package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.19.2.tar.gz
md5=5d1187d5e44ed0163f76fb12dabf012e
sha512=91bc81530fa4f6498961583ad51eac5001f139881788b88e360a866ad8e2a6e2c5bce86d1a580ab4cd4782bf49d48318767df82471ce33ba3ac143e5569ad33c
doc/src/coq-core.kernel/cClosure.ml.html
Source file cClosure.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Bruno Barras with Benjamin Werner's account to implement a call-by-value conversion algorithm and a lazy reduction machine with sharing, Nov 1996 *) (* Addition of zeta-reduction (let-in contraction) by Hugo Herbelin, Oct 2000 *) (* Call-by-value machine moved to cbv.ml, Mar 01 *) (* Additional tools for module subtyping by Jacek Chrzaszcz, Aug 2002 *) (* Extension with closure optimization by Bruno Barras, Aug 2003 *) (* Support for evar reduction by Bruno Barras, Feb 2009 *) (* Miscellaneous other improvements by Bruno Barras, 1997-2009 *) (* This file implements a lazy reduction for the Calculus of Inductive Constructions *) [@@@ocaml.warning "+4"] open CErrors open Util open Names open Constr open Declarations open Context open Environ open Vars open Esubst open RedFlags module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration type mode = Conversion | Reduction (* In conversion mode we can introduce FIrrelevant terms. Invariants of the conversion mode: - the only irrelevant terms as returned by [knr] are either [FIrrelevant], [FLambda], [FFlex] or [FRel]. - the stack never contains irrelevant-producing nodes i.e. [Zproj], [ZFix] and [ZcaseT] are all relevant *) (**********************************************************************) (* Lazy reduction: the one used in kernel operations *) (* type of shared terms. fconstr and frterm are mutually recursive. * Clone of the constr structure, but completely mutable, and * annotated with reduction state (reducible or not). * - FLIFT is a delayed shift; allows sharing between 2 lifted copies * of a given term. * - FCLOS is a delayed substitution applied to a constr * - FLOCKED is used to erase the content of a reference that must * be updated. This is to allow the garbage collector to work * before the term is computed. *) (* Ntrl means the term is in βιδζ head normal form and cannot create a redex when substituted Cstr means the term is in βιδζ head normal form and that it can create a redex when substituted (i.e. constructor, fix, lambda) Red is used for terms that might be reduced *) type red_state = Ntrl | Cstr | Red let neutr = function Ntrl -> Ntrl | Red | Cstr -> Red let is_red = function Red -> true | Ntrl | Cstr -> false type table_key = Constant.t UVars.puniverses tableKey type evar_repack = Evar.t * constr list -> constr type fconstr = { mutable mark : red_state; mutable term: fterm; } and fterm = | FRel of int | FAtom of constr (* Metas and Sorts *) | FFlex of table_key | FInd of pinductive | FConstruct of pconstructor | FApp of fconstr * fconstr array | FProj of Projection.t * Sorts.relevance * fconstr | FFix of fixpoint * usubs | FCoFix of cofixpoint * usubs | FCaseT of case_info * UVars.Instance.t * constr array * case_return * fconstr * case_branch array * usubs (* predicate and branches are closures *) | FCaseInvert of case_info * UVars.Instance.t * constr array * case_return * finvert * fconstr * case_branch array * usubs | FLambda of int * (Name.t Context.binder_annot * constr) list * constr * usubs | FProd of Name.t Context.binder_annot * fconstr * constr * usubs | FLetIn of Name.t Context.binder_annot * fconstr * fconstr * constr * usubs | FEvar of Evar.t * constr list * usubs * evar_repack | FInt of Uint63.t | FFloat of Float64.t | FArray of UVars.Instance.t * fconstr Parray.t * fconstr | FLIFT of int * fconstr | FCLOS of constr * usubs | FIrrelevant | FLOCKED and usubs = fconstr subs UVars.puniverses and finvert = fconstr array let fterm_of v = v.term let set_ntrl v = v.mark <- Ntrl let mk_atom c = {mark=Ntrl;term=FAtom c} let mk_red f = {mark=Red;term=f} (* Could issue a warning if no is still Red, pointing out that we loose sharing. *) let update v1 mark t = v1.mark <- mark; v1.term <- t type 'a evar_expansion = | EvarDefined of 'a | EvarUndefined of Evar.t * 'a list type 'constr evar_handler = { evar_expand : 'constr pexistential -> 'constr evar_expansion; evar_repack : Evar.t * 'constr list -> 'constr; evar_irrelevant : 'constr pexistential -> bool; qvar_irrelevant : Sorts.QVar.t -> bool; } let default_evar_handler env = { evar_expand = (fun _ -> assert false); evar_repack = (fun _ -> assert false); evar_irrelevant = (fun _ -> assert false); qvar_irrelevant = (fun q -> assert (Sorts.QVar.Set.mem q env.env_qualities); false); } (** Reduction cache *) type infos_cache = { i_env : env; i_sigma : constr evar_handler; i_share : bool; i_univs : UGraph.t; i_mode : mode; } type clos_infos = { i_flags : reds; i_relevances : Sorts.relevance Range.t; i_cache : infos_cache } let info_flags info = info.i_flags let info_env info = info.i_cache.i_env let info_univs info = info.i_cache.i_univs let push_relevance infos x = { infos with i_relevances = Range.cons x.binder_relevance infos.i_relevances } let push_relevances infos nas = { infos with i_relevances = Array.fold_left (fun l x -> Range.cons x.binder_relevance l) infos.i_relevances nas } let set_info_relevances info r = { info with i_relevances = r } let info_relevances info = info.i_relevances (**********************************************************************) (* The type of (machine) stacks (= lambda-bar-calculus' contexts) *) type 'a next_native_args = (CPrimitives.arg_kind * 'a) list type stack_member = | Zapp of fconstr array | ZcaseT of case_info * UVars.Instance.t * constr array * case_return * case_branch array * usubs | Zproj of Projection.Repr.t * Sorts.relevance | Zfix of fconstr * stack | Zprimitive of CPrimitives.t * pconstant * fconstr list * fconstr next_native_args (* operator, constr def, arguments already seen (in rev order), next arguments *) | Zshift of int | Zupdate of fconstr and stack = stack_member list let empty_stack = [] let append_stack v s = if Int.equal (Array.length v) 0 then s else match s with | Zapp l :: s -> Zapp (Array.append v l) :: s | (ZcaseT _ | Zproj _ | Zfix _ | Zshift _ | Zupdate _ | Zprimitive _) :: _ | [] -> Zapp v :: s (* Collapse the shifts in the stack *) let zshift n s = match (n,s) with (0,_) -> s | (_,Zshift(k)::s) -> Zshift(n+k)::s | (_,(ZcaseT _ | Zproj _ | Zfix _ | Zapp _ | Zupdate _ | Zprimitive _) :: _) | _,[] -> Zshift(n)::s let rec stack_args_size = function | Zapp v :: s -> Array.length v + stack_args_size s | Zshift(_)::s -> stack_args_size s | Zupdate(_)::s -> stack_args_size s | (ZcaseT _ | Zproj _ | Zfix _ | Zprimitive _) :: _ | [] -> 0 let usubs_shft (n,(e,u)) = subs_shft (n, e), u (* Lifting. Preserves sharing (useful only for cell with norm=Red). lft_fconstr always create a new cell, while lift_fconstr avoids it when the lift is 0. *) let rec lft_fconstr n ft = match ft.term with | (FInd _|FConstruct _|FFlex(ConstKey _|VarKey _)|FInt _|FFloat _|FIrrelevant) -> ft | FRel i -> {mark=ft.mark;term=FRel(i+n)} | FLambda(k,tys,f,e) -> {mark=Cstr; term=FLambda(k,tys,f,usubs_shft(n,e))} | FFix(fx,e) -> {mark=Cstr; term=FFix(fx,usubs_shft(n,e))} | FCoFix(cfx,e) -> {mark=Cstr; term=FCoFix(cfx,usubs_shft(n,e))} | FLIFT(k,m) -> lft_fconstr (n+k) m | FLOCKED -> assert false | FFlex (RelKey _) | FAtom _ | FApp _ | FProj _ | FCaseT _ | FCaseInvert _ | FProd _ | FLetIn _ | FEvar _ | FCLOS _ | FArray _ -> {mark=ft.mark; term=FLIFT(n,ft)} let lift_fconstr k f = if Int.equal k 0 then f else lft_fconstr k f let lift_fconstr_vect k v = if Int.equal k 0 then v else Array.Fun1.map lft_fconstr k v let clos_rel e i = match expand_rel i e with | Inl(n,mt) -> lift_fconstr n mt | Inr(k,None) -> {mark=Ntrl; term= FRel k} | Inr(k,Some p) -> lift_fconstr (k-p) {mark=Red;term=FFlex(RelKey p)} (* since the head may be reducible, we might introduce lifts of 0 *) let compact_stack head stk = let rec strip_rec depth = function | Zshift(k)::s -> strip_rec (depth+k) s | Zupdate(m)::s -> (* Be sure to create a new cell otherwise sharing would be lost by the update operation *) let h' = lft_fconstr depth head in (** The stack contains [Zupdate] marks only if in sharing mode *) let () = update m h'.mark h'.term in strip_rec depth s | ((ZcaseT _ | Zproj _ | Zfix _ | Zapp _ | Zprimitive _) :: _ | []) as stk -> zshift depth stk in strip_rec 0 stk (* Put an update mark in the stack, only if needed *) let zupdate info m s = let = info.i_cache.i_share in if share && is_red m.mark then let s' = compact_stack m s in let _ = m.term <- FLOCKED in Zupdate(m)::s' else s (* We use empty as a special identity value, if we don't check subst_instance_instance will raise array out of bounds. *) let usubst_instance (_,u) u' = if UVars.Instance.is_empty u then u' else UVars.subst_instance_instance u u' let usubst_punivs (_,u) (v,u' as orig) = if UVars.Instance.is_empty u then orig else v, UVars.subst_instance_instance u u' let usubst_sort (_,u) s = if UVars.Instance.is_empty u then s else UVars.subst_instance_sort u s let usubst_relevance (_,u) r = if UVars.Instance.is_empty u then r else UVars.subst_instance_relevance u r let usubst_binder e x = let r = x.binder_relevance in let r' = usubst_relevance e r in if r == r' then x else { x with binder_relevance = r' } let mk_lambda env t = let (rvars,t') = Term.decompose_lambda t in FLambda(List.length rvars, List.rev rvars, t', env) let usubs_lift (e,u) = subs_lift e, u let usubs_liftn n (e,u) = subs_liftn n e, u (* t must be a FLambda and binding list cannot be empty *) let destFLambda clos_fun t = match [@ocaml.warning "-4"] t.term with | FLambda(_,[(na,ty)],b,e) -> (usubst_binder e na,clos_fun e ty,clos_fun (usubs_lift e) b) | FLambda(n,(na,ty)::tys,b,e) -> (usubst_binder e na,clos_fun e ty,{mark=t.mark;term=FLambda(n-1,tys,b,usubs_lift e)}) | _ -> assert false (* Optimization: do not enclose variables in a closure. Makes variable access much faster *) let mk_clos (e:usubs) t = match kind t with | Rel i -> clos_rel (fst e) i | Var x -> {mark = Red; term = FFlex (VarKey x) } | Const c -> {mark = Red; term = FFlex (ConstKey (usubst_punivs e c)) } | Sort s -> let s = usubst_sort e s in {mark = Ntrl; term = FAtom (mkSort s) } | Meta _ -> {mark = Ntrl; term = FAtom t } | Ind kn -> {mark = Ntrl; term = FInd (usubst_punivs e kn) } | Construct kn -> {mark = Cstr; term = FConstruct (usubst_punivs e kn) } | Int i -> {mark = Cstr; term = FInt i} | Float f -> {mark = Cstr; term = FFloat f} | (CoFix _|Lambda _|Fix _|Prod _|Evar _|App _|Case _|Cast _|LetIn _|Proj _|Array _) -> {mark = Red; term = FCLOS(t,e)} let injectu c u = mk_clos (subs_id 0, u) c let inject c = injectu c UVars.Instance.empty let mk_irrelevant = { mark = Cstr; term = FIrrelevant } let is_irrelevant info r = match info.i_cache.i_mode with | Reduction -> false | Conversion -> match r with | Sorts.Irrelevant -> true | Sorts.RelevanceVar q -> info.i_cache.i_sigma.qvar_irrelevant q | Sorts.Relevant -> false (************************************************************************) type table_val = (fconstr, Empty.t) constant_def module Table : sig type t val create : unit -> t val lookup : clos_infos -> t -> table_key -> table_val end = struct module Table = Hashtbl.Make(struct type t = table_key let equal = eq_table_key (eq_pair eq_constant_key UVars.Instance.equal) let hash = hash_table_key (fun (c, _) -> Constant.UserOrd.hash c) end) type t = table_val Table.t let create () = Table.create 17 exception Irrelevant let shortcut_irrelevant info r = if is_irrelevant info r then raise Irrelevant let assoc_defined d = match d with | NamedDecl.LocalDef (_, c, _) -> inject c | NamedDecl.LocalAssum (_, _) -> raise Not_found let constant_value_in u = function | Def b -> injectu b u | OpaqueDef _ -> raise (NotEvaluableConst Opaque) | Undef _ -> raise (NotEvaluableConst NoBody) | Primitive p -> raise (NotEvaluableConst (IsPrimitive (u,p))) let value_of info ref = try let env = info.i_cache.i_env in match ref with | RelKey n -> let i = n - 1 in let d = try Range.get env.env_rel_context.env_rel_map i with Invalid_argument _ -> raise Not_found in shortcut_irrelevant info (RelDecl.get_relevance d); let body = match d with | RelDecl.LocalAssum _ -> raise Not_found | RelDecl.LocalDef (_, t, _) -> lift n t in Def (inject body) | VarKey id -> let def = Environ.lookup_named id env in shortcut_irrelevant info (binder_relevance (NamedDecl.get_annot def)); let ts = RedFlags.red_transparent info.i_flags in if TransparentState.is_transparent_variable ts id then Def (assoc_defined def) else raise Not_found | ConstKey (cst,u) -> let cb = lookup_constant cst env in shortcut_irrelevant info (UVars.subst_instance_relevance u cb.const_relevance); let ts = RedFlags.red_transparent info.i_flags in if TransparentState.is_transparent_constant ts cst then Def (constant_value_in u cb.const_body) else raise Not_found with | Irrelevant -> Def mk_irrelevant | NotEvaluableConst (IsPrimitive (_u,op)) (* Const *) -> Primitive op | Not_found (* List.assoc *) | NotEvaluableConst _ (* Const *) -> Undef None let lookup info tab ref = try Table.find tab ref with Not_found -> let v = value_of info ref in Table.add tab ref v; v end type clos_tab = Table.t let create_tab = Table.create (************************************************************************) (** Hand-unrolling