Source file tac2stdlib.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
open Names
open Genredexpr
open Tac2expr
open Tac2ffi
open Tac2types
open Tac2extffi
open Proofview.Notations
module Value = Tac2ffi
(** Make a representation with a dummy from function *)
let make_to_repr f = Tac2ffi.make_repr (fun _ -> assert false) f
let return x = Proofview.tclUNIT x
let thaw r f = Tac2ffi.app_fun1 f unit r ()
let uthaw r f = Tac2ffi.app_fun1 (to_fun1 unit r f) unit r ()
let thunk r = fun1 unit r
let to_name c = match Value.to_option Value.to_ident c with
| None -> Anonymous
| Some id -> Name id
let name = make_to_repr to_name
let to_occurrences = function
| ValInt 0 -> AllOccurrences
| ValBlk (0, [| vl |]) -> AllOccurrencesBut (Value.to_list Value.to_int vl)
| ValInt 1 -> NoOccurrences
| ValBlk (1, [| vl |]) -> OnlyOccurrences (Value.to_list Value.to_int vl)
| _ -> assert false
let occurrences = make_to_repr to_occurrences
let to_hyp_location_flag v = match Value.to_int v with
| 0 -> InHyp
| 1 -> InHypTypeOnly
| 2 -> InHypValueOnly
| _ -> assert false
let to_clause v = match Value.to_tuple v with
| [| hyps; concl |] ->
let cast v = match Value.to_tuple v with
| [| hyp; occ; flag |] ->
(Value.to_ident hyp, to_occurrences occ, to_hyp_location_flag flag)
| _ -> assert false
in
let hyps = Value.to_option (fun h -> Value.to_list cast h) hyps in
{ onhyps = hyps; concl_occs = to_occurrences concl; }
| _ -> assert false
let clause = make_to_repr to_clause
let to_red_strength = function
| ValInt 0 -> Norm
| ValInt 1 -> Head
| _ -> assert false
let to_red_flag v = match Value.to_tuple v with
| [| strength; beta; iota; fix; cofix; zeta; delta; const |] ->
{
rStrength = to_red_strength strength;
rBeta = Value.to_bool beta;
rMatch = Value.to_bool iota;
rFix = Value.to_bool fix;
rCofix = Value.to_bool cofix;
rZeta = Value.to_bool zeta;
rDelta = Value.to_bool delta;
rConst = Value.to_list Value.to_reference const;
}
| _ -> assert false
let red_flags = make_to_repr to_red_flag
let pattern_with_occs = pair pattern occurrences
let constr_with_occs = pair constr occurrences
let reference_with_occs = pair reference occurrences
let rec to_intro_pattern v = match Value.to_block v with
| (0, [| b |]) -> IntroForthcoming (Value.to_bool b)
| (1, [| pat |]) -> IntroNaming (to_intro_pattern_naming pat)
| (2, [| act |]) -> IntroAction (to_intro_pattern_action act)
| _ -> assert false
and to_intro_pattern_naming = function
| ValBlk (0, [| id |]) -> IntroIdentifier (Value.to_ident id)
| ValBlk (1, [| id |]) -> IntroFresh (Value.to_ident id)
| ValInt 0 -> IntroAnonymous
| _ -> assert false
and to_intro_pattern_action = function
| ValInt 0 -> IntroWildcard
| ValBlk (0, [| op |]) -> IntroOrAndPattern (to_or_and_intro_pattern op)
| ValBlk (1, [| inj |]) ->
let map ipat = to_intro_pattern ipat in
IntroInjection (Value.to_list map inj)
| ValBlk (2, [| c; ipat |]) ->
let c = Value.to_fun1 Value.unit Value.constr c in
IntroApplyOn (c, to_intro_pattern ipat)
| ValBlk (3, [| b |]) -> IntroRewrite (Value.to_bool b)
| _ -> assert false
and to_or_and_intro_pattern v = match Value.to_block v with
| (0, [| ill |]) ->
IntroOrPattern (Value.to_list to_intro_patterns ill)
| (1, [| il |]) ->
IntroAndPattern (to_intro_patterns il)
| _ -> assert false
and to_intro_patterns il =
Value.to_list to_intro_pattern il
let intro_pattern = make_to_repr to_intro_pattern
let intro_patterns = make_to_repr to_intro_patterns
let to_destruction_arg v = match Value.to_block v with
| (0, [| c |]) ->
let c = uthaw constr_with_bindings c in
ElimOnConstr c
| (1, [| id |]) -> ElimOnIdent (Value.to_ident id)
| (2, [| n |]) -> ElimOnAnonHyp (Value.to_int n)
| _ -> assert false
let destruction_arg = make_to_repr to_destruction_arg
let to_induction_clause v = match Value.to_tuple v with
| [| arg; eqn; as_; in_ |] ->
