package coq-core

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file generalize.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* module CVars = Vars *)

open Pp
open Util
open Names
open Constr
open Context
open Termops
open Environ
open EConstr
open Vars
open Find_subterm
open Namegen
open Locus
open Proofview.Notations
open Context.Named.Declaration

module NamedDecl = Context.Named.Declaration

(*********************************************)
(*                 Errors                    *)
(*********************************************)

exception AlreadyUsed of Id.t

let error ?loc e =
  Loc.raise ?loc e

exception Unhandled

let wrap_unhandled f e =
  try Some (f e)
  with Unhandled -> None

let tactic_interp_error_handler = function
  | AlreadyUsed id ->
      Id.print id ++ str " is already used."
  | _ -> raise Unhandled

let _ = CErrors.register_handler (wrap_unhandled tactic_interp_error_handler)

let fresh_id_in_env avoid id env =
  let avoid' = ids_of_named_context_val (named_context_val env) in
  let avoid = if Id.Set.is_empty avoid then avoid' else Id.Set.union avoid' avoid in
  next_ident_away_in_goal (Global.env ()) id avoid

(*********************************)
(*  Basic generalization tactics *)
(*********************************)

(* Given a type [T] convertible to [forall x1..xn:A1..An(x1..xn-1), G(x1..xn)]
   and [a1..an:A1..An(a1..an-1)] such that the goal is [G(a1..an)],
   this generalizes [hyps |- goal] into [hyps |- T] *)

(* Given a context [hyps] with domain [x1..xn], possibly with let-ins,
   and well-typed in the current goal, [bring_hyps hyps] generalizes
   [ctxt |- G(x1..xn] into [ctxt |- forall hyps, G(x1..xn)] *)

let bring_hyps hyps =
  if List.is_empty hyps then Tacticals.tclIDTAC
  else
    let hyps = List.rev hyps in
    Proofview.Goal.enter begin fun gl ->
      let env = Proofview.Goal.env gl in
      let sigma = Proofview.Goal.sigma gl in
      let concl = Tacmach.pf_concl gl in
      let newcl = it_mkNamedProd_or_LetIn sigma concl hyps in
      let args = Context.Named.instance mkVar hyps in
      Refine.refine ~typecheck:false begin fun sigma ->
        let (sigma, ev) =
          Evarutil.new_evar env sigma ~principal:true newcl in
        (sigma, mkApp (ev, args))
      end
    end

let revert hyps =
  Proofview.Goal.enter begin fun gl ->
    let ctx = List.map (fun id -> Tacmach.pf_get_hyp id gl) hyps in
      (bring_hyps ctx) <*> (Tactics.clear hyps)
  end

(***************************)
(*  Generalization tactics *)
(***************************)

(* Compute a name for a generalization *)

let generalized_name env sigma c t ids cl = function
  | Name id as na ->
      if Id.List.mem id ids then
        error (AlreadyUsed id);
      na
  | Anonymous ->
      match EConstr.kind sigma c with
      | Var id ->
         (* Keep the name even if not occurring: may be used by intros later *)
          Name id
      | _ ->
          if noccurn sigma 1 cl then Anonymous else
            (* On ne s'etait pas casse la tete : on avait pris pour nom de
               variable la premiere lettre du type, meme si "c" avait ete une
               constante dont on aurait pu prendre directement le nom *)
            named_hd env sigma t Anonymous

(* Abstract over [c] in [forall x1:A1(c)..xi:Ai(c).T(c)] producing
   [forall x, x1:A1(x1), .., xi:Ai(x). T(x)] with all [c] abtracted in [Ai]
   but only those at [occs] in [T] *)

let generalize_goal_gen env sigma ids i ((occs,c,b),na) t cl =
  let open Context.Rel.Declaration in
  let decls,cl = decompose_prod_n_decls sigma i cl in
  let dummy_prod = it_mkProd_or_LetIn mkProp decls in
  let newdecls,_ =
    let arity = Array.length (snd (EConstr.decompose_app sigma c)) in
    let cache = ref Int.Map.empty in
    let eq sigma k t =
      let c =
        try Int.Map.find k !cache
        with Not_found ->
          let c = EConstr.Vars.lift k c in
          let () = cache := Int.Map.add k c !cache in
          c
      in
      (* We use a nounivs equality because generalize morally takes a pattern as
         argument, so we have to ignore freshly generated sorts. *)
      EConstr.eq_constr_nounivs sigma c t
    in
    decompose_prod_n_decls sigma i (replace_term_gen sigma eq arity (mkRel 1) dummy_prod)
  in
  let cl',sigma' = subst_closed_term_occ env sigma (AtOccs occs) c (it_mkProd_or_LetIn cl newdecls) in
  let na = generalized_name env sigma c t ids cl' na in
  let r = Retyping.relevance_of_type env sigma t in
  let decl = match b with
    | None -> LocalAssum (make_annot na r,t)
    | Some b -> LocalDef (make_annot na r,b,t)
  in
  mkProd_or_LetIn decl cl', sigma'

