package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.18.0.tar.gz
md5=8d852367b54f095d9fbabd000304d450
sha512=46922d5f2eb6802a148a52fd3e7f0be8370c93e7bc33cee05cf4a2044290845b10ccddbaa306f29c808e7c5019700763e37e45ff6deb507b874a4348010fed50
doc/src/coq-core.kernel/nativevalues.ml.html
Source file nativevalues.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open CErrors open Names open Values open Constr (** This module defines the representation of values internally used by the native compiler *) type ('a,'b) eq = ('a,'b) Util.eq = Refl : ('a,'a) eq type t let t_eq : (t, t -> t) eq = Obj.magic () let t_eq2 : (t, t -> t -> t) eq = Obj.magic () let t_eq3 : (t, t -> t -> t -> t) eq = Obj.magic () let t_eq4 : (t, t -> t -> t -> t -> t) eq = Obj.magic () let cast_gen (type a) (type b) (e:(a,b) eq) (x:a) : b = let Refl = e in x let apply (f:t) : t -> t = cast_gen t_eq f (* Writing this as [apply2 f x y = apply (apply f x) y] seems to confuse ocaml and it produces less efficient code. When written with a direct [cast_gen t_eq2] ocaml seems smart enough to fully reduce it where used. *) let apply2 (f:t) : t -> t -> t = cast_gen t_eq2 f let apply3 (f:t) : t -> t -> t -> t = cast_gen t_eq3 f let apply4 (f:t) : t -> t -> t -> t -> t = cast_gen t_eq4 f let of_fun (f:t->t) : t = cast_gen (sym t_eq) f let eta_expand f = of_fun (fun x -> apply f x) type accumulator (* = t (* a block [0:code;atom;arguments] *) *) type tag = int type arity = int type reloc_table = (tag * arity) array type annot_sw = { asw_ind : inductive; asw_ci : case_info; asw_reloc : reloc_table; asw_finite : bool; asw_prefix : string } (* We compare only what is relevant for generation of ml code *) let eq_annot_sw asw1 asw2 = Ind.CanOrd.equal asw1.asw_ind asw2.asw_ind && String.equal asw1.asw_prefix asw2.asw_prefix open Hashset.Combine let hash_annot_sw asw = combine (Ind.CanOrd.hash asw.asw_ind) (String.hash asw.asw_prefix) type sort_annot = string * int type rec_pos = int array let eq_rec_pos = Array.equal Int.equal type vcofix = CofixLazy of t | CofixValue of t type atom = | Arel of int | Aconstant of pconstant | Aind of pinductive | Asort of Sorts.t | Avar of Id.t | Acase of annot_sw * accumulator * t * t | Afix of t array * t array * rec_pos * int (* types, bodies, rec_pos, pos *) | Acofix of t array * t array * int * vcofix | Aevar of Evar.t * t array | Aproj of (inductive * int) * accumulator type symbol = | SymbValue of t | SymbSort of Sorts.t | SymbName of Name.t | SymbConst of Constant.t | SymbMatch of annot_sw | SymbInd of inductive | SymbEvar of Evar.t | SymbLevel of Univ.Level.t | SymbProj of (inductive * int) type block type symbols = symbol array let empty_symbols = [| |] let accumulate_tag = 0 (** Unique pointer used to drive the accumulator function *) let ret_accu = Obj.repr (ref ()) type accu_val = { mutable acc_atm : atom; acc_arg : t list } external set_tag : Obj.t -> int -> unit = "coq_obj_set_tag" let mk_accu (a : atom) : t = let rec accumulate data x = if Obj.repr x == ret_accu then Obj.repr data else let data = { data with acc_arg = x :: data.acc_arg } in let ans = Obj.repr (accumulate data) in let () = set_tag ans accumulate_tag in ans in let acc = { acc_atm = a; acc_arg = [] } in let ans = Obj.repr (accumulate acc) in (** FIXME: use another representation for accumulators, this causes naked pointers. *) let () = set_tag ans accumulate_tag in (Obj.obj ans : t) let get_accu (k : accumulator) = (Obj.magic k : Obj.t -> accu_val) ret_accu let mk_rel_accu i = mk_accu (Arel i) let rel_tbl_size = 100 let rel_tbl_init = ref false (* Initialize the table lazily not to generate naked pointers at startup *) let rel_tbl = Array.make rel_tbl_size (Obj.magic 0 : t) let mk_rel_accu i = if i < rel_tbl_size then let () = if not !rel_tbl_init then begin for i = 0 to rel_tbl_size - 1 do rel_tbl.