let arg = to_destruction_arg arg in
let eqn = Value.to_option to_intro_pattern_naming eqn in
let as_ = Value.to_option to_or_and_intro_pattern as_ in
let in_ = Value.to_option to_clause in_ in
(arg, eqn, as_, in_)
| _ ->
assert false
let induction_clause = make_to_repr to_induction_clause
let to_assertion v = match Value.to_block v with
| (0, [| ipat; t; tac |]) ->
let to_tac t = Value.to_fun1 Value.unit Value.unit t in
let ipat = Value.to_option to_intro_pattern ipat in
let t = Value.to_constr t in
let tac = Value.to_option to_tac tac in
AssertType (ipat, t, tac)
| (1, [| id; c |]) ->
AssertValue (Value.to_ident id, Value.to_constr c)
| _ -> assert false
let assertion = make_to_repr to_assertion
let to_multi = function
| ValBlk (0, [| n |]) -> Precisely (Value.to_int n)
| ValBlk (1, [| n |]) -> UpTo (Value.to_int n)
| ValInt 0 -> RepeatStar
| ValInt 1 -> RepeatPlus
| _ -> assert false
let to_rewriting v = match Value.to_tuple v with
| [| orient; repeat; c |] ->
let orient = Value.to_option Value.to_bool orient in
let repeat = to_multi repeat in
let c = uthaw constr_with_bindings c in
(orient, repeat, c)
| _ -> assert false
let rewriting = make_to_repr to_rewriting
let to_debug v = match Value.to_int v with
| 0 -> Hints.Off
| 1 -> Hints.Info
| 2 -> Hints.Debug
| _ -> assert false
let debug = make_to_repr to_debug
let to_strategy v = match Value.to_int v with
| 0 -> Class_tactics.Bfs
| 1 -> Class_tactics.Dfs
| _ -> assert false
let strategy = make_to_repr to_strategy
let to_inversion_kind v = match Value.to_int v with
| 0 -> Inv.SimpleInversion
| 1 -> Inv.FullInversion
| 2 -> Inv.FullInversionClear
| _ -> assert false
let inversion_kind = make_to_repr to_inversion_kind
let to_move_location = function
| ValInt 0 -> Logic.MoveFirst
| ValInt 1 -> Logic.MoveLast
| ValBlk (0, [|id|]) -> Logic.MoveAfter (Value.to_ident id)
| ValBlk (1, [|id|]) -> Logic.MoveBefore (Value.to_ident id)
| _ -> assert false
let move_location = make_to_repr to_move_location
let to_generalize_arg v = match Value.to_tuple v with
| [| c; occs; na |] ->
(Value.to_constr c, to_occurrences occs, to_name na)
| _ -> assert false
let generalize_arg = make_to_repr to_generalize_arg
(** Standard tactics sharing their implementation with Ltac1 *)
open Tac2externals
let define s =
define { mltac_plugin = "coq-core.plugins.ltac2"; mltac_tactic = s }
(** Tactics from Tacexpr *)
let () =
define "tac_intros"
(bool @-> intro_patterns @-> tac unit)
Tac2tactics.intros_patterns
let () =
define "tac_apply"
(bool @-> bool @-> list (thunk constr_with_bindings) @->
option (pair ident (option intro_pattern)) @-> tac unit)
Tac2tactics.apply
let () =
define "tac_elim"
(bool @-> constr_with_bindings @-> option constr_with_bindings @-> tac unit)
Tac2tactics.elim
let () =
define "tac_case"
(bool @-> constr_with_bindings @-> tac unit)
Tac2tactics.general_case_analysis
let () =
define "tac_generalize"
(list generalize_arg @-> tac unit)
Tac2tactics.generalize
let () =
define "tac_assert"
(assertion @-> tac unit)
Tac2tactics.assert_
let tac_enough c tac ipat =
let tac = Option.map (fun o -> Option.map (fun f -> thaw unit f) o) tac in
Tac2tactics.forward false tac ipat c
let () =
define "tac_enough"
(constr @-> option (option (thunk unit)) @-> option intro_pattern @-> tac unit)
tac_enough
let tac_pose na c = Tactics.letin_tac None na c None Locusops.nowhere
let () =
define "tac_pose"
(name @-> constr @-> tac unit)
tac_pose
let tac_set ev p cl =
Proofview.tclEVARMAP >>= fun sigma ->
thaw (pair name constr) p >>= fun (na, c) ->
Tac2tactics.letin_pat_tac ev None na (Some sigma, c) cl
let () =
define "tac_set"
(bool @-> thunk (pair name constr) @-> clause @-> tac unit)
tac_set
let tac_remember ev na c eqpat cl =
let eqpat = Option.default (IntroNaming IntroAnonymous) eqpat in
match eqpat with
| IntroNaming eqpat ->