let generalize_goal gl i ((occs,c,b),na as o) (cl,sigma) =
  let open Tacmach in
  let env = pf_env gl in
  let ids = pf_ids_of_hyps gl in
  let sigma, t = Typing.type_of env sigma c in
  generalize_goal_gen env sigma ids i o t cl

let generalize_dep ?(with_let=false) c =
  let open Tacmach in
  let open Tacticals in
  Proofview.Goal.enter begin fun gl ->
  let env = pf_env gl in
  let sign = named_context_val env in
  let sigma = project gl in
  let init_ids = ids_of_named_context (Global.named_context()) in
  let seek (d:named_declaration) (toquant:named_context) =
    if List.exists (fun d' -> occur_var_in_decl env sigma (NamedDecl.get_id d') d) toquant
      || dependent_in_decl sigma c d then
      d::toquant
    else
      toquant in
  let to_quantify = Context.Named.fold_outside seek (named_context_of_val sign) ~init:[] in
  let qhyps = List.map NamedDecl.get_id to_quantify in
  let tothin = List.filter (fun id -> not (Id.List.mem id init_ids)) qhyps in
  let tothin' =
    match EConstr.kind sigma c with
      | Var id when mem_named_context_val id sign && not (Id.List.mem id init_ids)
          -> tothin@[id]
      | _ -> tothin
  in
  let cl' = it_mkNamedProd_or_LetIn sigma (pf_concl gl) to_quantify in
  let is_var, body = match EConstr.kind sigma c with
  | Var id ->
    let body = NamedDecl.get_value (pf_get_hyp id gl) in
    let is_var = Option.is_empty body && not (List.mem id init_ids) in
    if with_let then is_var, body else is_var, None
  | _ -> false, None
  in
  let cl'',evd = generalize_goal gl 0 ((AllOccurrences,c,body),Anonymous)
    (cl',project gl) in
  (* Check that the generalization is indeed well-typed *)
  let evd =
    (* No need to retype for variables, term is statically well-typed *)
    if is_var then evd
    else fst (Typing.type_of env evd cl'')
  in
  let args = Array.to_list (Context.Named.instance mkVar to_quantify) in
  tclTHENLIST
    [ Proofview.Unsafe.tclEVARS evd;
      Tactics.apply_type ~typecheck:false cl'' (if Option.is_empty body then c::args else args);
      Tactics.clear tothin']
  end

(**  *)
let generalize_gen_let lconstr = Proofview.Goal.enter begin fun gl ->
  let env = Proofview.Goal.env gl in
  let newcl, evd =
    List.fold_right_i (generalize_goal gl) 0 lconstr
      (Tacmach.pf_concl gl,Tacmach.project gl)
  in
  let (evd, _) = Typing.type_of env evd newcl in
  let map ((_, c, b),_) = if Option.is_empty b then Some c else None in
  Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evd)
  (Tactics.apply_type ~typecheck:false newcl (List.map_filter map lconstr))
end

let new_generalize_gen_let lconstr =
  Proofview.Goal.enter begin fun gl ->
    let sigma = Proofview.Goal.sigma gl in
    let concl = Proofview.Goal.concl gl in
    let env = Proofview.Goal.env gl in
    let ids = Tacmach.pf_ids_of_hyps gl in
    let newcl, sigma, args =
      List.fold_right_i
        (fun i ((_,c,b),_ as o) (cl, sigma, args) ->
          let sigma, t = Typing.type_of env sigma c in
          let args = if Option.is_empty b then c :: args else args in
          let cl, sigma = generalize_goal_gen env sigma ids i o t cl in
          (cl, sigma, args))
        0 lconstr (concl, sigma, [])
    in
    Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma)
        (Refine.refine ~typecheck:false begin fun sigma ->
          let (sigma, ev) = Evarutil.new_evar env sigma ~principal:true newcl in
          (sigma, applist (ev, args))
         end)
  end

let generalize_gen lconstr =
  generalize_gen_let (List.map (fun (occs_c,na) ->
    let (occs,c) = Redexpr.out_with_occurrences occs_c in
    (occs,c,None),na) lconstr)

let new_generalize_gen lconstr =
  new_generalize_gen_let (List.map (fun ((occs,c),na) ->
    (occs,c,None),na) lconstr)

let generalize l =
  new_generalize_gen_let (List.map (fun c -> ((AllOccurrences,c,None),Anonymous)) l)

