package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.18.0.tar.gz
md5=8d852367b54f095d9fbabd000304d450
sha512=46922d5f2eb6802a148a52fd3e7f0be8370c93e7bc33cee05cf4a2044290845b10ccddbaa306f29c808e7c5019700763e37e45ff6deb507b874a4348010fed50
doc/src/coq-core.engine/evd.ml.html
Source file evd.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open CErrors open Sorts open Util open Names open Nameops open Constr open Vars open Environ module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration type econstr = constr type etypes = types type esorts = Sorts.t (** Generic filters *) module Filter : sig type t val equal : t -> t -> bool val identity : t val filter_list : t -> 'a list -> 'a list val filter_array : t -> 'a array -> 'a array val filter_slist : t -> 'a SList.t -> 'a SList.t val extend : int -> t -> t val compose : t -> t -> t val apply_subfilter : t -> bool list -> t val restrict_upon : t -> int -> (int -> bool) -> t option val map_along : (bool -> 'a -> bool) -> t -> 'a list -> t val make : bool list -> t val repr : t -> bool list option type compact = | Empty | TCons of int * compact | FCons of int * compact val unfold : t -> compact option end = struct type compact = | Empty | TCons of int * compact | FCons of int * compact let rec compact l = match l with | [] -> Empty | true :: l -> begin match compact l with | TCons (n, c) -> TCons (n + 1, c) | (Empty | FCons _ as c) -> TCons (1, c) end | false :: l -> begin match compact l with | FCons (n, c) -> FCons (n + 1, c) | (Empty | TCons _ as c) -> FCons (1, c) end type t = { data : bool list option; compact : compact; } (** We guarantee through the interface that if a filter is [Some _] then it contains at least one [false] somewhere. *) let identity = { data = None; compact = Empty } let rec equal l1 l2 = match l1, l2 with | [], [] -> true | h1 :: l1, h2 :: l2 -> (if h1 then h2 else not h2) && equal l1 l2 | _ -> false let equal l1 l2 = match l1.data, l2.data with | None, None -> true | Some _, None | None, Some _ -> false | Some l1, Some l2 -> equal l1 l2 let rec is_identity = function | [] -> true | true :: l -> is_identity l | false :: _ -> false let normalize f = if is_identity f then identity else { data = Some f; compact = compact f } let filter_list f l = match f.data with | None -> l | Some f -> CList.filter_with f l let filter_array f v = match f.data with | None -> v | Some f -> CArray.filter_with f v let filter_slist f l = match f.data with | None -> l | Some f -> let rec filter f l = match f, SList.view l with | [], None -> SList.empty | true :: f, Some (o, l) -> SList.cons_opt o (filter f l) | false :: f, Some (_, l) -> filter f l | _ :: _, None | [], Some _ -> invalid_arg "List.filter_with" in filter f l let rec extend n l = if n = 0 then l else extend (pred n) (true :: l) let extend n f = match f.data with | None -> identity | Some f0 -> let compact = match f.compact with | Empty -> assert false | TCons (m, c) -> TCons (n + m, c) | c -> TCons (n, c) in { data = Some (extend n f0); compact } let compose f1 f2 = match f1.data with | None -> f2 | Some f1 -> match f2.data with | None -> identity | Some f2 -> normalize (CList.filter_with f1 f2) let apply_subfilter_array filter subfilter = (* In both cases we statically know that the argument will contain at least one [false] *) match filter.data with | None -> let l = Array.to_list subfilter in { data = Some l; compact = compact l } | Some f -> let len = Array.length subfilter in let fold b (i, ans) = if b then let () = assert (0 <= i) in (pred i, Array.unsafe_get subfilter i :: ans) else (i, false :: ans) in let data = snd (List.fold_right fold f (pred len, [])) in { data = Some data; compact = compact data } let apply_subfilter filter subfilter = apply_subfilter_array filter (Array.of_list subfilter) let restrict_upon f len p = let newfilter = Array.init len p in if Array.for_all (fun id -> id) newfilter then None else Some (apply_subfilter_array f newfilter) let map_along f flt l = let ans = match flt.data with | None -> List.map (fun x -> f true x) l | Some flt -> List.map2 f flt l in normalize ans let make l = normalize l let repr f = f.data let unfold f = match f.data with | None -> None | Some _ -> Some f.compact end module Abstraction = struct type abstraction = | Abstract | Imitate type t = abstraction list let identity = [] let abstract_last l = Abstract :: l end (* The kinds of existential variables are now defined in [Evar_kinds] *) (* The type of mappings for existential variables *) module Store = Store.Make () let string_of_existential evk = "?X" ^ string_of_int (Evar.repr evk) type defined = [ `defined ] type undefined = [ `undefined ] type _ evar_body = | Evar_empty : undefined evar_body | Evar_defined : econstr -> defined evar_body type (_, 'a) when_undefined = | Defined : (defined, 'a) when_undefined | Undefined : 'a -> (undefined, 'a) when_undefined type 'a evar_info = { evar_concl : ('a, constr) when_undefined; evar_hyps : named_context_val; evar_body : 'a evar_body; evar_filter : Filter.t; evar_abstract_arguments : ('a, Abstraction.t) when_undefined; evar_source : Evar_kinds.t Loc.located; evar_candidates : ('a, constr list option) when_undefined; (* if not None, list of allowed instances *) evar_relevance: Sorts.relevance; } type any_evar_info = EvarInfo : 'a evar_info -> any_evar_info let instance_mismatch () = anomaly (Pp.str "Signature and its instance do not match.") let evar_concl evi = match evi.evar_concl with | Undefined c -> c let evar_filter evi = evi.evar_filter let evar_body evi = evi.evar_body let evar_context evi = named_context_of_val evi.evar_hyps let evar_filtered_context evi = Filter.filter_list (evar_filter evi) (evar_context evi) let evar_candidates evi = match evi.evar_candidates with | Undefined c -> c let evar_abstract_arguments evi = match evi.evar_abstract_arguments with | Undefined c -> c let evar_relevance evi = evi.evar_relevance let evar_hyps evi = evi.evar_hyps let evar_filtered_hyps evi = match Filter.repr (evar_filter evi) with | None -> evar_hyps evi | Some filter -> let rec make_hyps filter ctxt = match filter, ctxt with | [], [] -> empty_named_context_val | false :: filter, _ :: ctxt -> make_hyps filter ctxt | true :: filter, decl :: ctxt -> let hyps = make_hyps filter ctxt in push_named_context_val decl hyps | _ -> instance_mismatch () in make_hyps filter (evar_context evi) let evar_env env evi = Environ.reset_with_named_context evi.evar_hyps env let evar_filtered_env env evi = Environ.reset_with_named_context (evar_filtered_hyps evi) env let evar_identity_subst evi = let len = match Filter.repr evi.evar_filter with | None -> List.length @@ Environ.named_context_of_val evi.evar_hyps | Some f -> List.count (fun b -> b) f in SList.defaultn len SList.empty let map_evar_body (type a) f : a evar_body -> a evar_body = function | Evar_empty -> Evar_empty | Evar_defined d -> Evar_defined (f d) let map_when_undefined (type a b) f : (a, b) when_undefined -> (a, b) when_undefined = function | Defined -> Defined | Undefined x -> Undefined (f x) let map_evar_info f evi = {evi with evar_body = map_evar_body f evi.evar_body; evar_hyps = map_named_val (fun d -> NamedDecl.map_constr f d) evi.evar_hyps; evar_concl = map_when_undefined f evi.evar_concl; evar_candidates = map_when_undefined (fun c -> Option.map (List.map f) c) evi.evar_candidates } (* This exception is raised by *.existential_value *) exception NotInstantiatedEvar (* Note: let-in contributes to the instance *) let evar_instance_array info args = let rec instrec pos filter args = match filter with | Filter.Empty -> if SList.is_empty args then [] else instance_mismatch () | Filter.TCons (n, filter) -> instpush pos n filter args | Filter.FCons (n, filter) -> instrec (pos + n) filter args and instpush pos n filter args = if n <= 0 then instrec pos filter args else match args with | SList.Nil -> assert false | SList.Cons (c, args) -> let d = Range.get info.evar_hyps.env_named_idx pos in let id = NamedDecl.get_id d in if isVarId id c then instpush (pos + 1) (n - 1) filter args else (id, c) :: instpush (pos + 1) (n - 1) filter args | SList.Default (m, args) -> if m <= n then instpush (pos + m) (n - m) filter args else instrec (pos + n) filter (SList.defaultn (m - n) args) in match Filter.unfold (evar_filter info) with | None -> let rec instance pos args = match args with | SList.Nil -> [] | SList.Cons (c, args) -> let d = Range.get info.evar_hyps.env_named_idx pos in let id = NamedDecl.get_id d in if isVarId id c then instance (pos + 1) args else (id, c) :: instance (pos + 1) args | SList.Default (n, args) -> instance (pos + n) args in instance 0 args | Some filter -> instrec 0 filter args let make_evar_instance_array info args = if SList.is_default args then [] else evar_instance_array info args type 'a in_evar_universe_context = 'a * UState.t (*******************************************************************) (* Metamaps *) (*******************************************************************) (* Constraints for existential variables *) (*******************************************************************) type 'a freelisted = { rebus : 'a; freemetas : Int.Set.t } (* Collects all metavars appearing in a constr *) let metavars_of c = let rec collrec acc c = match kind c with | Meta mv -> Int.Set.add mv acc | _ -> Constr.fold collrec acc