(i) <- mk_rel_accu i done; rel_tbl_init := true end in rel_tbl.(i) else mk_rel_accu i let mk_rels_accu lvl len = Array.init len (fun i -> mk_rel_accu (lvl + i)) let napply (f:t) (args: t array) = Array.fold_left (fun f a -> apply f a) f args let mk_constant_accu kn u = mk_accu (Aconstant (kn,Univ.Instance.of_array u)) let mk_ind_accu ind u = mk_accu (Aind (ind,Univ.Instance.of_array u)) let mk_sort_accu s u = let open Sorts in match s with | SProp | Prop | Set -> mk_accu (Asort s) | Type s -> let u = Univ.Instance.of_array u in let s = Sorts.sort_of_univ (Univ.subst_instance_universe u s) in mk_accu (Asort s) | QSort (q, s) -> let u = Univ.Instance.of_array u in let s = Sorts.qsort q (Univ.subst_instance_universe u s) in mk_accu (Asort s) let mk_var_accu id = mk_accu (Avar id) let mk_sw_accu annot c p ac = mk_accu (Acase(annot,c,p,ac)) let prod_tag = (* We rely on the tag of Vprod! *) let () = assert (Obj.tag (Obj.repr (Vprod (Anonymous, Obj.magic 0, Obj.magic 0))) == 2) in 2 let mk_prod s dom codom = (* [Prod (s, dom, codom)] is coded as [tag:0|[tag:2|s; dom; codom]] This looks like a PArray but has a tag distinct from all PArray values on the inner block. This cannot be an accumulator because all accumulators have length >= 2. *) let block = Obj.repr (Vprod (s, dom, codom)) in (Obj.magic (ref block) : t) let mk_evar_accu ev args = mk_accu (Aevar (ev, args)) let mk_proj_accu kn c = mk_accu (Aproj (kn,c)) let atom_of_accu (k:accumulator) = (get_accu k).acc_atm let set_atom_of_accu (k:accumulator) (a:atom) = (get_accu k).acc_atm <- a let accu_nargs (k:accumulator) = List.length (get_accu k).acc_arg let args_of_accu (k:accumulator) = (get_accu k).acc_arg let mk_fix_accu rec_pos pos types bodies = mk_accu (Afix(types,bodies,rec_pos, pos)) let mk_cofix_accu pos types norm = mk_accu (Acofix (types, norm, pos, CofixLazy (Obj.magic 0 : t))) let upd_cofix (cofix :t) (cofix_fun : t) = let atom = atom_of_accu (Obj.magic cofix) in match atom with | Acofix (typ,norm,pos,_) -> set_atom_of_accu (Obj.magic cofix) (Acofix (typ, norm, pos, CofixLazy cofix_fun)) | _ -> assert false let force_cofix (cofix : t) = let accu = (Obj.magic cofix : accumulator) in let atom = atom_of_accu accu in match atom with | Acofix (typ, norm, pos, CofixLazy f) -> let args = args_of_accu accu in let f = List.fold_right (fun arg f -> apply f arg) args f in let v = apply f (Obj.magic ()) in let () = set_atom_of_accu accu (Acofix (typ, norm, pos, CofixValue v)) in v | Acofix (_, _, _, CofixValue v) -> v | _ -> cofix let mk_const tag = Obj.magic tag let mk_block tag args = let nargs = Array.length args in let r = Obj.new_block tag nargs in for i = 0 to nargs - 1 do Obj.set_field r i (Obj.magic args.