char.code (Bytes.get s 1)) 0xBB && Int.equal (Char.code (Bytes.get s 2)) 0xBF in let in_chan = open_in fname in let s = Bytes.make 3 ' ' in if input in_chan s 0 3 < 3 || not (is_bom s) then seek_in in_chan 0; in_chan (** A trick which can typically be used to store on the fly the computation of values in the "when" clause of a "match" then retrieve the evaluated result in the r.h.s of the clause *) let set_temporary_memory () = let a = ref None in (fun x -> assert (!a = None); a := Some x; x), (fun () -> match !a with Some x -> x | None -> assert false)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>