of the map function to bypass the call to the generic array allocation *) let mk_clos_vect env v = match v with | [||] -> [||] | [|v0|] -> [|mk_clos env v0|] | [|v0; v1|] -> [|mk_clos env v0; mk_clos env v1|] | [|v0; v1; v2|] -> [|mk_clos env v0; mk_clos env v1; mk_clos env v2|] | [|v0; v1; v2; v3|] -> [|mk_clos env v0; mk_clos env v1; mk_clos env v2; mk_clos env v3|] | v -> Array.Fun1.map mk_clos env v let rec subst_constr (subst,usubst as e) c = let c = Vars.map_constr_relevance (usubst_relevance e) c in match [@ocaml.warning "-4"] Constr.kind c with | Rel i -> begin match expand_rel i subst with | Inl (k, lazy v) -> Vars.lift k v | Inr (m, _) -> mkRel m end | Const _ | Ind _ | Construct _ | Sort _ -> subst_instance_constr usubst c | Case (ci, u, pms, p, iv, discr, br) -> let u' = usubst_instance e u in let c = if u == u' then c else mkCase (ci, u', pms, p, iv, discr, br) in Constr.map_with_binders usubs_lift subst_constr e c | Array (u,elems,def,ty) -> let u' = usubst_instance e u in let c = if u == u' then c else mkArray (u',elems,def,ty) in Constr.map_with_binders usubs_lift subst_constr e c | _ -> Constr.map_with_binders usubs_lift subst_constr e c (* The inverse of mk_clos: move back to constr *) (* XXX should there be universes in lfts???? *) let rec to_constr (lfts, usubst as ulfts) v = let subst_us c = subst_instance_constr usubst c in match v.term with | FRel i -> mkRel (reloc_rel i lfts) | FFlex (RelKey p) -> mkRel (reloc_rel p lfts) | FFlex (VarKey x) -> mkVar x | FAtom c -> subst_us (exliftn lfts c) | FFlex (ConstKey op) -> subst_us (mkConstU op) | FInd op -> subst_us (mkIndU op) | FConstruct op -> subst_us (mkConstructU op) | FCaseT (ci, u, pms, p, c, ve, env) -> to_constr_case ulfts ci u pms p NoInvert c ve env | FCaseInvert (ci, u, pms, p, indices, c, ve, env) -> let iv = CaseInvert {indices=Array.Fun1.map to_constr ulfts indices} in to_constr_case ulfts ci u pms p iv c ve env | FFix ((op,(lna,tys,bds)) as fx, e) -> if is_subs_id (fst e) && is_lift_id lfts then subst_instance_constr (usubst_instance ulfts (snd e)) (mkFix fx) else let n = Array.length bds in let subs_ty = comp_subs ulfts e in let subs_bd = comp_subs (on_fst (el_liftn n) ulfts) (on_fst (subs_liftn n) e) in let lna = Array.Fun1.map usubst_binder subs_ty lna in let tys = Array.Fun1.map subst_constr subs_ty tys in let bds = Array.Fun1.map subst_constr subs_bd bds in mkFix (op, (lna, tys, bds)) | FCoFix ((op,(lna,tys,bds)) as cfx, e) -> if is_subs_id (fst e) && is_lift_id lfts then subst_instance_constr (usubst_instance ulfts (snd e)) (mkCoFix cfx) else let n = Array.length bds in let subs_ty = comp_subs ulfts e in let subs_bd = comp_subs (on_fst (el_liftn n) ulfts) (on_fst (subs_liftn n) e) in let lna = Array.Fun1.map usubst_binder subs_ty lna in let tys = Array.Fun1.map subst_constr subs_ty tys in let bds = Array.Fun1.map subst_constr subs_bd bds in mkCoFix (op, (lna, tys, bds)) | FApp (f,ve) -> mkApp (to_constr ulfts f, Array.Fun1.map to_constr ulfts ve) | FProj (p,r,c) -> mkProj (p,usubst_relevance ulfts r,to_constr ulfts c) | FLambda (len, tys, f, e) -> if is_subs_id (fst e) && is_lift_id lfts then subst_instance_constr (usubst_instance ulfts (snd e)) (Term.compose_lam (List.rev tys) f) else let subs = comp_subs ulfts e in let tys = List.mapi (fun i (na, c) -> usubst_binder subs na, subst_constr (usubs_liftn i subs) c) tys in let f = subst_constr (usubs_liftn len subs) f in Term.compose_lam (List.rev tys) f | FProd (n, t, c, e) -> if is_subs_id (fst e) && is_lift_id lfts then mkProd (n, to_constr ulfts t, subst_instance_constr (usubst_instance ulfts (snd e)) c) else let subs' = comp_subs ulfts e in mkProd (usubst_binder subs' n, to_constr ulfts t, subst_constr (usubs_lift subs') c) | FLetIn (n,b,t,f,e) -> let subs = comp_subs (on_fst el_lift ulfts) (usubs_lift e) in mkLetIn (usubst_binder subs n, to_constr ulfts b, to_constr ulfts t, subst_constr subs f) | FEvar (ev, args, env, repack) -> let subs = comp_subs ulfts env in repack (ev, List.map (fun a -> subst_constr subs a) args) | FLIFT (k,a) -> to_constr (el_shft k lfts, usubst) a | FInt i -> Constr.mkInt i | FFloat f -> Constr.mkFloat f | FArray (u,t,ty) -> let u = usubst_instance ((),usubst) u in let def = to_constr ulfts (Parray.default t) in let t = Array.init (Parray.length_int t) (fun i -> to_constr ulfts (Parray.get t (Uint63.of_int i))) in let ty = to_constr ulfts ty in mkArray(u, t, def,ty) | FCLOS (t,env) -> if is_subs_id (fst env) && is_lift_id lfts then subst_instance_constr (usubst_instance ulfts (snd env)) t else let subs = comp_subs ulfts env in subst_constr subs t | FIrrelevant -> assert (!Flags.in_debugger); mkVar(Id.of_string"_IRRELEVANT_") | FLOCKED -> assert (!Flags.in_debugger); mkVar(Id.of_string"_LOCKED_") and to_constr_case (lfts,_ as ulfts) ci u pms (p,r) iv c ve env = let subs = comp_subs ulfts env in let r = usubst_relevance subs r in if is_subs_id (fst env) && is_lift_id lfts then mkCase (ci, usubst_instance subs u, pms, (p,r), iv, to_constr ulfts c, ve) else let f_ctx (nas, c) = let nas = Array.map (usubst_binder subs) nas in let c = subst_constr (usubs_liftn (Array.length nas) subs) c in (nas, c) in mkCase (ci, usubst_instance subs u, Array.map (fun c -> subst_constr subs c) pms, (f_ctx p,r), iv, to_constr ulfts c, Array.map f_ctx ve) and comp_subs (el,u) (s,u') = Esubst.lift_subst (fun el c -> lazy (to_constr (el,u) c)) el s, u' (* This function defines the correspondence between constr and fconstr. When we find a closure whose substitution is the identity, then we directly return the constr to avoid possibly huge reallocation. *) let term_of_fconstr c = to_constr (el_id, UVars.Instance.empty) c (* fstrong applies unfreeze_fun recursively on the (freeze) term and * yields a term. Assumes that the unfreeze_fun never returns a * FCLOS term. let rec fstrong unfreeze_fun lfts v = to_constr (fstrong unfreeze_fun) lfts (unfreeze_fun v) *) let rec zip m stk = match stk with | [] -> m | Zapp args :: s -> zip {mark=neutr m.mark; term=FApp(m, args)} s | ZcaseT(ci, u, pms, p, br, e)::s -> let t = FCaseT(ci, u, pms, p, m, br, e) in let mark = (neutr m.mark) in zip {mark; term=t} s | Zproj (p,r) :: s -> let mark = (neutr m.mark) in zip {mark; term=FProj(Projection.make p true,r,m)} s | Zfix(fx,par)::s -> zip fx (par @ append_stack [|m|] s) | Zshift(n)::s -> zip (lift_fconstr n m) s | Zupdate(rf)::s -> (** The stack contains [Zupdate] marks only if in sharing mode *) let () = update rf m.mark m.term in zip rf s | Zprimitive(_op,c,rargs,kargs)::s -> let args = List.rev_append rargs (m::List.map snd kargs) in let f = {mark = Red; term = FFlex (ConstKey c)} in zip {mark=(neutr m.mark); term = FApp (f, Array.of_list args)} s let fapp_stack (m,stk) = zip m stk let term_of_process c stk = term_of_fconstr (zip c stk) (*********************************************************************) (* The assertions in the functions below are granted because they are called only when m is a constructor, a cofix (strip_update_shift_app), a fix (get_nth_arg) or an abstraction (strip_update_shift, through get_arg). *) (* optimised for the case where there are no shifts... *) let strip_update_shift_app_red head stk = let rec strip_rec rstk h depth = function | Zshift(k) as e :: s -> strip_rec (e::rstk) (lift_fconstr k h) (depth+k) s | (Zapp args :: s) -> strip_rec (Zapp args :: rstk) {mark=h.mark;term=FApp(h,args)} depth s | Zupdate(m)::s -> (** The stack contains [Zupdate] marks only if in sharing mode *) let () = update m h.mark h.term in strip_rec rstk m depth s | ((ZcaseT _ | Zproj _ | Zfix _ | Zprimitive _) :: _ | []) as stk -> (depth,List.rev rstk, stk) in strip_rec [] head 0 stk let strip_update_shift_app head stack = assert (not (is_red head.mark)); strip_update_shift_app_red head stack let get_nth_arg head n stk = assert (not (is_red head.mark)); let rec strip_rec rstk h n = function | Zshift(k) as e :: s -> strip_rec (e::rstk) (lift_fconstr k h) n s | Zapp args::s' -> let q = Array.length args in if n >= q then strip_rec (Zapp args::rstk) {mark=h.mark;term=FApp(h,args)} (n-q) s' else let bef = Array.sub args 0 n in let aft = Array.sub args (n+1) (q-n-1) in let stk' = List.rev (if Int.equal n 0 then rstk else (Zapp bef :: rstk)) in (Some (stk', args.(n)), append_stack aft s') | Zupdate(m)::s -> (** The stack contains [Zupdate] mark only if in sharing mode *) let () = update m h.mark h.term in strip_rec rstk m n s | ((ZcaseT _ | Zproj _ | Zfix _ | Zprimitive _) :: _ | []) as s -> (None, List.rev rstk @ s) in strip_rec [] head n stk let usubs_cons x (s,u) = subs_cons x s, u let rec subs_consn v i n s = if Int.equal i n then s else subs_consn v (i + 1) n (subs_cons v.(i) s) let usubs_consn v i n s = on_fst (subs_consn v i n) s let usubs_consv v s = usubs_consn v 0 (Array.length v) s (* Beta reduction: look for an applied argument in the stack. Since the encountered update marks are removed, h must be a whnf *) let rec get_args n tys f e = function | Zupdate r :: s -> (** The stack contains [Zupdate] mark only if in sharing mode *) let () = update r Cstr (FLambda(n,tys,f,e)) in get_args n tys f e s | Zshift k :: s -> get_args n tys f (usubs_shft (k,e)) s | Zapp l :: s -> let na = Array.length l in if n == na then (Inl (usubs_consn l 0 na e), s) else if n < na then (* more arguments *) let eargs = Array.sub l n (na-n) in (Inl (usubs_consn l 0 n e), Zapp eargs :: s) else (* more lambdas *) let etys = List.skipn na tys in get_args (n-na) etys f (usubs_consn l 0 na e) s | ((ZcaseT _ | Zproj _ | Zfix _ | Zprimitive _) :: _ | []) as stk -> (Inr {mark=Cstr; term=FLambda(n,tys,f,e)}, stk) (* Eta expansion: add a reference to implicit surrounding lambda at end of stack *) let rec eta_expand_stack info na = function | (Zapp _ | Zfix _ | ZcaseT _ | Zproj _ | Zshift _ | Zupdate _ | Zprimitive _ as e) :: s -> e :: eta_expand_stack info na s | [] -> let arg = if is_irrelevant info na.binder_relevance then mk_irrelevant else {mark = Ntrl; term = FRel 1} in [Zshift 1; Zapp [|arg|]] (* Get the arguments of a native operator *) let rec skip_native_args rargs nargs = match nargs with | (kd, a) :: nargs' -> if kd = CPrimitives.Kwhnf then rargs, nargs else skip_native_args (a::rargs) nargs' | [] -> rargs, [] let get_native_args op c stk = let kargs = CPrimitives.kind op in let rec get_args rnargs kargs args = match kargs, args with | kd::kargs, a::args -> get_args ((kd,a)::rnargs) kargs args | _, _ -> rnargs, kargs, args in let rec strip_rec rnargs h depth kargs = function | Zshift k :: s -> strip_rec (List.map (fun (kd,f) -> kd,lift_fconstr k f) rnargs) (lift_fconstr k h) (depth+k) kargs s | Zapp args :: s' -> begin match get_args rnargs kargs (Array.to_list args) with | rnargs, [], [] -> (skip_native_args [] (List.rev rnargs), s') | rnargs, [], eargs -> (skip_native_args [] (List.rev rnargs), Zapp (Array.of_list eargs) :: s') | rnargs, kargs, _ -> strip_rec rnargs {mark = h.mark;term=FApp(h, args)} depth kargs s' end | Zupdate(m) :: s -> let () = update m h.mark h.term in strip_rec rnargs m depth kargs s | (Zprimitive _ | ZcaseT _ | Zproj _ | Zfix _) :: _ | [] -> assert false in strip_rec [] {mark = Red; term = FFlex(ConstKey c)} 0 kargs stk let get_native_args1 op c stk = match get_native_args op c stk with | ((rargs, (kd,a):: nargs), stk) -> assert (kd = CPrimitives.Kwhnf); (rargs, a, nargs, stk) | _ -> assert false let check_native_args op stk = let nargs = CPrimitives.arity op in let rargs = stack_args_size stk in nargs <= rargs (* Iota reduction: extract the arguments to be passed to the Case branches *) let rec reloc_rargs_rec depth = function | Zapp args :: s -> Zapp (lift_fconstr_vect depth args) :: reloc_rargs_rec depth s | Zshift(k)::s -> if Int.equal k depth then s else reloc_rargs_rec (depth-k) s | ((ZcaseT _ | Zproj _ | Zfix _ | Zupdate _ | Zprimitive _) :: _ | []) as stk -> stk let reloc_rargs depth stk = if Int.equal depth 0 then stk else reloc_rargs_rec depth stk let rec try_drop_parameters depth n = function | Zapp args::s -> let q = Array.length args in if n > q then try_drop_parameters depth (n-q) s else if Int.equal n q then reloc_rargs depth s else let aft = Array.sub args n (q-n) in reloc_rargs depth (append_stack aft s) | Zshift(k)::s -> try_drop_parameters (depth-k) n s | [] -> if Int.equal n 0 then [] else raise Not_found | (ZcaseT _ | Zproj _ | Zfix _ | Zupdate _ | Zprimitive _) :: _ -> assert false (* strip_update_shift_app only produces Zapp and Zshift items *) let drop_parameters depth n argstk = try try_drop_parameters depth n argstk with Not_found -> (* we know that n < stack_args_size(argstk) (if well-typed term) *) anomaly (Pp.str "ill-typed term: found a match on a partially applied constructor.") let inductive_subst mib u pms = let rec mk_pms i ctx = match ctx with | [] -> subs_id 0 | RelDecl.LocalAssum _ :: ctx -> let subs = mk_pms (i - 1) ctx in subs_cons pms.(i) subs | RelDecl.LocalDef (_, c, _) :: ctx -> let subs = mk_pms i ctx in subs_cons (mk_clos (subs,u) c) subs in mk_pms (Array.length pms - 1) mib.mind_params_ctxt, u (* Iota-reduction: feed the arguments of the constructor to the branch *) let get_branch infos depth ci pms ((ind, c), u) br e args = let i = c - 1 in let args = drop_parameters depth ci.ci_npar args in let (_nas, br) = br.(i) in if Int.equal ci.ci_cstr_ndecls.(i) ci.ci_cstr_nargs.