(i)) done; (Obj.magic r : t) (* Two instances of dummy_value should not be pointer equal, otherwise comparing them as terms would succeed *) let dummy_value : unit -> t = fun () -> of_fun (fun _ -> anomaly ~label:"native" (Pp.str "Evaluation failed.")) let cast_accu v = (Obj.magic v:accumulator) [@@ocaml.inline always] let mk_int (x : int) = (Obj.magic x : t) [@@ocaml.inline always] (* Coq's booleans are reversed... *) let mk_bool (b : bool) = (Obj.magic (not b) : t) [@@ocaml.inline always] let mk_uint (x : Uint63.t) = (Obj.magic x : t) [@@ocaml.inline always] let mk_float (x : Float64.t) = (Obj.magic x : t) [@@ocaml.inline always] let block_size (b:block) = Obj.size (Obj.magic b) let block_field (b:block) i = (Obj.magic (Obj.field (Obj.magic b) i) : t) let block_tag (b:block) = Obj.tag (Obj.magic b) type kind = (t, accumulator, t -> t, Name.t * t * t, Empty.t, Empty.t, block) Values.kind let kind_of_value (v:t) = let o = Obj.repr v in if Obj.is_int o then Vconst (Obj.magic v) else let tag = Obj.tag o in if Int.equal tag accumulate_tag then if Int.equal (Obj.size o) 1 then let w = Obj.field o 0 in let tag = Obj.tag w in if Int.equal tag prod_tag then Obj.magic w else Varray (Obj.magic v) else Vaccu (Obj.magic v) else if Int.equal tag Obj.custom_tag then Vint64 (Obj.magic v) else if Int.equal tag Obj.double_tag then Vfloat64 (Obj.magic v) else if (tag < Obj.lazy_tag) then Vblock (Obj.magic v) else (* assert (tag = Obj.closure_tag || tag = Obj.infix_tag); or ??? what is 1002*) Vfun (apply v) (** Support for machine integers *) let is_int (x:t) = let o = Obj.repr x in Obj.is_int o || Int.equal (Obj.tag o) Obj.custom_tag [@@ocaml.inline always] let val_to_int (x:t) = (Obj.magic x : int) [@@ocaml.inline always] let to_uint (x:t) = (Obj.magic x : Uint63.t) [@@ocaml.inline always] let no_check_head0 x = mk_uint (Uint63.head0 (to_uint x)) [@@ocaml.inline always] let head0 accu x = if is_int x then no_check_head0 x else apply accu x let no_check_tail0 x = mk_uint (Uint63.tail0 (to_uint x)) [@@ocaml.inline always] let tail0 accu x = if is_int x then no_check_tail0 x else apply accu x let no_check_add x y = mk_uint (Uint63.add (to_uint x) (to_uint y)) [@@ocaml.inline always] let add accu x y = if is_int x && is_int y then no_check_add x y else apply2 accu x y let no_check_sub x y = mk_uint (Uint63.sub (to_uint x) (to_uint y)) [@@ocaml.inline always] let sub accu x y = if is_int x && is_int y then no_check_sub x y else apply2 accu x y let no_check_mul x y = mk_uint (Uint63.mul (to_uint x) (to_uint y)) [@@ocaml.inline always] let mul accu x y = if is_int x && is_int y then no_check_mul x y else apply2 accu x y let no_check_div x y = mk_uint (Uint63.div (to_uint x) (to_uint y)) [@@ocaml.inline always] let div accu x y = if is_int x && is_int y then no_check_div x y else apply2 accu x y let no_check_rem x y = mk_uint (Uint63.rem (to_uint x) (to_uint y)) [@@ocaml.inline always] let rem accu x y = if is_int x && is_int y then no_check_rem x y else apply2 accu x y let no_check_divs x y = mk_uint (Uint63.divs (to_uint x) (to_uint y)) [@@ocaml.inline always] let divs accu x y = if is_int x && is_int y then no_check_divs x y else apply2 accu x y let no_check_rems x y = mk_uint (Uint63.rems (to_uint x) (to_uint y)) [@@ocaml.inline always] let rems accu x y = if is_int x && is_int y then no_check_rems x y else apply2 accu x y let no_check_l_sr x y = mk_uint (Uint63.l_sr (to_uint x) (to_uint y)) [@@ocaml.inline always] let l_sr accu x y = if is_int x && is_int y then no_check_l_sr x y else apply2 accu x y let no_check_l_sl x y = mk_uint (Uint63.l_sl (to_uint x) (to_uint y)) [@@ocaml.inline always] let l_sl accu x y = if is_int x && is_int y then no_check_l_sl x y else apply2 accu x y let no_check_a_sr x y = mk_uint (Uint63.a_sr (to_uint x) (to_uint y)) [@@ocaml.inline always] let a_sr accu x y = if is_int x && is_int y then no_check_a_sr x y else apply2 accu x y let no_check_l_and x y = mk_uint (Uint63.l_and (to_uint x) (to_uint y)) [@@ocaml.inline always] let l_and accu x y = if is_int x && is_int y then