c in collrec Int.Set.empty c let mk_freelisted c = { rebus = c; freemetas = metavars_of c } let map_fl f cfl = { cfl with rebus=f cfl.rebus } (* Status of an instance found by unification wrt to the meta it solves: - a supertype of the meta (e.g. the solution to ?X <= T is a supertype of ?X) - a subtype of the meta (e.g. the solution to T <= ?X is a supertype of ?X) - a term that can be eta-expanded n times while still being a solution (e.g. the solution [P] to [?X u v = P u v] can be eta-expanded twice) *) type instance_constraint = IsSuperType | IsSubType | Conv let eq_instance_constraint c1 c2 = c1 == c2 (* Status of the unification of the type of an instance against the type of the meta it instantiates: - CoerceToType means that the unification of types has not been done and that a coercion can still be inserted: the meta should not be substituted freely (this happens for instance given via the "with" binding clause). - TypeProcessed means that the information obtainable from the unification of types has been extracted. - TypeNotProcessed means that the unification of types has not been done but it is known that no coercion may be inserted: the meta can be substituted freely. *) type instance_typing_status = CoerceToType | TypeNotProcessed | TypeProcessed (* Status of an instance together with the status of its type unification *) type instance_status = instance_constraint * instance_typing_status (* Clausal environments *) type clbinding = | Cltyp of Name.t * constr freelisted | Clval of Name.t * (constr freelisted * instance_status) * constr freelisted let map_clb f = function | Cltyp (na,cfl) -> Cltyp (na,map_fl f cfl) | Clval (na,(cfl1,pb),cfl2) -> Clval (na,(map_fl f cfl1,pb),map_fl f cfl2) (* name of defined is erased (but it is pretty-printed) *) let clb_name = function Cltyp(na,_) -> (na,false) | Clval (na,_,_) -> (na,true) (***********************) module Metaset = Int.Set module Metamap = Int.Map (*************************) (* Unification state *) type conv_pb = Conversion.conv_pb type evar_constraint = conv_pb * Environ.env * constr * constr module EvMap = Evar.Map module EvNames : sig type t val empty : t val add_name_undefined : Id.t option -> Evar.t -> 'a evar_info -> t -> t val remove_name_defined : Evar.t -> t -> t val rename : Evar.t -> Id.t -> t -> t val reassign_name_defined : Evar.t -> Evar.t -> t -> t val ident : Evar.t -> t -> Id.t option val key : Id.t -> t -> Evar.t end = struct type t = Id.t EvMap.t * Evar.t Id.Map.t let empty = (EvMap.empty, Id.Map.empty) let add_name_newly_undefined id evk evi (evtoid, idtoev as names) = match id with | None -> names | Some id -> if Id.Map.mem id idtoev then user_err (str "Already an existential evar of name " ++ Id.print id); (EvMap.add evk id evtoid, Id.Map.add id evk idtoev) let add_name_undefined naming evk evi (evtoid,idtoev as evar_names) = if EvMap.mem evk evtoid then evar_names else add_name_newly_undefined naming evk evi evar_names let remove_name_defined evk (evtoid, idtoev as names) = let id = try Some (EvMap.find evk evtoid) with Not_found -> None in match id with | None -> names | Some id -> (EvMap.remove evk evtoid, Id.Map.remove id idtoev) let rename evk id (evtoid, idtoev) = let id' = try Some (EvMap.find evk evtoid) with Not_found -> None in match id' with | None -> (EvMap.add evk id evtoid, Id.Map.add id evk idtoev) | Some id' -> if Id.Map.mem id idtoev then anomaly (str "Evar name already in use."); (EvMap.set evk id evtoid (* overwrite old name *), Id.Map.add id evk (Id.Map.remove id' idtoev)) let reassign_name_defined evk evk' (evtoid, idtoev as names) = let id = try Some (EvMap.find evk evtoid) with Not_found -> None in match id with | None -> names (* evk' must not be defined *) | Some id -> (EvMap.add evk' id (EvMap.remove evk evtoid), Id.Map.add id evk' (Id.Map.remove id idtoev)) let ident evk (evtoid, _) = try Some (EvMap.find evk evtoid) with Not_found -> None let key id (_, idtoev) = Id.Map.find id idtoev end type evar_flags = { obligation_evars : Evar.Set.t; aliased_evars : Evar.t Evar.Map.t; typeclass_evars : Evar.Set.t } type side_effect_role = | Schema of inductive * string type side_effects = { seff_private : Safe_typing.private_constants; seff_roles : side_effect_role Cmap.t; } module FutureGoals : sig type t val comb : t -> Evar.t list val principal : t -> Evar.t option val map_filter : (Evar.t -> Evar.t option) -> t -> t (** Applies a function on the future goals *) val filter : (Evar.t -> bool) -> t -> t (** Applies a filter on the future goals *) type stack val empty_stack : stack val push : stack -> stack val pop : stack -> t * stack val add : principal:bool -> Evar.t -> stack -> stack val remove : Evar.t -> stack -> stack val fold : ('a -> Evar.t -> 'a) -> 'a -> stack -> 'a val pr_stack : stack -> Pp.t end = struct type t = { uid : int; comb : Evar.t Int.Map.t; revmap : int Evar.Map.t; principal : Evar.t option; (** if [Some e], [e] must be contained in [comb]. The evar [e] will inherit properties (now: the name) of the evar which will be instantiated with a term containing [e]. *) } let comb g = (* Keys are reversed, highest number is last introduced *) Int.Map.fold (fun _ evk accu -> evk :: accu) g.comb [] let principal g = g.principal type stack = t list let set f = function | [] -> anomaly Pp.