(* Faudra-t-il une version avec plusieurs args de generalize_dep ?
Cela peut-être troublant de faire "Generalize Dependent H n" dans
"n:nat; H:n=n |- P(n)" et d'échouer parce que H a disparu après la
généralisation dépendante par n.

let quantify lconstr =
 List.fold_right
   (fun com tac -> tclTHEN tac (tactic_com generalize_dep c))
   lconstr
   tclIDTAC
*)

let coq_eq env sigma       = Evd.fresh_global env sigma Coqlib.(lib_ref "core.eq.type")
let coq_eq_refl env sigma  = Evd.fresh_global env sigma Coqlib.(lib_ref "core.eq.refl")

let coq_heq_ref        = lazy (Coqlib.lib_ref "core.JMeq.type")
let coq_heq env sigma      = Evd.fresh_global env sigma (Lazy.force coq_heq_ref)
let coq_heq_refl env sigma = Evd.fresh_global env sigma (Coqlib.lib_ref "core.JMeq.refl")
(* let coq_heq_refl = lazy (glob (lib_ref "core.JMeq.refl")) *)

let mkEq env sigma t x y =
  let sigma, eq = coq_eq env sigma in
  sigma, mkApp (eq, [| t; x; y |])

let mkRefl env sigma t x =
  let sigma, refl = coq_eq_refl env sigma in
  sigma, mkApp (refl, [| t; x |])

let mkHEq env sigma t x u y =
  let sigma, c = coq_heq env sigma in
  sigma, mkApp (c,[| t; x; u; y |])

let mkHRefl env sigma t x =
  let sigma, c = coq_heq_refl env sigma in
  sigma, mkApp (c, [| t; x |])

let lift_togethern n l =
  let l', _ =
    List.fold_right
      (fun x (acc, n) ->
        (lift n x :: acc, succ n))
      l ([], n)
  in l'

let lift_list l = List.map (lift 1) l

let ids_of_constr env sigma ?(all=false) vars c =
  let rec aux vars c =
    match EConstr.kind sigma c with
    | Var id -> Id.Set.add id vars
    | App (f, args) ->
        (match EConstr.kind sigma f with
        | Construct ((ind,_),_)
        | Ind (ind,_) ->
            let (mib,mip) = Inductive.lookup_mind_specif env ind in
              Array.fold_left_from
                (if all then 0 else mib.Declarations.mind_nparams)
                aux vars args
        | _ -> EConstr.fold sigma aux vars c)
    | _ -> EConstr.fold sigma aux vars c
  in aux vars c

let decompose_indapp env sigma f args =
  match EConstr.kind sigma f with
  | Construct ((ind,_),_)
  | Ind (ind,_) ->
      let (mib,mip) = Inductive.lookup_mind_specif env ind in
      let first = mib.Declarations.mind_nparams_rec in
      let pars, args = Array.chop first args in
        mkApp (f, pars), args
  | _ -> f, args

let mk_term_eq homogeneous env sigma ty t ty' t' =
  if homogeneous then
    let sigma, eq = mkEq env sigma ty t t' in
    let sigma, refl = mkRefl env sigma ty' t' in
    sigma, (eq, refl)
  else
    let sigma, heq = mkHEq env sigma ty t ty' t' in
    let sigma, hrefl = mkHRefl env sigma ty' t' in
    sigma, (heq, hrefl)