no_check_l_and x y else apply2 accu x y let no_check_l_xor x y = mk_uint (Uint63.l_xor (to_uint x) (to_uint y)) [@@ocaml.inline always] let l_xor accu x y = if is_int x && is_int y then no_check_l_xor x y else apply2 accu x y let no_check_l_or x y = mk_uint (Uint63.l_or (to_uint x) (to_uint y)) [@@ocaml.inline always] let l_or accu x y = if is_int x && is_int y then no_check_l_or x y else apply2 accu x y [@@@ocaml.warning "-37"] type coq_carry = | Caccu of t | C0 of t | C1 of t type coq_pair = | Paccu of t | PPair of t * t let mkCarry b i = if b then (Obj.magic (C1(mk_uint i)):t) else (Obj.magic (C0(mk_uint i)):t) let no_check_addc x y = let s = Uint63.add (to_uint x) (to_uint y) in mkCarry (Uint63.lt s (to_uint x)) s [@@ocaml.inline always] let addc accu x y = if is_int x && is_int y then no_check_addc x y else apply2 accu x y let no_check_subc x y = let s = Uint63.sub (to_uint x) (to_uint y) in mkCarry (Uint63.lt (to_uint x) (to_uint y)) s [@@ocaml.inline always] let subc accu x y = if is_int x && is_int y then no_check_subc x y else apply2 accu x y let no_check_addCarryC x y = let s = Uint63.add (Uint63.add (to_uint x) (to_uint y)) (Uint63.of_int 1) in mkCarry (Uint63.le s (to_uint x)) s [@@ocaml.inline always] let addCarryC accu x y = if is_int x && is_int y then no_check_addCarryC x y else apply2 accu x y let no_check_subCarryC x y = let s = Uint63.sub (Uint63.sub (to_uint x) (to_uint y)) (Uint63.of_int 1) in mkCarry (Uint63.le (to_uint x) (to_uint y)) s [@@ocaml.inline always] let subCarryC accu x y = if is_int x && is_int y then no_check_subCarryC x y else apply2 accu x y let of_pair (x, y) = (Obj.magic (PPair(mk_uint x, mk_uint y)):t) [@@ocaml.inline always] let no_check_mulc x y = of_pair (Uint63.mulc (to_uint x) (to_uint y)) [@@ocaml.inline always] let mulc accu x y = if is_int x && is_int y then no_check_mulc x y else apply2 accu x y let no_check_diveucl x y = let i1, i2 = to_uint x, to_uint y in of_pair(Uint63.div i1 i2, Uint63.rem i1 i2) [@@ocaml.inline always] let diveucl accu x y = if is_int x && is_int y then no_check_diveucl x y else apply2 accu x y let no_check_div21 x y z = let i1, i2, i3 = to_uint x, to_uint y, to_uint z in of_pair (Uint63.div21 i1 i2 i3) [@@ocaml.inline always] let div21 accu x y z = if is_int x && is_int y && is_int z then no_check_div21 x y z else apply3 accu x y z let no_check_addMulDiv x y z = let p, i, j = to_uint x, to_uint y, to_uint z in mk_uint (Uint63.addmuldiv p i j) [@@ocaml.inline always] let addMulDiv accu x y z = if is_int x && is_int y && is_int z then no_check_addMulDiv x y z else apply3 accu x y z [@@@ocaml.warning "-34"] type coq_bool = | Baccu of t | Btrue | Bfalse type coq_cmp = | CmpAccu of t | CmpEq | CmpLt | CmpGt let no_check_eq x y = mk_bool (Uint63.equal (to_uint x) (to_uint y)) [@@ocaml.inline always] let eq accu x y = if is_int x && is_int y then no_check_eq x y else apply2 accu x y let no_check_lt x y = mk_bool (Uint63.lt (to_uint x) (to_uint y)) [@@ocaml.inline always] let lt accu x y = if is_int x && is_int y then no_check_lt x y else apply2 accu x y let no_check_le x y = mk_bool (Uint63.le (to_uint x) (to_uint y)) [@@ocaml.inline always] let le accu x y = if is_int x && is_int y then no_check_le x y else apply2 accu x y let no_check_lts x y = mk_bool (Uint63.lts (to_uint x) (to_uint y)) [@@ocaml.inline always] let lts accu x y = if is_int x && is_int y then no_check_lts x y else apply2 accu x y let no_check_les x y = mk_bool (Uint63.les (to_uint x) (to_uint y)) [@@ocaml.inline always] let les accu