Proofview.tclEVARMAP >>= fun sigma ->
thaw constr c >>= fun c ->
Tac2tactics.letin_pat_tac ev (Some (true, eqpat)) na (Some sigma, c) cl
| _ ->
Tacticals.tclZEROMSG (Pp.str "Invalid pattern for remember")
let () =
define "tac_remember"
(bool @-> name @-> thunk constr @-> option intro_pattern @-> clause @-> tac unit)
tac_remember
let () =
define "tac_destruct"
(bool @-> list induction_clause @-> option constr_with_bindings @-> tac unit)
(Tac2tactics.induction_destruct false)
let () =
define "tac_induction"
(bool @-> list induction_clause @-> option constr_with_bindings @-> tac unit)
(Tac2tactics.induction_destruct true)
let () =
define "tac_red" (clause @-> tac unit) (Tac2tactics.reduce Red)
let () =
define "tac_hnf" (clause @-> tac unit) (Tac2tactics.reduce Hnf)
let () =
define "tac_simpl"
(red_flags @-> option pattern_with_occs @-> clause @-> tac unit)
Tac2tactics.simpl
let () =
define "tac_cbv" (red_flags @-> clause @-> tac unit) Tac2tactics.cbv
let () =
define "tac_cbn" (red_flags @-> clause @-> tac unit) Tac2tactics.cbn
let () =
define "tac_lazy" (red_flags @-> clause @-> tac unit) Tac2tactics.lazy_
let () =
define "tac_unfold"
(list reference_with_occs @-> clause @-> tac unit)
Tac2tactics.unfold
let () =
define "tac_fold"
(list constr @-> clause @-> tac unit)
(fun args cl -> Tac2tactics.reduce (Fold args) cl)
let () =
define "tac_pattern"
(list constr_with_occs @-> clause @-> tac unit)
Tac2tactics.pattern
let () =
define "tac_vm"
(option pattern_with_occs @-> clause @-> tac unit)
Tac2tactics.vm
let () =
define "tac_native"
(option pattern_with_occs @-> clause @-> tac unit)
Tac2tactics.native
(** Reduction functions *)
let () = define "eval_red" (constr @-> tac constr) Tac2tactics.eval_red
let () = define "eval_hnf" (constr @-> tac constr) Tac2tactics.eval_hnf
let () =
define "eval_simpl"
(red_flags @-> option pattern_with_occs @-> constr @-> tac constr)
Tac2tactics.eval_simpl
let () =
define "eval_cbv" (red_flags @-> constr @-> tac constr) Tac2tactics.eval_cbv
let () =
define "eval_cbn" (red_flags @-> constr @-> tac constr) Tac2tactics.eval_cbn
let () =
define "eval_lazy" (red_flags @-> constr @-> tac constr) Tac2tactics.eval_lazy
let () =
define "eval_unfold"
(list reference_with_occs @-> constr @-> tac constr)
Tac2tactics.eval_unfold
let () =
define "eval_fold"
(list constr @-> constr @-> tac constr)
Tac2tactics.eval_fold
let () =
define "eval_pattern"
(list constr_with_occs @-> constr @-> tac constr)
Tac2tactics.eval_pattern
let () =
define "eval_vm"
(option pattern_with_occs @-> constr @-> tac constr)
Tac2tactics.eval_vm
let () =
define "eval_native"
(option pattern_with_occs @-> constr @-> tac constr)
Tac2tactics.eval_native
let () =
define "tac_change"
(option pattern @-> fun1 (array constr) constr @-> clause @-> tac unit)
Tac2tactics.change
let () =
define "tac_rewrite"
(bool @-> list rewriting @-> clause @-> option (thunk unit) @-> tac unit)
Tac2tactics.rewrite
let () =
define "tac_setoid_rewrite"
(bool @-> uthaw constr_with_bindings @--> occurrences @-> option ident @-> tac unit)
Tac2tactics.setoid_rewrite
let () =
define "tac_inversion"
(inversion_kind @-> destruction_arg @-> option intro_pattern @->
option (list ident) @-> tac unit)
Tac2tactics.inversion
(** Tactics from coretactics *)
let () =
define "tac_reflexivity" (unit @-> tac unit) (fun _ -> Tactics.intros_reflexivity)
let () =
define "tac_move" (ident @-> move_location @-> tac unit) Tactics.move_hyp
let tac_intro id mv =
let mv = Option.default Logic.MoveLast mv in
Tactics.intro_move id mv
let () =
define "tac_intro" (option ident @-> option move_location @-> tac unit) tac_intro
let () =
define "tac_assumption" (unit @-> tac unit) (fun _ -> Tactics.assumption)
let () =
define "tac_transitivity" (constr @-> tac unit)
(fun c -> Tactics.intros_transitivity (Some c))
let () =
