package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.18.0.tar.gz
md5=8d852367b54f095d9fbabd000304d450
sha512=46922d5f2eb6802a148a52fd3e7f0be8370c93e7bc33cee05cf4a2044290845b10ccddbaa306f29c808e7c5019700763e37e45ff6deb507b874a4348010fed50
doc/src/coq-core.kernel/parray.ml.html
Source file parray.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (** Uniform Arrays: non-flat arrays (even floats are boxed, i.e., doesn't use {!Obj.double_array_tag}) *) module UArray : sig type 'a t val empty : 'a t val unsafe_get : 'a t -> int -> 'a val unsafe_set : 'a t -> int -> 'a -> unit val length : 'a t -> int val make : int -> 'a -> 'a t val copy : 'a t -> 'a t val of_array : 'a array -> 'a t val to_array : 'a t -> 'a array (* 'a should not be float (no Obj.double_tag) *) val unsafe_of_obj : Obj.t -> 'a t end = struct type 'a t = Obj.t array (** Guaranteed to be a non-flat array and no funny business with write barriers because of the opacity of Obj.t. *) let empty = [||] let length (v : 'a t) = Array.length v let of_array v = if (Obj.tag (Obj.repr v) == Obj.double_array_tag) then begin let n = Array.length v in (* Ensure that we initialize it with a non-float *) let ans = Array.make n (Obj.repr ()) in for i = 0 to n - 1 do Array.unsafe_set ans i (Obj.repr (Array.unsafe_get v i)) done; ans end else (Obj.magic (Array.copy v)) let obj_is_float x = Obj.tag x == Obj.double_tag let to_array (type a) (v : a t) : a array = let () = assert (not (Array.exists obj_is_float v)) in Obj.magic (Array.copy v) let unsafe_of_obj (type a) (v : Obj.t) = let () = assert (Obj.tag v == 0) in (Obj.obj v : a t) let unsafe_get = Obj.magic Array.unsafe_get let unsafe_set = Obj.magic Array.unsafe_set let make (type a) n (x : a) : a t = (* Ensure that we initialize it with a non-float *) let ans = Array.make n (Obj.repr ()) in let () = Array.fill ans 0 n (Obj.repr x) in ans let copy = Array.copy end let max_array_length32 = 4194303 let max_length = Uint63.of_int max_array_length32 let length_to_int i = snd (Uint63.to_int2 i) let trunc_size n = if Uint63.le Uint63.zero n && Uint63.lt n (Uint63.of_int max_array_length32) then length_to_int n else max_array_length32 type 'a t = ('a kind) ref and 'a kind = | Array of 'a UArray.t * 'a | Updated of int * 'a * 'a t let unsafe_of_obj t def = ref (Array (UArray.unsafe_of_obj t, def)) let of_array t def = ref (Array (UArray.of_array t, def)) let rec rerootk t k = match !t with | Array (a, _) -> k a | Updated (i, v, p) -> let k' a = let v' = UArray.unsafe_get a i in UArray.unsafe_set a i v; t := !p; (* i.e., Array (a, def) *) p := Updated (i, v', t); k a in rerootk p k' let reroot t = rerootk t (fun a -> a) let length_int p = UArray.length (reroot p) let length p = Uint63.of_int @@ length_int p let get p n = let t = reroot p in let l = UArray.length t in if Uint63.le Uint63.zero n && Uint63.lt n (Uint63.of_int l) then UArray.unsafe_get t (length_to_int n) else match !p with | Array (_, def) -> def | Updated _ -> assert false let set p n e = let a = reroot p in let l = Uint63.of_int (UArray.length a) in if Uint63.le Uint63.zero n && Uint63.lt n l then let i = length_to_int n in let v' = UArray.unsafe_get a i in UArray.unsafe_set a i e; let t = ref !p in (* i.e., Array (a, def) *) p := Updated (i, v', t); t else p let default p = let _ = reroot p in match !p with | Array (_,def) -> def | Updated _ -> assert false let make_int n def = ref (Array (UArray.make n def, def)) let make n def = make_int (trunc_size n) def let uinit n f = if Int.equal n 0 then UArray.empty else begin let t = UArray.make n (f 0) in for i = 1 to n - 1 do UArray.unsafe_set t i (f i) done; t end let init n f def = let n = trunc_size n in let t = uinit n f in ref (Array (t, def)) let to_array p = let _ = reroot p in match !p with | Array (t,def) -> UArray.to_array t, def | Updated _ -> assert false let copy p = let _ = reroot p in match !p with | Array (t, def) -> ref (Array (UArray.copy t, def)) | Updated _ -> assert false (* Higher order combinators: the callback may update the underlying array requiring a reroot between each call. To avoid doing n reroots (-> O(n^2)), we copy if we have to reroot again. *) let is_rooted p = match !p with | Array _ -> true | Updated _ -> false type 'a cache = { orig : 'a t; mutable self : 'a UArray.t; mutable rerooted_again : bool; } let make_cache p = { orig = p; self = reroot p; rerooted_again = false; } let uget_cache cache i = let () = if not cache.rerooted_again && not (is_rooted cache.orig) then begin cache.self <- UArray.copy (reroot cache.orig); cache.rerooted_again <- true end in UArray.unsafe_get cache.self i let map f p = let t = make_cache p in let len = UArray.length t.self in let res = uinit len (fun i -> f (uget_cache t i)) in let def = f (default p) in ref (Array (res, def)) let fold_left f x p = let r = ref x in let t = make_cache p in let len = UArray.length t.self in for i = 0 to len - 1 do r := f !r (uget_cache t i) done; f !r (default p) let fold_left2 f a p1 p2 = let r = ref a in let t1 = make_cache p1 in let len = UArray.length t1.self in let t2 = make_cache p2 in if UArray.length t2.self <> len then invalid_arg "Parray.fold_left2"; for i = 0 to len - 1 do let v1 = uget_cache t1 i in let v2 = uget_cache t2 i in r := f !r v1 v2 done; f !r (default p1) (default p2)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>