x y = if is_int x && is_int y then no_check_les x y else apply2 accu x y let no_check_compare x y = match Uint63.compare (to_uint x) (to_uint y) with | x when x < 0 -> (Obj.magic CmpLt:t) | 0 -> (Obj.magic CmpEq:t) | _ -> (Obj.magic CmpGt:t) let compare accu x y = if is_int x && is_int y then no_check_compare x y else apply2 accu x y let no_check_compares x y = match Uint63.compares (to_uint x) (to_uint y) with | x when x < 0 -> (Obj.magic CmpLt:t) | 0 -> (Obj.magic CmpEq:t) | _ -> (Obj.magic CmpGt:t) let compares accu x y = if is_int x && is_int y then no_check_compares x y else apply2 accu x y let print x = Printf.fprintf stderr "%s" (Uint63.to_string (to_uint x)); flush stderr; x (** Support for machine floating point values *) external is_float : t -> bool = "coq_is_double" [@@noalloc] let to_float (x:t) = (Obj.magic x : Float64.t) [@@ocaml.inline always] let no_check_fopp x = mk_float (Float64.opp (to_float x)) [@@ocaml.inline always] let fopp accu x = if is_float x then no_check_fopp x else apply accu x let no_check_fabs x = mk_float (Float64.abs (to_float x)) [@@ocaml.inline always] let fabs accu x = if is_float x then no_check_fabs x else apply accu x let no_check_feq x y = mk_bool (Float64.eq (to_float x) (to_float y)) let feq accu x y = if is_float x && is_float y then no_check_feq x y else apply2 accu x y let no_check_flt x y = mk_bool (Float64.lt (to_float x) (to_float y)) let flt accu x y = if is_float x && is_float y then no_check_flt x y else apply2 accu x y let no_check_fle x y = mk_bool (Float64.le (to_float x) (to_float y)) let fle accu x y = if is_float x && is_float y then no_check_fle x y else apply2 accu x y type coq_fcmp = | CFcmpAccu of t | CFcmpEq | CFcmpLt | CFcmpGt | CFcmpNotComparable let no_check_fcompare x y = let c = Float64.compare (to_float x) (to_float y) in (Obj.magic c:t) [@@ocaml.inline always] let fcompare accu x y = if is_float x && is_float y then no_check_fcompare x y else apply2 accu x y let no_check_fequal x y = mk_bool (Float64.equal (to_float x) (to_float y)) let fequal accu x y = if is_float x && is_float y then no_check_fequal x y else apply2 accu x y type coq_fclass = | CFclassAccu of t | CFclassPNormal | CFclassNNormal | CFclassPSubn | CFclassNSubn | CFclassPZero | CFclassNZero | CFclassPInf | CFclassNInf | CFclassNaN let no_check_fclassify x = let c = Float64.classify (to_float x) in (Obj.magic c:t) [@@ocaml.inline always] let fclassify accu x = if is_float x then no_check_fclassify x else apply accu x let no_check_fadd x y = mk_float (Float64.add (to_float x) (to_float y)) [@@ocaml.inline always] let fadd accu x y = if is_float x && is_float y then no_check_fadd x y else apply2 accu x y let no_check_fsub x y = mk_float (Float64.sub (to_float x) (to_float y)) [@@ocaml.inline always] let fsub accu x y = if is_float x && is_float y then no_check_fsub x y else apply2 accu x y let no_check_fmul x y = mk_float (Float64.mul (to_float x) (to_float y)) [@@ocaml.inline always] let fmul accu x y = if is_float x && is_float y then no_check_fmul x y else apply2 accu x y let no_check_fdiv x y = mk_float (Float64.div (to_float x) (to_float y)) [@@ocaml.inline always] let fdiv accu x y = if is_float x && is_float y then no_check_fdiv x y else apply2 accu x y let no_check_fsqrt x = mk_float (Float64.sqrt (to_float x)) [@@ocaml.inline always] let fsqrt accu x = if is_float x then no_check_fsqrt x else apply accu x let no_check_float_of_int x = mk_float (Float64.of_uint63 (to_uint x)) [@@ocaml.inline always] let float_of_int accu x = if