(i) then (* No let-bindings in the constructor, we don't have to fetch the environment to know the value of the branch. *) let rec push e stk = match stk with | [] -> e | Zapp v :: stk -> push (usubs_consv v e) stk | (Zshift _ | ZcaseT _ | Zproj _ | Zfix _ | Zupdate _ | Zprimitive _) :: _ -> assert false in let e = push e args in (br, e) else (* The constructor contains let-bindings, but they are not physically present in the match, so we fetch them in the environment. *) let env = info_env infos in let mib = Environ.lookup_mind (fst ind) env in let mip = mib.mind_packets.(snd ind) in let (ctx, _) = mip.mind_nf_lc.(i) in let ctx, _ = List.chop mip.mind_consnrealdecls.(i) ctx in let map = function | Zapp args -> args | Zshift _ | ZcaseT _ | Zproj _ | Zfix _ | Zupdate _ | Zprimitive _ -> assert false in let ind_subst = inductive_subst mib u (Array.map (mk_clos e) pms) in let args = Array.concat (List.map map args) in let rec push i e = function | [] -> [] | RelDecl.LocalAssum _ :: ctx -> let ans = push (pred i) e ctx in args.(i) :: ans | RelDecl.LocalDef (_, b, _) :: ctx -> let ans = push i e ctx in let b = subst_instance_constr u b in let s = Array.rev_of_list ans in let e = usubs_consv s ind_subst in let v = mk_clos e b in v :: ans in let ext = push (Array.length args - 1) [] ctx in (br, usubs_consv (Array.rev_of_list ext) e) (** [eta_expand_ind_stack env ind c s t] computes stacks corresponding to the conversion of the eta expansion of t, considered as an inhabitant of ind, and the Constructor c of this inductive type applied to arguments s. @assumes [t] is an irreducible term, and not a constructor. [ind] is the inductive of the constructor term [c] @raise Not_found if the inductive is not a primitive record, or if the constructor is partially applied. *) let eta_expand_ind_stack env (ind,u) m s (f, s') = let open Declarations in let mib = lookup_mind (fst ind) env in (* disallow eta-exp for non-primitive records *) if not (mib.mind_finite == BiFinite) then raise Not_found; match Declareops.inductive_make_projections ind mib with | Some projs -> (* (Construct, pars1 .. parsm :: arg1...argn :: []) ~= (f, s') -> arg1..argn ~= (proj1 t...projn t) where t = zip (f,s') *) let pars = mib.Declarations.mind_nparams in let right = fapp_stack (f, s') in let (depth, args, _s) = strip_update_shift_app m s in (** Try to drop the params, might fail on partially applied constructors. *) let argss = try_drop_parameters depth pars args in let hstack = Array.map (fun (p,r) -> { mark = Red; (* right can't be a constructor though *) term = FProj (Projection.make p true, UVars.subst_instance_relevance u r, right) }) projs in argss, [Zapp hstack] | None -> raise Not_found (* disallow eta-exp for non-primitive records *) let rec project_nth_arg n = function | Zapp args :: s -> let q = Array.length args in if n >= q then project_nth_arg (n - q) s else (* n < q *) args.(n) | (ZcaseT _ | Zproj _ | Zfix _ | Zupdate _ | Zshift _ | Zprimitive _) :: _ | [] -> assert false (* After drop_parameters we have a purely applicative stack *) (* Iota reduction: expansion of a fixpoint. * Given a fixpoint and a substitution, returns the corresponding * fixpoint body, and the substitution in which it should be * evaluated: its first variables are the fixpoint bodies * * FCLOS(fix Fi {F0 := T0 .. Fn-1 := Tn-1}, S) * -> (S. FCLOS(F0,S) . ... . FCLOS(Fn-1,S), Ti) *) (* does not deal with FLIFT *) let contract_fix_vect fix = let (thisbody, make_body, env, nfix) = match [@ocaml.warning "-4"] fix with | FFix (((reci,i),(_,_,bds as rdcl)),env) -> (bds.(i), (fun j -> { mark = Cstr; term = FFix (((reci,j),rdcl),env) }), env, Array.length bds) | FCoFix ((i,(_,_,bds as rdcl)),env) -> (bds.(i), (fun j -> { mark = Cstr; term = FCoFix ((j,rdcl),env) }), env, Array.length bds) | _ -> assert false in let rec mk_subs env i = if Int.equal i nfix then env else mk_subs (subs_cons (make_body i) env) (i + 1) in (on_fst (fun env -> mk_subs env 0) env, thisbody) let unfold_projection info p r = if red_projection info.i_flags p then Some (Zproj (Projection.repr p, r)) else None (************************************************************************) (* Reduction of Native operators *) open Primred module FNativeEntries = struct type elem = fconstr type args = fconstr array type evd = unit type uinstance = UVars.Instance.t let mk_construct c = (* All constructors used in primitive functions are relevant *) { mark = Cstr; term = FConstruct (UVars.in_punivs c) } let get = Array.get let get_int () e = match [@ocaml.warning "-4"] e.term with | FInt i -> i | _ -> assert false let get_float () e = match [@ocaml.warning "-4"] e.term with | FFloat f -> f | _ -> assert false let get_parray () e = match [@ocaml.warning "-4"] e.term with | FArray (_u,t,_ty) -> t | _ -> assert false let dummy = {mark = Ntrl; term = FRel 0} let current_retro = ref Retroknowledge.empty let defined_int = ref false let fint = ref dummy let init_int retro = match retro.Retroknowledge.retro_int63 with | Some c -> defined_int := true; fint := { mark = Ntrl; term = FFlex (ConstKey (UVars.in_punivs c)) } | None -> defined_int := false let defined_float = ref false let ffloat = ref dummy let init_float retro = match retro.Retroknowledge.retro_float64 with | Some c -> defined_float := true; ffloat := { mark = Ntrl; term = FFlex (ConstKey (UVars.in_punivs c)) } | None -> defined_float := false let defined_bool = ref false let ftrue = ref dummy let ffalse = ref dummy let init_bool retro = match retro.Retroknowledge.retro_bool with | Some (ct,cf) -> defined_bool := true; ftrue := mk_construct ct; ffalse := mk_construct cf; | None -> defined_bool :=false let defined_carry = ref false let fC0 = ref dummy let fC1 = ref dummy let init_carry retro = match retro.Retroknowledge.retro_carry with | Some(c0,c1) -> defined_carry := true; fC0 := mk_construct c0; fC1 := mk_construct c1; | None -> defined_carry := false let defined_pair = ref false let fPair = ref dummy let init_pair retro = match retro.Retroknowledge.retro_pair with | Some c -> defined_pair := true; fPair := mk_construct c; | None -> defined_pair := false let defined_cmp = ref false let fEq = ref dummy let fLt = ref dummy let fGt = ref dummy let fcmp = ref dummy let init_cmp retro = match retro.Retroknowledge.retro_cmp with | Some (cEq, cLt, cGt) -> defined_cmp := true; fEq := mk_construct cEq; fLt := mk_construct cLt; fGt := mk_construct cGt; let (icmp, _) = cEq in fcmp := { mark = Ntrl; term = FInd (UVars.in_punivs icmp) } | None -> defined_cmp := false let defined_f_cmp = ref false let fFEq = ref dummy let fFLt = ref dummy let fFGt = ref dummy let fFNotComparable = ref dummy let init_f_cmp retro = match retro.Retroknowledge.retro_f_cmp