(str"future_goals stack should not be empty") | hd :: tl -> f hd :: tl let add ~principal evk stack = let add fgl = let comb = Int.Map.add fgl.uid evk fgl.comb in let revmap = Evar.Map.add evk fgl.uid fgl.revmap in let principal = if principal then match fgl.principal with | Some _ -> CErrors.user_err Pp.(str "Only one main goal per instantiation.") | None -> Some evk else fgl.principal in let uid = fgl.uid + 1 in let () = assert (0 <= uid) in { comb; revmap; principal; uid } in set add stack let remove e stack = let remove fgl = let filter e' = not (Evar.equal e e') in let principal = Option.filter filter fgl.principal in let comb, revmap = match Evar.Map.find e fgl.revmap with | index -> (Int.Map.remove index fgl.comb, Evar.Map.remove e fgl.revmap) | exception Not_found -> fgl.comb, fgl.revmap in { principal; comb; revmap; uid = fgl.uid } in List.map remove stack let empty = { uid = 0; principal = None; comb = Int.Map.empty; revmap = Evar.Map.empty; } let empty_stack = [empty] let push stack = empty :: stack let pop stack = match stack with | [] -> anomaly Pp.(str"future_goals stack should not be empty") | hd :: tl -> hd, tl let fold f acc stack = let future_goals = List.hd stack in List.fold_left f acc (comb future_goals) let filter f fgl = let fold index evk (comb, revmap) = if f evk then (comb, revmap) else (Int.Map.remove index comb, Evar.Map.remove evk revmap) in let (comb, revmap) = Int.Map.fold fold fgl.comb (fgl.comb, fgl.revmap) in let principal = Option.filter f fgl.principal in { comb; principal; revmap; uid = fgl.uid } let map_filter f fgl = let fold index evk (comb, revmap) = match f evk with | None -> (comb, revmap) | Some evk' -> (Int.Map.add index evk' comb, Evar.Map.add evk' index revmap) in let (comb, revmap) = Int.Map.fold fold fgl.comb (Int.Map.empty, Evar.Map.empty) in let principal = Option.bind fgl.principal f in { comb; revmap; principal; uid = fgl.uid } let pr_stack stack = let open Pp in let pr_future_goals fgl = let comb = comb fgl in prlist_with_sep spc Evar.print comb ++ pr_opt (fun ev -> str"(principal: " ++ Evar.print ev ++ str")") fgl.principal in if List.is_empty stack then str"(empty stack)" else prlist_with_sep (fun () -> str"||") pr_future_goals stack end type evar_map = { (* Existential variables *) defn_evars : defined evar_info EvMap.t; undf_evars : undefined evar_info EvMap.t; evar_names : EvNames.t; (** Universes *) universes : UState.t; (** Conversion problems *) conv_pbs : evar_constraint list; last_mods : Evar.Set.t; (** Metas *) metas : clbinding Metamap.t; evar_flags : evar_flags; (** Interactive proofs *) effects : side_effects; future_goals : FutureGoals.stack; (** list of newly created evars, to be eventually turned into goals if not solved.*) given_up : Evar.Set.t; shelf : Evar.t list list; extras : Store.t; } let find d e = try EvarInfo (EvMap.find e d.undf_evars) with Not_found -> EvarInfo (EvMap.find e d.defn_evars) let rec thin_val = function | [] -> [] | (id, c) :: tl -> match Constr.kind c with | Constr.Var v -> if Id.equal id v then thin_val tl else (id, make_substituend c) :: (thin_val tl) | _ -> (id, make_substituend c) :: (thin_val tl) let rec find_var id = function | [] -> raise_notrace Not_found | (idc, c) :: subst -> if Id.equal id idc then c else find_var id subst let replace_vars sigma var_alist x = let var_alist = thin_val var_alist in match var_alist with | [] -> x | _ -> let rec substrec n c = match Constr.kind c with | Constr.Var id -> begin match find_var id var_alist with | var -> (lift_substituend n var) | exception Not_found -> c end | Constr.Evar (evk, args) -> let EvarInfo evi = find sigma evk in let args' = substrec_instance n (evar_filtered_context evi) args in if args' == args then c else Constr.mkEvar (evk, args') | _ -> Constr.map_with_binders succ substrec n c and substrec_instance n ctx args = match ctx, SList.view args with | [], None -> SList.empty | decl :: ctx, Some (c, args) -> let c' = match c with | None -> begin match find_var (NamedDecl.get_id decl) var_alist with | var -> Some (lift_substituend n var) | exception Not_found -> None end | Some c -> let c' = substrec n c in if isVarId (NamedDecl.get_id decl) c' then None else Some c' in SList.cons_opt c' (substrec_instance n ctx args) | _ :: _, None | [], Some _ -> instance_mismatch () in substrec 0 x let instantiate_evar_array sigma info c args = let inst = make_evar_instance_array info args in match inst with | [] -> c | _ -> replace_vars sigma inst c let expand_existential sigma (evk, args) = let EvarInfo evi = find sigma evk in let rec expand ctx args = match ctx, SList.view args with | [], None -> [] | _ :: ctx, Some (Some c, args) -> c :: expand ctx args | decl :: ctx, Some (None, args) -> mkVar (NamedDecl.get_id decl) :: expand ctx args | [], Some _ | _ :: _, None -> instance_mismatch () in expand (evar_filtered_context evi) args let expand_existential0 = expand_existential let get_is_maybe_typeclass, (is_maybe_typeclass_hook : (evar_map -> constr -> bool) Hook.t) = Hook.make () let is_maybe_typeclass sigma c = Hook.get get_is_maybe_typeclass sigma c (*** Lifting primitive from Evar.Map. ***) let rename evk id evd = { evd with evar_names = EvNames.rename evk id evd.evar_names } let add_with_name (type a) ?name ?(typeclass_candidate = true) d e (i : a evar_info) = match i.evar_body with | Evar_empty -> let evar_names = EvNames.add_name_undefined name e i d.evar_names in let evar_flags = if typeclass_candidate && is_maybe_typeclass d (evar_concl i) then let flags = d.evar_flags in { flags with typeclass_evars = Evar.Set.add e flags.typeclass_evars } else d.evar_flags in { d with undf_evars = EvMap.add e i d.undf_evars; evar_names; evar_flags } | Evar_defined _ -> let evar_names = EvNames.remove_name_defined e d.evar_names in { d with defn_evars = EvMap.add e i d.defn_evars; evar_names } (** Evd.add is a low-level function mainly used to update the evar_info associated to an evar, so we prevent registering its typeclass status. *) let add d e i = add_with_name ~typeclass_candidate:false d e i (*** Evar flags: typeclasses, aliased or obligation flag *) let get_typeclass_evars evd = evd.evar_flags.typeclass_evars let set_typeclass_evars evd tcs = let flags = evd.evar_flags in { evd with evar_flags = { flags with typeclass_evars = tcs } } let is_typeclass_evar evd evk = let flags = evd.evar_flags in Evar.Set.mem evk flags.typeclass_evars let get_obligation_evars evd = evd.evar_flags.obligation_evars let set_obligation_evar evd evk = let flags = evd.evar_flags in let evar_flags = { flags with obligation_evars = Evar.Set.add evk flags.obligation_evars } in { evd with evar_flags } let is_obligation_evar evd evk = let flags = evd.evar_flags in Evar.Set.mem evk flags.obligation_evars (** Inheritance of flags: for evar-evar and restriction cases *) let inherit_evar_flags evar_flags evk evk' = let evk_typeclass = Evar.Set.mem evk evar_flags.typeclass_evars in let evk_obligation = Evar.Set.mem evk evar_flags.obligation_evars in let aliased_evars = Evar.Map.add evk evk' evar_flags.aliased_evars in let typeclass_evars = if evk_typeclass then let typeclass_evars = Evar.Set.remove evk evar_flags.typeclass_evars in Evar.Set.add evk' typeclass_evars else evar_flags.typeclass_evars in let obligation_evars = if evk_obligation then let obligation_evars = Evar.Set.remove evk evar_flags.obligation_evars in Evar.Set.add evk' obligation_evars else evar_flags.obligation_evars in { obligation_evars; aliased_evars; typeclass_evars } (** Removal: in all other cases of definition *) let remove_evar_flags evk evar_flags = { typeclass_evars = Evar.Set.remove evk evar_flags.typeclass_evars; obligation_evars = Evar.Set.remove evk evar_flags.obligation_evars; (* Aliasing information is kept. *) aliased_evars = evar_flags.aliased_evars } (** New evars *) let evar_counter_summary_name = "evar counter" (* Generator of existential names *) let evar_ctr, evar_counter_summary_tag = Summary.ref_tag 0 ~name:evar_counter_summary_name let new_untyped_evar () = incr evar_ctr; Evar.unsafe_of_int !evar_ctr let default_source = Loc.tag @@ Evar_kinds.InternalHole let remove d e = let undf_evars = EvMap.remove e d.undf_evars in let defn_evars = EvMap.remove e d.defn_evars in let future_goals = FutureGoals.remove e d.future_goals in let evar_flags = remove_evar_flags e d.evar_flags in { d with undf_evars; defn_evars; future_goals; evar_flags } let undefine sigma e concl = let EvarInfo evi = find sigma e in let evi = { evi with evar_body = Evar_empty; evar_concl = Undefined concl; evar_candidates = Undefined None; evar_abstract_arguments = Undefined Abstraction.identity; } in add (remove sigma e) e evi let find_undefined d e = EvMap.find e d.undf_evars let