define "tac_etransitivity" (unit @-> tac unit)
(fun _ -> Tactics.intros_transitivity None)
let () =
define "tac_cut" (constr @-> tac unit) Tactics.cut
let () =
define "tac_left" (bool @-> bindings @-> tac unit) Tac2tactics.left_with_bindings
let () =
define "tac_right" (bool @-> bindings @-> tac unit) Tac2tactics.right_with_bindings
let () =
define "tac_introsuntil" (qhyp @-> tac unit) Tactics.intros_until
let () =
define "tac_exactnocheck" (constr @-> tac unit) Tactics.exact_no_check
let () =
define "tac_vmcastnocheck" (constr @-> tac unit) Tactics.vm_cast_no_check
let () =
define "tac_nativecastnocheck" (constr @-> tac unit) Tactics.native_cast_no_check
let () =
define "tac_constructor" (bool @-> tac unit) (fun ev -> Tactics.any_constructor ev None)
let () =
define "tac_constructorn" (bool @-> int @-> bindings @-> tac unit)
(fun ev n bnd -> Tac2tactics.constructor_tac ev None n bnd)
let () =
define "tac_specialize"
(constr_with_bindings @-> option intro_pattern @-> tac unit)
Tac2tactics.specialize
let () =
define "tac_symmetry" (clause @-> tac unit) Tac2tactics.symmetry
let () =
define "tac_split" (bool @-> bindings @-> tac unit) Tac2tactics.split_with_bindings
let () =
define "tac_rename" (list (pair ident ident) @-> tac unit) Tactics.rename_hyp
let () =
define "tac_revert" (list ident @-> tac unit) Generalize.revert
let () =
define "tac_admit" (unit @-> tac unit) (fun _ -> Proofview.give_up)
let () =
define "tac_fix" (ident @-> int @-> tac unit) Tactics.fix
let () =
define "tac_cofix" (ident @-> tac unit) Tactics.cofix
let () =
define "tac_clear" (list ident @-> tac unit) Tactics.clear
let () =
define "tac_keep" (list ident @-> tac unit) Tactics.keep
let () =
define "tac_clearbody" (list ident @-> tac unit) Tactics.clear_body
(** Tactics from extratactics *)
let () =
define "tac_discriminate"
(bool @-> option destruction_arg @-> tac unit)
Tac2tactics.discriminate
let () =
define "tac_injection"
(bool @-> option intro_patterns @-> option destruction_arg @-> tac unit)
Tac2tactics.injection
let () =
define "tac_absurd" (constr @-> tac unit) Contradiction.absurd
let () =
define "tac_contradiction"
(option constr_with_bindings @-> tac unit)
Tac2tactics.contradiction
let () =
define "tac_autorewrite"
(bool @-> option (thunk unit) @-> list ident @-> clause @-> tac unit)
(fun all by ids cl -> Tac2tactics.autorewrite ~all by ids cl)
let () =
define "tac_subst" (list ident @-> tac unit) Equality.subst
let () =
define "tac_substall"
(unit @-> tac unit)
(fun _ -> return () >>= fun () -> Equality.subst_all ())
(** Auto *)
let () =
define "tac_trivial"
(debug @-> list (thunk constr) @-> option (list ident) @-> tac unit)
Tac2tactics.trivial
let () =
define "tac_eauto"
(debug @-> option int @-> list (thunk constr) @-> option (list ident) @-> tac unit)
Tac2tactics.eauto
let () =
define "tac_auto"
(debug @-> option int @-> list (thunk constr) @-> option (list ident) @-> tac unit)
Tac2tactics.auto
let () =
define "tac_typeclasses_eauto"
(option strategy @-> option int @-> option (list ident) @-> tac unit)
Tac2tactics.typeclasses_eauto
let () =
define "tac_resolve_tc" (constr @-> tac unit) Class_tactics.resolve_tc
let () =
define "tac_unify" (constr @-> constr @-> tac unit) Tac2tactics.unify
(** Tactics for [Ltac2/TransparentState.v]. *)
let transparent_state = Tac2ffi.repr_ext Tac2ffi.val_transparent_state
let () =
define "current_transparent_state"
(unit @-> tac transparent_state)
Tac2tactics.current_transparent_state
let () =
define "full_transparent_state" (ret transparent_state) TransparentState.full
let () =
define "empty_transparent_state" (ret transparent_state) TransparentState.empty
(** Tactics around Evarconv unification (in [Ltac2/Unification.v]). *)
let () =
define "evarconv_unify"
(transparent_state @-> constr @-> constr @-> tac unit)
Tac2tactics.evarconv_unify