with | Some (cFEq, cFLt, cFGt, cFNotComparable) -> defined_f_cmp := true; fFEq := mk_construct cFEq; fFLt := mk_construct cFLt; fFGt := mk_construct cFGt; fFNotComparable := mk_construct cFNotComparable; | None -> defined_f_cmp := false let defined_f_class = ref false let fPNormal = ref dummy let fNNormal = ref dummy let fPSubn = ref dummy let fNSubn = ref dummy let fPZero = ref dummy let fNZero = ref dummy let fPInf = ref dummy let fNInf = ref dummy let fNaN = ref dummy let init_f_class retro = match retro.Retroknowledge.retro_f_class with | Some (cPNormal, cNNormal, cPSubn, cNSubn, cPZero, cNZero, cPInf, cNInf, cNaN) -> defined_f_class := true; fPNormal := mk_construct cPNormal; fNNormal := mk_construct cNNormal; fPSubn := mk_construct cPSubn; fNSubn := mk_construct cNSubn; fPZero := mk_construct cPZero; fNZero := mk_construct cNZero; fPInf := mk_construct cPInf; fNInf := mk_construct cNInf; fNaN := mk_construct cNaN; | None -> defined_f_class := false let defined_array = ref false let init_array retro = defined_array := Option.has_some retro.Retroknowledge.retro_array let init env = current_retro := env.retroknowledge; init_int !current_retro; init_float !current_retro; init_bool !current_retro; init_carry !current_retro; init_pair !current_retro; init_cmp !current_retro; init_f_cmp !current_retro; init_f_class !current_retro; init_array !current_retro let check_env env = if not (!current_retro == env.retroknowledge) then init env let check_int env = check_env env; assert (!defined_int) let check_float env = check_env env; assert (!defined_float) let check_bool env = check_env env; assert (!defined_bool) let check_carry env = check_env env; assert (!defined_carry && !defined_int) let check_pair env = check_env env; assert (!defined_pair && !defined_int) let check_cmp env = check_env env; assert (!defined_cmp) let check_f_cmp env = check_env env; assert (!defined_f_cmp) let check_f_class env = check_env env; assert (!defined_f_class) let check_array env = check_env env; assert (!defined_array) let mkInt env i = check_int env; { mark = Cstr; term = FInt i } let mkFloat env f = check_float env; { mark = Cstr; term = FFloat f } let mkBool env b = check_bool env; if b then !ftrue else !ffalse let mkCarry env b e = check_carry env; {mark = Cstr; term = FApp ((if b then !fC1 else !fC0),[|!fint;e|])} let mkIntPair env e1 e2 = check_pair env; { mark = Cstr; term = FApp(!fPair, [|!fint;!fint;e1;e2|]) } let mkFloatIntPair env f i = check_pair env; check_float env; { mark = Cstr; term = FApp(!fPair, [|!ffloat;!fint;f;i|]) } let mkLt env = check_cmp env; !fLt let mkEq env = check_cmp env; !fEq let mkGt env = check_cmp env; !fGt let mkFLt env = check_f_cmp env; !fFLt let mkFEq env = check_f_cmp env; !fFEq let mkFGt env = check_f_cmp env; !fFGt let mkFNotComparable env = check_f_cmp env; !fFNotComparable let mkPNormal env = check_f_class env; !fPNormal let mkNNormal env = check_f_class env; !fNNormal let mkPSubn env = check_f_class env; !fPSubn let mkNSubn env = check_f_class env; !fNSubn let mkPZero env = check_f_class env; !fPZero let mkNZero env = check_f_class env; !fNZero let mkPInf env = check_f_class env; !fPInf let mkNInf env = check_f_class env; !fNInf let mkNaN env = check_f_class env; !fNaN let mkArray env u t ty = check_array env; { mark = Cstr; term = FArray (u,t,ty)} end module FredNative = RedNative(FNativeEntries) let rec skip_irrelevant_stack info stk = match stk with | [] -> [] | (Zshift _ | Zapp _) :: s -> skip_irrelevant_stack info s | (Zfix _ | Zproj _) :: s -> (* Typing rules ensure that fix / proj over SProp is irrelevant *) skip_irrelevant_stack info s | ZcaseT (_, _, _, (_,r), _, e) :: s -> let r = usubst_relevance e r in if is_irrelevant info r then skip_irrelevant_stack info s else stk | Zprimitive _ :: _ -> assert false (* no irrelevant primitives so far *) | Zupdate m :: s -> (** The stack contains [Zupdate] marks only if in sharing mode *) let () = update m mk_irrelevant.mark mk_irrelevant.term in skip_irrelevant_stack info s let is_irrelevant_constructor infos ((ind,_),u) = match Indmap_env.find_opt ind (info_env infos).Environ.irr_inds with | None -> false | Some r -> is_irrelevant infos @@ UVars.subst_instance_relevance u r (*********************************************************************) (* A machine that inspects the head of a term until it finds an atom or a subterm that may produce a redex (abstraction, constructor, cofix, letin, constant), or a neutral term (product, inductive) *) let rec knh info m stk = match m.term with | FLIFT(k,a) -> knh info a (zshift k stk) | FCLOS(t,e) -> knht info e t (zupdate info m stk) | FLOCKED -> assert false | FApp(a,b) -> knh info a (append_stack b (zupdate info m stk)) | FCaseT(ci,u,pms,(_,r as p),t,br,e) -> let r' = usubst_relevance e r in if is_irrelevant info r' then (mk_irrelevant, skip_irrelevant_stack info stk) else knh info t (ZcaseT(ci,u,pms,p,br,e)::zupdate info m stk) | FFix (((ri, n), (lna, _, _)), e) -> if is_irrelevant info (usubst_relevance e (lna.(n)).binder_relevance) then (mk_irrelevant, skip_irrelevant_stack info stk) else (match get_nth_arg m ri.(n) stk with (Some(pars,arg),stk') -> knh info arg (Zfix(m,pars)::stk') | (None, stk') -> (m,stk')) | FProj (p,r,c) -> if is_irrelevant info r then (mk_irrelevant, skip_irrelevant_stack info stk) else (match unfold_projection info p r with | None -> (m, stk) | Some s -> knh info c (s :: zupdate info m stk)) (* cases where knh stops *) | (FFlex _|FLetIn _|FConstruct _|FEvar _|FCaseInvert _|FIrrelevant| FCoFix _|FLambda _|FRel _|FAtom _|FInd _|FProd _|FInt _|FFloat _|FArray _) -> (m, stk) (* The same for pure terms *) and knht info e t stk = match kind t with | App(a,b) -> knht info e a (append_stack (mk_clos_vect e b) stk) | Case(ci,u,pms,(_,r as p),NoInvert,t,br) -> if is_irrelevant info (usubst_relevance e r) then (mk_irrelevant, skip_irrelevant_stack info stk) else knht info e t (ZcaseT(ci, u, pms, p, br, e)::stk) | Case(ci,u,pms,(_,r as p),CaseInvert{indices},t,br) -> if is_irrelevant info (usubst_relevance e r) then (mk_irrelevant, skip_irrelevant_stack info stk) else let term = FCaseInvert (ci, u, pms, p, (Array.map (mk_clos e) indices), mk_clos e t, br, e) in { mark = Red; term }, stk | Fix (((_, n), (lna, _, _)) as fx) -> if is_irrelevant info (usubst_relevance e (lna.