mem d e = EvMap.mem e d.undf_evars || EvMap.mem e d.defn_evars let undefined_map d = d.undf_evars let drop_all_defined d = { d with defn_evars = EvMap.empty } (* spiwack: not clear what folding over an evar_map, for now we shall simply fold over the inner evar_map. *) let fold f d a = let f evk evi accu = f evk (EvarInfo evi) accu in EvMap.fold f d.defn_evars (EvMap.fold f d.undf_evars a) let fold_undefined f d a = EvMap.fold f d.undf_evars a type map = { map : 'r. Evar.t -> 'r evar_info -> 'r evar_info } let raw_map f d = let defn_evars = EvMap.Smart.mapi f.map d.defn_evars in let undf_evars = EvMap.Smart.mapi f.map d.undf_evars in { d with defn_evars; undf_evars; } let raw_map_undefined f d = { d with undf_evars = EvMap.Smart.mapi f d.undf_evars; } let is_evar = mem let is_defined d e = EvMap.mem e d.defn_evars let is_undefined d e = EvMap.mem e d.undf_evars let existential_opt_value d (n, args) = match EvMap.find_opt n d.defn_evars with | None -> None | Some info -> let Evar_defined c = evar_body info in Some (instantiate_evar_array d info c args) let existential_value d ev = match existential_opt_value d ev with | None -> raise NotInstantiatedEvar | Some v -> v let existential_value0 = existential_value let existential_opt_value0 = existential_opt_value let existential_expand_value0 sigma (evk, args) = match existential_opt_value sigma (evk, args) with | None -> let args = expand_existential sigma (evk, args) in Constr.EvarUndefined (evk, args) | Some c -> Constr.EvarDefined c let mkLEvar sigma (evk, args) = let EvarInfo evi = find sigma evk in let fold decl arg accu = if isVarId (NamedDecl.get_id decl) arg then SList.default accu else SList.cons arg accu in let args = List.fold_right2 fold (evar_filtered_context evi) args SList.empty in mkEvar (evk, args) let evar_handler sigma = let evar_expand ev = existential_expand_value0 sigma ev in let qvar_relevant q = match UState.nf_qvar sigma.universes q with | QSProp -> false | QProp | QType | QVar _ -> true in let evar_relevant (evk, _) = match find sigma evk with | EvarInfo evi -> begin match evi.evar_relevance with | Sorts.Relevant -> true | Sorts.Irrelevant -> false | Sorts.RelevanceVar q -> qvar_relevant q end | exception Not_found -> true in let evar_repack ev = mkLEvar sigma ev in { evar_expand; evar_relevant; evar_repack; qvar_relevant } let existential_type_opt d (n, args) = match find_undefined d n with | exception Not_found -> None | info -> Some (instantiate_evar_array d info (evar_concl info) args) let existential_type d n = match existential_type_opt d n with | Some t -> t | None -> anomaly (str "Evar " ++ str (string_of_existential (fst n)) ++ str " was not declared.") let existential_type0 = existential_type let add_constraints d c = { d with universes = UState.add_constraints d.universes c } let add_universe_constraints d c = { d with universes = UState.add_universe_constraints d.universes c } (*** /Lifting... ***) (* evar_map are considered empty disregarding histories *) let is_empty d = EvMap.is_empty d.defn_evars && EvMap.is_empty d.undf_evars && List.is_empty d.conv_pbs && Metamap.is_empty d.metas let cmap f evd = { evd with metas = Metamap.map (map_clb f) evd.metas; defn_evars = EvMap.map (map_evar_info f) evd.defn_evars; undf_evars = EvMap.map (map_evar_info f) evd.undf_evars } (* spiwack: deprecated *) let create_evar_defs sigma = { sigma with conv_pbs=[]; last_mods=Evar.Set.empty; metas=Metamap.empty } let empty_evar_flags = { obligation_evars = Evar.Set.empty; aliased_evars = Evar.Map.empty; typeclass_evars = Evar.Set.empty } let empty_side_effects = { seff_private = Safe_typing.empty_private_constants; seff_roles = Cmap.empty; } let empty = { defn_evars = EvMap.empty; undf_evars = EvMap.empty; universes = UState.empty; conv_pbs = []; last_mods = Evar.Set.empty; evar_flags = empty_evar_flags; metas = Metamap.empty; effects = empty_side_effects; evar_names = EvNames.empty; (* id<->key for undefined evars *) future_goals = FutureGoals.empty_stack; given_up = Evar.Set.empty; shelf = [[]]; extras = Store.empty; } let from_env ?binders e = { empty with universes = UState.from_env ?binders e } let from_ctx uctx = { empty with universes = uctx } let has_undefined evd = not (EvMap.is_empty evd.undf_evars) let has_given_up evd = not (Evar.Set.is_empty evd.given_up) let has_shelved evd = not (List.for_all List.is_empty evd.shelf) let merge_universe_context evd uctx' = { evd with universes = UState.union evd.universes uctx' } let set_universe_context evd uctx' = { evd with universes = uctx' } (* TODO: make unique *) let add_conv_pb ?