let make_abstract_generalize env id typ concl dep ctx body c eqs args refls =
  let open Context.Rel.Declaration in
  Refine.refine ~typecheck:true begin fun sigma ->
  let eqslen = List.length eqs in
    (* Abstract by the "generalized" hypothesis equality proof if necessary. *)
  let sigma, abshypeq, abshypt =
    if dep then
      let ty = lift 1 c in
      let homogeneous = Reductionops.is_conv env sigma ty typ in
      let sigma, (eq, refl) =
        mk_term_eq homogeneous (push_rel_context ctx env) sigma ty (mkRel 1) typ (mkVar id) in
      sigma, mkProd (make_annot Anonymous Sorts.Relevant, eq, lift 1 concl), [| refl |]
    else sigma, concl, [||]
  in
    (* Abstract by equalities *)
  let eqs = lift_togethern 1 eqs in (* lift together and past genarg *)
  let abseqs = it_mkProd_or_LetIn (lift eqslen abshypeq)
      (List.map (fun x -> LocalAssum (make_annot Anonymous Sorts.Relevant, x)) eqs)
  in
  let r = Sorts.Relevant in (* TODO relevance *)
  let decl = match body with
    | None -> LocalAssum (make_annot (Name id) r, c)
    | Some body -> LocalDef (make_annot (Name id) r, body, c)
  in
    (* Abstract by the "generalized" hypothesis. *)
  let genarg = mkProd_or_LetIn decl abseqs in
    (* Abstract by the extension of the context *)
  let genctyp = it_mkProd_or_LetIn genarg ctx in
    (* The goal will become this product. *)
  let (sigma, genc) = Evarutil.new_evar env sigma ~principal:true genctyp in
    (* Apply the old arguments giving the proper instantiation of the hyp *)
  let instc = mkApp (genc, Array.of_list args) in
    (* Then apply to the original instantiated hyp. *)
  let instc = Option.cata (fun _ -> instc) (mkApp (instc, [| mkVar id |])) body in
    (* Apply the reflexivity proofs on the indices. *)
  let appeqs = mkApp (instc, Array.of_list refls) in
    (* Finally, apply the reflexivity proof for the original hyp, to get a term of type gl again. *)
  (sigma, mkApp (appeqs, abshypt))
  end

let hyps_of_vars env sigma sign nogen hyps =
  if Id.Set.is_empty hyps then []
  else
    let (_,lh) =
      Context.Named.fold_inside
        (fun (hs,hl) d ->
          let x = NamedDecl.get_id d in
          if Id.Set.mem x nogen then (hs,hl)
          else if Id.Set.mem x hs then (hs,x::hl)
          else
            let xvars = global_vars_set_of_decl env sigma d in
              if not (Id.Set.is_empty (Id.Set.diff xvars hs)) then
                (Id.Set.add x hs, x :: hl)
              else (hs, hl))
        ~init:(hyps,[])
        sign
    in lh

exception Seen

let linear env sigma vars args =
  let seen = ref vars in
    try
      Array.iter (fun i ->
        let rels = ids_of_constr env sigma ~all:true Id.Set.empty i in
        let seen' =
          Id.Set.fold (fun id acc ->
            if Id.Set.mem id acc then raise Seen
            else Id.Set.add id acc)
            rels !seen
        in seen := seen')
        args;
      true
    with Seen -> false

let is_defined_variable env id =
  env |> lookup_named id |> is_local_def

let abstract_args gl generalize_vars dep id defined f args =
  let open Context.Rel.Declaration in
  let sigma = Tacmach.project gl in
  let env = Tacmach.pf_env gl in
  let concl = Tacmach.pf_concl gl in
  let hyps = Proofview.Goal.hyps gl in
  let dep = dep || local_occur_var sigma id concl in
  let avoid = ref Id.Set.empty in
  let get_id name =
    let id = fresh_id_in_env !avoid (match name with Name n -> n | Anonymous -> Id.of_string "gen_x") env in
      avoid := Id.Set.add id !avoid; id
  in
    (* Build application generalized w.r.t. the argument plus the necessary eqs.
       From env |- c : forall G, T and args : G we build
       (T[G'], G' : ctx, env ; G' |- args' : G, eqs := G'_i = G_i, refls : G' = G, vars to generalize)