is_int x then no_check_float_of_int x else apply accu x let no_check_normfr_mantissa x = mk_uint (Float64.normfr_mantissa (to_float x)) [@@ocaml.inline always] let normfr_mantissa accu x = if is_float x then no_check_normfr_mantissa x else apply accu x let no_check_frshiftexp x = let f, e = Float64.frshiftexp (to_float x) in (Obj.magic (PPair(mk_float f, mk_uint e)):t) [@@ocaml.inline always] let frshiftexp accu x = if is_float x then no_check_frshiftexp x else apply accu x let no_check_ldshiftexp x e = mk_float (Float64.ldshiftexp (to_float x) (to_uint e)) [@@ocaml.inline always] let ldshiftexp accu x e = if is_float x && is_int e then no_check_ldshiftexp x e else apply2 accu x e let no_check_next_up x = mk_float (Float64.next_up (to_float x)) [@@ocaml.inline always] let next_up accu x = if is_float x then no_check_next_up x else apply accu x let no_check_next_down x = mk_float (Float64.next_down (to_float x)) [@@ocaml.inline always] let next_down accu x = if is_float x then no_check_next_down x else apply accu x let is_parray t = (* This is only used over values known to inhabit an array type, so we just have to discriminate between actual arrays and accumulators. The latter are always closures with the tag set to 0, so they have size >= 2. *) let t = Obj.magic t in Obj.is_block t && Obj.size t = 1 let to_parray t = Obj.magic t let of_parray t = Obj.magic t let no_check_arraymake n def = of_parray (Parray.make (to_uint n) def) let arraymake accu vA n def = if is_int n then no_check_arraymake n def else apply3 accu vA n def let no_check_arrayget t n = Parray.get (to_parray t) (to_uint n) [@@ocaml.inline always] let arrayget accu vA t n = if is_parray t && is_int n then no_check_arrayget t n else apply3 accu vA t n let no_check_arraydefault t = Parray.default (to_parray t) [@@ocaml.inline always] let arraydefault accu vA t = if is_parray t then no_check_arraydefault t else apply2 accu vA t let no_check_arrayset t n v = of_parray (Parray.set (to_parray t) (to_uint n) v) [@@ocaml.inline always] let arrayset accu vA t n v = if is_parray t && is_int n then no_check_arrayset t n v else apply4 accu vA t n v let no_check_arraycopy t = of_parray (Parray.copy (to_parray t)) [@@ocaml.inline always] let arraycopy accu vA t = if is_parray t then no_check_arraycopy t else apply2 accu vA t let no_check_arraylength t = mk_uint (Parray.length (to_parray t)) [@@ocaml.inline always] let arraylength accu vA t = if is_parray t then no_check_arraylength t else apply2 accu vA t let parray_of_array t def = (Obj.magic (Parray.unsafe_of_obj (Obj.repr t) def) : t) let hobcnv = Array.init 256 (fun i -> Printf.sprintf "%02x" i) let bohcnv = Array.init 256 (fun i -> i - (if 0x30 <= i then 0x30 else 0) - (if 0x41 <= i then 0x7 else 0) - (if 0x61 <= i then 0x20 else 0)) let hex_of_bin ch = hobcnv.(int_of_char ch) let bin_of_hex s = char_of_int (bohcnv.(int_of_char s.[0]) * 16 + bohcnv.(int_of_char s.[1])) let str_encode expr = let mshl_expr = Marshal.to_string expr [] in let payload = Buffer.create (String.length mshl_expr * 2) in String.iter (fun c -> Buffer.add_string payload (hex_of_bin c)) mshl_expr; Buffer.contents payload let str_decode s = let mshl_expr_len = String.length s / 2 in let mshl_expr = Buffer.create mshl_expr_len in let buf = Bytes.create 2 in for i = 0 to mshl_expr_len - 1 do Bytes.blit_string s (2*i) buf 0 2; Buffer.add_char mshl_expr (bin_of_hex (Bytes.to_string buf)) done; Marshal.from_bytes (Buffer.to_bytes mshl_expr) 0
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>