(tail=false) pb d = if tail then {d with conv_pbs = d.conv_pbs @ [pb]} else {d with conv_pbs = pb::d.conv_pbs} let conv_pbs d = d.conv_pbs let evar_source evi = evi.evar_source let evar_ident evk evd = EvNames.ident evk evd.evar_names let evar_key id evd = EvNames.key id evd.evar_names let get_aliased_evars evd = evd.evar_flags.aliased_evars let is_aliased_evar evd evk = try Some (Evar.Map.find evk evd.evar_flags.aliased_evars) with Not_found -> None let downcast evk ccl evd = let evar_info = EvMap.find evk evd.undf_evars in let evar_info' = { evar_info with evar_concl = Undefined ccl } in { evd with undf_evars = EvMap.add evk evar_info' evd.undf_evars } (* extracts conversion problems that satisfy predicate p *) (* Note: conv_pbs not satisying p are stored back in reverse order *) let extract_conv_pbs evd p = let (pbs,pbs1) = List.fold_left (fun (pbs,pbs1) pb -> if p pb then (pb::pbs,pbs1) else (pbs,pb::pbs1)) ([],[]) evd.conv_pbs in {evd with conv_pbs = pbs1; last_mods = Evar.Set.empty}, pbs let extract_changed_conv_pbs evd p = extract_conv_pbs evd (fun pb -> p evd.last_mods pb) let extract_all_conv_pbs evd = extract_conv_pbs evd (fun _ -> true) let loc_of_conv_pb evd (pbty,env,t1,t2) = match kind (fst (decompose_app t1)) with | Evar (evk1,_) -> let EvarInfo evi = find evd evk1 in fst (evar_source evi) | _ -> match kind (fst (decompose_app t2)) with | Evar (evk2,_) -> let EvarInfo evi = find evd evk2 in fst (evar_source evi) | _ -> None (**********************************************************) (* Sort variables *) type rigid = UState.rigid = | UnivRigid | UnivFlexible of bool (** Is substitution by an algebraic ok? *) let univ_rigid = UnivRigid let univ_flexible = UnivFlexible false let univ_flexible_alg = UnivFlexible true let evar_universe_context d = d.universes let universe_context_set d = UState.context_set d.universes let to_universe_context evd = UState.context evd.universes let univ_entry ~poly evd = UState.univ_entry ~poly evd.universes let check_univ_decl ~poly evd decl = UState.check_univ_decl ~poly evd.universes decl let restrict_universe_context evd vars = { evd with universes = UState.restrict evd.universes vars } let universe_subst evd = UState.subst evd.universes let merge_context_set ?loc ?(sideff=false) rigid evd ctx' = {evd with universes = UState.merge ?loc ~sideff rigid evd.universes ctx'} let with_context_set ?loc rigid d (a, ctx) = (merge_context_set ?loc rigid d ctx, a) let new_univ_level_variable ?loc ?name rigid evd = let uctx', u = UState.new_univ_variable ?loc rigid name evd.universes in ({evd with universes = uctx'}, u) let new_univ_variable ?loc ?name rigid evd = let uctx', u = UState.new_univ_variable ?loc rigid name evd.universes in ({evd with universes = uctx'}, Univ.Universe.make u) let new_sort_variable ?loc ?name rigid sigma = let (sigma, u) = new_univ_variable ?loc rigid ?name sigma in let uctx, q = UState.new_sort_variable sigma.universes in ({ sigma with universes = uctx }, Sorts.qsort q u) let add_global_univ d u = { d with universes = UState.add_global_univ d.universes u } let make_flexible_variable evd ~algebraic u = { evd with universes = UState.make_flexible_variable evd.universes ~algebraic u } let make_nonalgebraic_variable evd u = { evd with universes = UState.make_nonalgebraic_variable evd.universes u } (****************************************) (* Operations on constants *) (****************************************) let fresh_sort_in_family ?loc ?(rigid=univ_flexible) evd s = with_context_set ?loc rigid evd (UnivGen.fresh_sort_in_family s) let fresh_constant_instance ?loc ?(rigid=univ_flexible) env evd c = with_context_set ?loc rigid evd (UnivGen.fresh_constant_instance env c) let fresh_inductive_instance ?loc ?(rigid=univ_flexible) env evd i = with_context_set ?loc rigid evd (UnivGen.fresh_inductive_instance env i) let fresh_constructor_instance ?loc ?(rigid=univ_flexible) env evd c = with_context_set ?loc rigid evd (UnivGen.fresh_constructor_instance env c) let fresh_array_instance ?loc ?(rigid=univ_flexible) env evd = with_context_set ?loc rigid evd (UnivGen.fresh_array_instance env) let fresh_global ?loc ?