(n)).binder_relevance) then (mk_irrelevant, skip_irrelevant_stack info stk) else knh info { mark = Cstr; term = FFix (fx, e) } stk | Cast(a,_,_) -> knht info e a stk | Rel n -> knh info (clos_rel (fst e) n) stk | Proj (p, r, c) -> let r = usubst_relevance e r in if is_irrelevant info r then (mk_irrelevant, skip_irrelevant_stack info stk) else knh info { mark = Red; term = FProj (p, r, mk_clos e c) } stk | (Ind _|Const _|Construct _|Var _|Meta _ | Sort _ | Int _|Float _) -> (mk_clos e t, stk) | CoFix cfx -> { mark = Cstr; term = FCoFix (cfx,e) }, stk | Lambda _ -> { mark = Cstr ; term = mk_lambda e t }, stk | Prod (n, t, c) -> { mark = Ntrl; term = FProd (usubst_binder e n, mk_clos e t, c, e) }, stk | LetIn (n,b,t,c) -> { mark = Red; term = FLetIn (usubst_binder e n, mk_clos e b, mk_clos e t, c, e) }, stk | Evar ev -> begin match info.i_cache.i_sigma.evar_expand ev with | EvarDefined c -> knht info e c stk | EvarUndefined (evk, args) -> assert (UVars.Instance.is_empty (snd e)); if info.i_cache.i_sigma.evar_irrelevant ev then (mk_irrelevant, skip_irrelevant_stack info stk) else let repack = info.i_cache.i_sigma.evar_repack in { mark = Ntrl; term = FEvar (evk, args, e, repack) }, stk end | Array(u,t,def,ty) -> let len = Array.length t in let ty = mk_clos e ty in let t = Parray.init (Uint63.of_int len) (fun i -> mk_clos e t.(i)) (mk_clos e def) in let term = FArray (u,t,ty) in knh info { mark = Cstr; term } stk (************************************************************************) let conv : (clos_infos -> clos_tab -> fconstr -> fconstr -> bool) ref = ref (fun _ _ _ _ -> (assert false : bool)) let set_conv f = conv := f (* Computes a weak head normal form from the result of knh. *) let rec knr info tab m stk = match m.term with | FLambda(n,tys,f,e) when red_set info.i_flags fBETA -> (match get_args n tys f e stk with Inl e', s -> knit info tab e' f s | Inr lam, s -> (lam,s)) | FFlex fl when red_set info.i_flags fDELTA -> (match Table.lookup info tab fl with | Def v -> kni info tab v stk | Primitive op -> if check_native_args op stk then let c = match fl with ConstKey c -> c | RelKey _ | VarKey _ -> assert false in let rargs, a, nargs, stk = get_native_args1 op c stk in kni info tab a (Zprimitive(op,c,rargs,nargs)::stk) else (* Similarly to fix, partially applied primitives are not Ntrl! *) (m, stk) | Undef _ | OpaqueDef _ -> (set_ntrl m; (m,stk))) | FConstruct c -> let use_match = red_set info.i_flags fMATCH in let use_fix = red_set info.i_flags fFIX in if use_match || use_fix then (match [@ocaml.warning "-4"] strip_update_shift_app m stk with | (depth, args, ZcaseT(ci,_,pms,_,br,e)::s) when use_match -> assert (ci.ci_npar>=0); (* instance on the case and instance on the constructor are compatible by typing *) let (br, e) = get_branch info depth ci pms c br e args in knit info tab e br s | (_, cargs, Zfix(fx,par)::s) when use_fix -> let rarg = fapp_stack(m,cargs) in let stk' = par @ append_stack [|rarg|] s in let (fxe,fxbd) = contract_fix_vect fx.term in knit info tab fxe fxbd stk' | (depth, args, Zproj (p,_)::s) when use_match -> let rargs = drop_parameters depth (Projection.Repr.npars p) args in let rarg = project_nth_arg (Projection.Repr.arg p) rargs in kni info tab rarg s | (_,args,s) -> if is_irrelevant_constructor info c then (mk_irrelevant, skip_irrelevant_stack info stk) else (m,args@s)) else if is_irrelevant_constructor info c then (mk_irrelevant, skip_irrelevant_stack info stk) else (m, stk) | FCoFix ((i, (lna, _, _)), e) -> if is_irrelevant info (usubst_relevance e (lna.(i)).binder_relevance) then (mk_irrelevant, skip_irrelevant_stack info stk) else if red_set info.i_flags fCOFIX then (match strip_update_shift_app m stk with | (_, args, (((ZcaseT _|Zproj _)::_) as stk')) -> let (fxe,fxbd) = contract_fix_vect m.term in knit info tab fxe fxbd (args@stk') | (_,args, ((Zapp _ | Zfix _ | Zshift _ | Zupdate _ | Zprimitive _) :: _ | [] as s)) -> (m,args@s)) else (m, stk) | FLetIn (_,v,_,bd,e) when red_set info.i_flags fZETA -> knit info tab (on_fst (subs_cons v) e) bd stk | FInt _ | FFloat _ | FArray _ -> (match [@ocaml.warning "-4"] strip_update_shift_app m stk with | (_, _, Zprimitive(op,(_,u as c),rargs,nargs)::s) -> let (rargs, nargs) = skip_native_args (m::rargs) nargs in begin match nargs with | [] -> let args = Array.of_list (List.rev rargs) in begin match FredNative.red_prim (info_env info) () op u args with | Some m -> kni info tab m s | None -> assert false end | (kd,a)::nargs -> assert (kd = CPrimitives.Kwhnf); kni info tab a (Zprimitive(op,c,rargs,nargs)::s) end | (_, _, s) -> (m, s)) | FCaseInvert (ci, u, pms, _p,iv,_c,v,env) when red_set info.i_flags fMATCH -> let pms = mk_clos_vect env pms in let u = usubst_instance env u in begin match case_inversion info tab ci u pms iv v with | Some c -> knit info tab env c stk | None -> (m, stk) end | FIrrelevant -> let stk = skip_irrelevant_stack info stk in (m, stk) | FProd _ | FAtom _ | FInd _ (* relevant statically *) | FCaseInvert _ | FProj _ | FFix _ | FEvar _ (* relevant because of knh(t) *) | FLambda _ | FFlex _ | FRel _ (* irrelevance handled by conversion *) | FLetIn _ (* only happens in reduction mode *) -> (m, stk) | FLOCKED | FCLOS _ | FApp _ | FCaseT _ | FLIFT _ -> (* ruled out by knh(t) *) assert false (* Computes the weak head normal form of a term *) and kni info tab m stk = let (hm,s) = knh info m stk in knr info tab hm s and knit info tab e t stk = let (ht,s) = knht info e t stk in knr info tab ht s and case_inversion info tab ci u params indices v = let open Declarations in (* No binders / lets at all in the unique branch *) let v = match v with | [| [||], v |] -> v | _ -> assert false in if Array.is_empty indices then Some v else let env = info_env info in let ind = ci.ci_ind in let psubst = subs_consn params 0 ci.ci_npar (subs_id 0) in let mib = Environ.lookup_mind (fst ind) env in let mip = mib.mind_packets.(snd ind) in (* indtyping enforces 1 ctor with no letins in the context *) let _, expect = mip.mind_nf_lc.(0) in let _ind, expect_args = destApp expect in let tab = if info.i_cache.i_mode == Conversion then tab else Table.create () in let info = {info with i_cache = { info.i_cache with i_mode = Conversion}; i_flags=all} in let check_index i index = let expected = expect_args.