       eqs are not lifted w.r.t. each other yet. (* will be needed when going to dependent indexes *)
    *)
  let aux (sigma, prod, ctx, ctxenv, c, args, eqs, refls, nongenvars, vars) arg =
    let name, ty_relevance, ty, arity =
      let rel, c = Reductionops.whd_decompose_prod_n env sigma 1 prod in
      let ({binder_name=na;binder_relevance=r},t) = List.hd rel in
      na, r, t, c
    in
    let argty = Retyping.get_type_of env sigma arg in
    let sigma, ty = Evarsolve.refresh_universes (Some true) env sigma ty in
    let lenctx = List.length ctx in
    let liftargty = lift lenctx argty in
    let leq = constr_cmp ctxenv sigma Conversion.CUMUL liftargty ty in
      match EConstr.kind sigma arg with
      | Var id when not (is_defined_variable env id) && leq && not (Id.Set.mem id nongenvars) ->
          (sigma, subst1 arg arity, ctx, ctxenv, mkApp (c, [|arg|]), args, eqs, refls,
          Id.Set.add id nongenvars, Id.Set.remove id vars)
      | _ ->
          let name = get_id name in
          let decl = LocalAssum (make_annot (Name name) ty_relevance, ty) in
          let ctx = decl :: ctx in
          let c' = mkApp (lift 1 c, [|mkRel 1|]) in
          let args = arg :: args in
          let liftarg = lift (List.length ctx) arg in
          let sigma, eq, refl =
            if leq then
              let sigma, eq = mkEq env  sigma (lift 1 ty) (mkRel 1) liftarg in
              let sigma, refl = mkRefl env sigma (lift (-lenctx) ty) arg in
              sigma, eq, refl
            else
              let sigma, eq = mkHEq env sigma (lift 1 ty) (mkRel 1) liftargty liftarg in
              let sigma, refl = mkHRefl env sigma argty arg in
              sigma, eq, refl
          in
          let eqs = eq :: lift_list eqs in
          let refls = refl :: refls in
          let argvars = ids_of_constr env sigma vars arg in
            (sigma, arity, ctx, push_rel decl ctxenv, c', args, eqs, refls,
            nongenvars, Id.Set.union argvars vars)
  in
  let f', args' = decompose_indapp env sigma f args in
  let dogen, f', args' =
    let parvars = ids_of_constr env sigma ~all:true Id.Set.empty f' in
      if not (linear env sigma parvars args') then true, f, args
      else
        match Array.findi (fun i x -> not (isVar sigma x) || is_defined_variable env (destVar sigma x)) args' with
        | None -> false, f', args'
        | Some nonvar ->
            let before, after = Array.chop nonvar args' in
              true, mkApp (f', before), after
  in
    if dogen then
      let tyf' = Retyping.get_type_of env sigma f' in
      let sigma, arity, ctx, ctxenv, c', args, eqs, refls, nogen, vars =
        Array.fold_left aux (sigma, tyf',[],env,f',[],[],[],Id.Set.empty,Id.Set.empty) args'
      in
      let args, refls = List.rev args, List.rev refls in
      let vars =
        if generalize_vars then
          let nogen = Id.Set.add id nogen in
            hyps_of_vars env sigma hyps nogen vars
        else []
      in
      let body, c' =
        if defined then Some c', Retyping.get_type_of ctxenv sigma c'
        else None, c'
      in
      let typ = Tacmach.pf_get_hyp_typ id gl in
      let tac = make_abstract_generalize env id typ concl dep ctx body c' eqs args refls in
      let tac = Proofview.Unsafe.tclEVARS sigma <*> tac in
        Some (tac, dep, succ (List.length ctx), vars)
    else None

let abstract_generalize ?(generalize_vars=true) ?(force_dep=false) id =
  let open Context.Named.Declaration in
  Proofview.Goal.enter begin fun gl ->
  Coqlib.(check_required_library jmeq_module_name);
  let sigma = Tacmach.project gl in
  let (f, args, def, id, oldid) =
    let oldid = Tacmach.pf_get_new_id id gl in
      match Tacmach.pf_get_hyp id gl with
      | LocalAssum (_,t) -> let f, args = decompose_app sigma t in
                (f, args, false, id, oldid)
      | LocalDef (_,t,_) ->
          let f, args = decompose_app sigma t in
          (f, args, true, id, oldid)
  in
  if Array.is_empty args then Proofview.tclUNIT ()
  else
    let newc = abstract_args gl generalize_vars force_dep id def f args in
      match newc with
      | None -> Proofview.tclUNIT ()
      | Some (tac, dep, n, vars) ->
          let tac =
            if dep then
              Tacticals.tclTHENLIST [
                tac;
                 Tactics.rename_hyp [(id, oldid)]; Tacticals.tclDO n Tactics.intro;
                 generalize_dep ~with_let:true (mkVar oldid)]
            else Tacticals.tclTHENLIST [
                    tac;
                    Tactics.clear [id];
                    Tacticals.tclDO n Tactics.intro]
          in
            if List.is_empty vars then tac
            else Tacticals.tclTHEN tac
              (Tacticals.tclFIRST
                [revert vars ;
                 Tacticals.tclMAP (fun id ->
                      Tacticals.tclTRY (generalize_dep ~with_let:true (mkVar id))) vars])
  end
OCaml

Innovation. Community. Security.