package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.18.0.tar.gz
md5=8d852367b54f095d9fbabd000304d450
sha512=46922d5f2eb6802a148a52fd3e7f0be8370c93e7bc33cee05cf4a2044290845b10ccddbaa306f29c808e7c5019700763e37e45ff6deb507b874a4348010fed50
doc/src/coq-core.kernel/sorts.ml.html
Source file sorts.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Univ type family = InSProp | InProp | InSet | InType | InQSort let all_families = [InSProp; InProp; InSet; InType; InQSort] module QVar = struct type t = | Unif of string * int let make s i = Unif (s, i) let repr (Unif (s,i)) = s, i let equal (Unif (s1,i1)) (Unif (s2,i2)) = Int.equal i1 i2 && CString.equal s1 s2 let compare (Unif (s1,i1)) (Unif (s2,i2)) = let c = Int.compare i1 i2 in if c <> 0 then c else CString.compare s1 s2 let to_string (Unif (s,i)) = let i = "α"^string_of_int i in if CString.is_empty s then i else s^ "." ^ i let hash (Unif (s,i)) = Hashset.Combine.combine (CString.hash s) i let pr x = Pp.str (to_string x) end type t = | SProp | Prop | Set | Type of Universe.t | QSort of QVar.t * Universe.t let sprop = SProp let prop = Prop let set = Set let type1 = Type Universe.type1 let qsort q u = QSort (q, u) let sort_of_univ u = if Universe.is_type0 u then set else Type u let compare s1 s2 = if s1 == s2 then 0 else match s1, s2 with | SProp, SProp -> 0 | SProp, (Prop | Set | Type _ | QSort _) -> -1 | (Prop | Set | Type _ | QSort _), SProp -> 1 | Prop, Prop -> 0 | Prop, (Set | Type _ | QSort _) -> -1 | Set, Prop -> 1 | Set, Set -> 0 | Set, (Type _ | QSort _) -> -1 | Type _, QSort _ -> -1 | Type u1, Type u2 -> Universe.compare u1 u2 | Type _, (Prop | Set) -> 1 | QSort (q1, u1), QSort (q2, u2) -> let c = QVar.compare q1 q2 in if Int.equal c 0 then Universe.compare u1 u2 else c | QSort _, (Prop | Set | Type _) -> 1 let equal s1 s2 = Int.equal (compare s1 s2) 0 let super = function | SProp | Prop | Set -> Type (Universe.type1) | Type u | QSort (_, u) -> Type (Universe.super u) let is_sprop = function | SProp -> true | Prop | Set | Type _ | QSort _ -> false let is_prop = function | Prop -> true | SProp | Set | Type _ | QSort _-> false let is_set = function | Set -> true | SProp | Prop | Type _ | QSort _ -> false let is_small = function | SProp | Prop | Set -> true | Type _ | QSort _ -> false let levels s = match s with | SProp | Prop -> Level.Set.empty | Set -> Level.Set.singleton Level.set | Type u | QSort (_, u) -> Universe.levels u let family = function | SProp -> InSProp | Prop -> InProp | Set -> InSet | Type _ -> InType | QSort _ -> InQSort let family_compare a b = match a,b with | InSProp, InSProp -> 0 | InSProp, _ -> -1 | _, InSProp -> 1 | InProp, InProp -> 0 | InProp, _ -> -1 | _, InProp -> 1 | InSet, InSet -> 0 | InSet, _ -> -1 | _, InSet -> 1 | InType, InType -> 0 | InType, _ -> -1 | _, InType -> 1 | InQSort, InQSort -> 0 let family_equal = (==) let family_leq a b = family_compare a b <= 0 open Hashset.Combine let hash = function | SProp -> combinesmall 1 0 | Prop -> combinesmall 1 1 | Set -> combinesmall 1 2 | Type u -> let h = Univ.Universe.hash u in combinesmall 2 h | QSort (q, u) -> let h = Univ.Universe.hash u in let h' = QVar.hash q in combinesmall 3 (combine h h') module Hsorts = Hashcons.Make( struct type _t = t type t = _t type u = Universe.t -> Universe.t let hashcons huniv = function | Type u as c -> let u' = huniv u in if u' == u then c else Type u' | QSort (q, u) as c -> let u' = huniv u in if u' == u then c else QSort (q, u) | SProp | Prop | Set as s -> s let eq s1 s2 = match (s1,s2) with | SProp, SProp | Prop, Prop | Set, Set -> true | (Type u1, Type u2) -> u1 == u2 | QSort (q1, u1), QSort (q2, u2) -> q1 == q2 && u1 == u2 | (SProp | Prop | Set | Type _ | QSort _), _ -> false let hash = hash end) let hcons = Hashcons.simple_hcons Hsorts.generate Hsorts.hcons hcons_univ (** On binders: is this variable proof relevant *) type relevance = Relevant | Irrelevant | RelevanceVar of QVar.t let relevance_equal r1 r2 = match r1,r2 with | Relevant, Relevant | Irrelevant, Irrelevant -> true | RelevanceVar q1, RelevanceVar q2 -> QVar.equal q1 q2 | (Relevant | Irrelevant | RelevanceVar _), _ -> false let relevance_of_sort_family = function | InSProp -> Irrelevant | _ -> Relevant let relevance_hash = function | Relevant -> 0 | Irrelevant -> 1 | RelevanceVar q -> Hashset.Combine.combinesmall 2 (QVar.hash q) let relevance_of_sort = function | SProp -> Irrelevant | Prop | Set | Type _ -> Relevant | QSort (q, _) -> RelevanceVar q let debug_print = function | SProp -> Pp.(str "SProp") | Prop -> Pp.(str "Prop") | Set -> Pp.(str "Set") | Type u -> Pp.(str "Type(" ++ Univ.Universe.raw_pr u ++ str ")") | QSort (q, u) -> Pp.(str "QSort(" ++ QVar.pr q ++ str "," ++ spc() ++ Univ.Universe.raw_pr u ++ str ")") let pr_sort_family = function | InSProp -> Pp.(str "SProp") | InProp -> Pp.(str "Prop") | InSet -> Pp.(str "Set") | InType -> Pp.(str "Type") | InQSort -> Pp.(str "Type") (* FIXME? *) let subst_instance_sort u = function | SProp | Prop | Set as s -> s | Type v -> sort_of_univ (subst_instance_universe u v) | QSort (q, v) -> QSort (q, subst_instance_universe u v)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>