(ci.ci_npar + i) in let expected = mk_clos (psubst,u) expected in !conv info tab expected index in if Array.for_all_i check_index 0 indices then Some v else None let kh info tab v stk = fapp_stack(kni info tab v stk) (************************************************************************) (* Computes the strong normal form of a term. 1- Calls kni 2- tries to rebuild the term. If a closure still has to be computed, calls itself recursively. *) let is_val v = match v.term with | FAtom _ | FRel _ | FInd _ | FConstruct _ | FInt _ | FFloat _ -> true | FFlex _ -> v.mark == Ntrl | FApp _ | FProj _ | FFix _ | FCoFix _ | FCaseT _ | FCaseInvert _ | FLambda _ | FProd _ | FLetIn _ | FEvar _ | FArray _ | FLIFT _ | FCLOS _ -> false | FIrrelevant | FLOCKED -> assert false let rec kl info tab m = let = info.i_cache.i_share in if is_val m then term_of_fconstr m else let (nm,s) = kni info tab m [] in let () = if share then ignore (fapp_stack (nm, s)) in (* to unlock Zupdates! *) zip_term info tab (norm_head info tab nm) s and klt info tab e t = match kind t with | Rel i -> begin match expand_rel i (fst e) with | Inl (n, mt) -> kl info tab @@ lift_fconstr n mt | Inr (k, None) -> if Int.equal k i then t else mkRel k | Inr (k, Some p) -> kl info tab @@ lift_fconstr (k-p) {mark=Red;term=FFlex(RelKey p)} end | App (hd, args) -> begin match kind hd with | Ind _ | Construct _ -> let args' = Array.Smart.map (fun c -> klt info tab e c) args in let hd' = subst_instance_constr (snd e) hd in if hd' == hd && args' == args then t else mkApp (hd', args') | Var _ | Const _ | CoFix _ | Lambda _ | Fix _ | Prod _ | Evar _ | Case _ | Cast _ | LetIn _ | Proj _ | Array _ | Rel _ | Meta _ | Sort _ | Int _ | Float _ -> let = info.i_cache.i_share in let (nm,s) = knit info tab e t [] in let () = if share then ignore (fapp_stack (nm, s)) in (* to unlock Zupdates! *) zip_term info tab (norm_head info tab nm) s | App _ -> assert false end | Lambda (na, u, c) -> let na' = usubst_binder e na in let u' = klt info tab e u in let c' = klt (push_relevance info na') tab (usubs_lift e) c in if na' == na && u' == u && c' == c then t else mkLambda (na', u', c') | Prod (na, u, v) -> let na' = usubst_binder e na in let u' = klt info tab e u in let v' = klt (push_relevance info na') tab (usubs_lift e) v in if na' == na && u' == u && v' == v then t else mkProd (na', u', v') | Cast (t, _, _) -> klt info tab e t | Var _ | Const _ | CoFix _ | Fix _ | Evar _ | Case _ | LetIn _ | Proj _ | Array _ -> let = info.i_cache.i_share in let (nm,s) = knit info tab e t [] in let () = if share then ignore (fapp_stack (nm, s)) in (* to unlock Zupdates! *) zip_term info tab (norm_head info tab nm) s | Meta _ | Sort _ | Ind _ | Construct _ | Int _ | Float _ -> subst_instance_constr (snd e) t (* no redex: go up for atoms and already normalized terms, go down otherwise. *) and norm_head info tab m = if is_val m then term_of_fconstr m else match m.term with | FLambda(_n,tys,f,e) -> let fold (e, info, ctxt) (na, ty) = let na = usubst_binder e na in let ty = klt info tab e ty in let info = push_relevance info na in (usubs_lift e, info, (na, ty) :: ctxt) in let (e', info, rvtys) = List.fold_left fold (e,info,[]) tys in let bd = klt info tab e' f in List.fold_left (fun b (na,ty) -> mkLambda(na,ty,b)) bd rvtys | FLetIn(na,a,b,f,e) -> let na = usubst_binder e na in let c = klt (push_relevance info na) tab (usubs_lift e) f in mkLetIn(na, kl info tab a, kl info tab b, c) | FProd(na,dom,rng,e) -> let na = usubst_binder e na in let rng = klt (push_relevance info na) tab (usubs_lift e) rng in mkProd(na, kl info tab dom, rng) | FCoFix((n,(na,tys,bds)),e) -> let na = Array.Smart.map (usubst_binder e) na in let infobd = push_relevances info na in let ftys = Array.map (fun ty -> klt info tab e ty) tys in let fbds = Array.map (fun bd -> klt infobd tab (usubs_liftn (Array.length na) e) bd) bds in mkCoFix (n, (na, ftys, fbds)) | FFix((n,(na,tys,bds)),e) -> let na = Array.Smart.map (usubst_binder e) na in let infobd = push_relevances info na in let ftys = Array.map (fun ty -> klt info tab e ty) tys in let fbds = Array.map (fun bd -> klt infobd tab (usubs_liftn (Array.length na) e) bd) bds in mkFix (n, (na, ftys, fbds)) | FEvar(ev, args, env, repack) -> repack (ev, List.map (fun a -> klt info tab env a) args) | FProj (p,r,c) -> mkProj (p, r, kl info tab c) | FArray (u, a, ty) -> let a, def = Parray.to_array a in let a = Array.map (kl info tab) a in let def = kl info tab def in let ty = kl info tab ty in mkArray (u, a, def, ty) | FLOCKED | FRel _ | FAtom _ | FFlex _ | FInd _ | FConstruct _ | FApp _ | FCaseT _ | FCaseInvert _ | FLIFT _ | FCLOS _ | FInt _ | FFloat _ -> term_of_fconstr m | FIrrelevant -> assert false (* only introduced when converting *) and zip_term info tab m stk = match stk with | [] -> m | Zapp args :: s -> zip_term info tab (mkApp(m, Array.map (kl info tab) args)) s | ZcaseT(ci, u, pms, (p,r), br, e) :: s -> let zip_ctx (nas, c) = let nas = Array.map (usubst_binder e) nas in let e = usubs_liftn (Array.length nas) e in (nas, klt info tab e c) in let r = usubst_relevance e r in let u = usubst_instance e u in let t = mkCase(ci, u, Array.map (fun c -> klt info tab e c) pms, (zip_ctx p, r), NoInvert, m, Array.map zip_ctx br) in zip_term info tab t s | Zproj (p,r)::s -> let t = mkProj (Projection.make p true, r, m) in zip_term info tab t s | Zfix(fx,par)::s -> let h = mkApp(zip_term info tab (kl info tab fx) par,[|m|]) in zip_term info tab h s | Zshift(n)::s -> zip_term info tab (lift n m) s | Zupdate(_rf)::s -> zip_term info tab m s | Zprimitive(_,c,rargs, kargs)::s -> let kargs = List.map (fun (_,a) -> kl info tab a) kargs in let args = List.fold_left (fun args a -> kl info tab a ::args) (m::kargs) rargs in let h = mkApp (mkConstU c, Array.of_list args) in zip_term info tab h s (* Initialization and then normalization *) (* weak reduction *) let whd_val info tab v = term_of_fconstr (kh info tab v []) (* strong reduction *) let norm_val info tab v = kl info tab v let norm_term info tab e t = klt info tab e t let whd_stack infos tab m stk = match m.mark with | Ntrl -> (** No need to perform [kni] nor to unlock updates because every head subterm of [m] is [Ntrl] *) knh infos m stk | Red | Cstr -> let k = kni infos tab m stk in let () = if infos.i_cache.i_share then (* to unlock Zupdates! *) let (m', stk') = k in if not (m == m' && stk == stk') then ignore (zip m' stk') in k let create_infos i_mode ?univs ?evars i_flags i_env = let evars = Option.default (default_evar_handler i_env) evars in let i_univs = Option.default (Environ.universes i_env) univs in let = (Environ.typing_flags i_env).Declarations.share_reduction in let i_cache = {i_env; i_sigma = evars; i_share; i_univs; i_mode} in {i_flags; i_relevances = Range.empty; i_cache} let create_conv_infos = create_infos Conversion let create_clos_infos = create_infos Reduction let oracle_of_infos infos = Environ.oracle infos.i_cache.i_env let infos_with_reds infos reds = { infos with i_flags = reds } let unfold_ref_with_args infos tab fl v = match Table.lookup infos tab fl with | Def def -> Some (def, v) | Primitive op when check_native_args op v -> let c = match [@ocaml.warning "-4"] fl with ConstKey c -> c | _ -> assert false in let rargs, a, nargs, v = get_native_args1 op c v in Some (a, (Zupdate a::(Zprimitive(op,c,rargs,nargs)::v))) | Undef _ | OpaqueDef _ | Primitive _ -> None
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>