(rigid=univ_flexible) ?names env evd gr = with_context_set ?loc rigid evd (UnivGen.fresh_global_instance ?loc ?names env gr) let is_sort_variable evd s = UState.is_sort_variable evd.universes s let is_flexible_level evd l = let uctx = evd.universes in Univ.Level.Map.mem l (UState.subst uctx) let is_eq_sort s1 s2 = if Sorts.equal s1 s2 then None else Some (s1, s2) (* Precondition: l is not defined in the substitution *) let universe_rigidity evd l = let uctx = evd.universes in if Univ.Level.Set.mem l (Univ.ContextSet.levels (UState.context_set uctx)) then UnivFlexible (Univ.Level.Set.mem l (UState.algebraics uctx)) else UnivRigid let normalize_universe evd = let vars = UState.subst evd.universes in let normalize = UnivSubst.normalize_universe_opt_subst vars in normalize let normalize_universe_instance evd l = let vars = UState.subst evd.universes in let normalize = UnivSubst.level_subst_of (UnivSubst.normalize_univ_variable_opt_subst vars) in UnivSubst.subst_instance normalize l let normalize_sort evars s = match s with | SProp | Prop | Set -> s | Type u -> let u' = normalize_universe evars u in if u' == u then s else Sorts.sort_of_univ u' | QSort (q, u) -> begin match UState.nf_qvar evars.universes q with | QProp -> Sorts.prop | QSProp -> Sorts.sprop | QType -> let u' = normalize_universe evars u in Sorts.sort_of_univ u' | QVar q' -> let u' = normalize_universe evars u in if q' == q && u' == u then s else Sorts.qsort q' u' end (* FIXME inefficient *) let set_eq_sort env d s1 s2 = let s1 = normalize_sort d s1 and s2 = normalize_sort d s2 in match is_eq_sort s1 s2 with | None -> d | Some (u1, u2) -> if not (type_in_type env) then add_universe_constraints d (UnivProblem.Set.singleton (UnivProblem.UEq (u1,u2))) else d let set_eq_level d u1 u2 = add_constraints d (Univ.enforce_eq_level u1 u2 Univ.Constraints.empty) let set_leq_level d u1 u2 = add_constraints d (Univ.enforce_leq_level u1 u2 Univ.Constraints.empty) let set_eq_instances ?(flex=false) d u1 u2 = add_universe_constraints d (UnivProblem.enforce_eq_instances_univs flex u1 u2 UnivProblem.Set.empty) let set_leq_sort env evd s1 s2 = let s1 = normalize_sort evd s1 and s2 = normalize_sort evd s2 in match is_eq_sort s1 s2 with | None -> evd | Some (u1, u2) -> if not (type_in_type env) then add_universe_constraints evd (UnivProblem.Set.singleton (UnivProblem.ULe (u1,u2))) else evd let check_eq evd s s' = let ustate = evd.universes in UGraph.check_eq_sort (UState.ugraph ustate) (UState.nf_sort ustate s) (UState.nf_sort ustate s') let check_leq evd s s' = let ustate = evd.universes in UGraph.check_leq_sort (UState.ugraph ustate) (UState.nf_sort ustate s) (UState.nf_sort ustate s') let check_constraints evd csts = UGraph.check_constraints csts (UState.ugraph evd.universes) let fix_undefined_variables evd = { evd with universes = UState.fix_undefined_variables evd.universes } let nf_univ_variables evd = let uctx = UState.normalize_variables evd.universes in {evd with universes = uctx} let collapse_sort_variables evd = let universes = UState.collapse_sort_variables evd.universes in { evd with universes } let minimize_universes evd = let uctx' = UState.collapse_sort_variables evd.universes in let uctx' = UState.normalize_variables uctx' in let uctx' = UState.minimize uctx' in {evd with universes = uctx'} let universe_of_name evd s = UState.universe_of_name evd.universes s let universe_binders evd = UState.universe_binders evd.universes let universes evd = UState.ugraph evd.universes let update_sigma_univs ugraph evd = { evd with universes = UState.update_sigma_univs evd.universes ugraph } exception UniversesDiffer = UState.UniversesDiffer (**********************************************************) (* Side effects *) let concat_side_effects eff eff' = { seff_private = Safe_typing.concat_private eff.seff_private eff'.seff_private; seff_roles = Cmap.fold Cmap.add eff.seff_roles eff'.seff_roles; } let emit_side_effects eff evd = let effects = concat_side_effects eff evd.effects in { evd with effects; universes = UState.emit_side_effects eff.seff_private evd.universes } let drop_side_effects evd = { evd with effects = empty_side_effects; } let eval_side_effects evd = evd.effects (* Future goals *) let declare_future_goal evk evd = let future_goals = FutureGoals.add ~principal:false evk evd.future_goals in { evd with future_goals } let declare_principal_goal evk evd = let future_goals = FutureGoals.add ~principal:true evk evd.future_goals in { evd with future_goals } let push_future_goals evd = { evd with future_goals = FutureGoals.push evd.future_goals } let pop_future_goals evd = let hd, future_goals = FutureGoals.pop evd.future_goals in hd, { evd with future_goals } let fold_future_goals f sigma = FutureGoals.fold f sigma sigma.future_goals let remove_future_goal evd evk = { evd with future_goals = FutureGoals.remove evk evd.future_goals } let pr_future_goals_stack evd = FutureGoals.pr_stack evd.future_goals let give_up ev evd = { evd with given_up = Evar.Set.add ev evd.given_up } let push_shelf evd = { evd with shelf = [] :: evd.shelf } let pop_shelf evd = match evd.shelf with | [] -> anomaly Pp.(str"shelf stack should not be empty") | hd :: tl -> hd, { evd with shelf = tl } let filter_shelf f evd = { evd with shelf = List.map (List.filter f) evd.shelf } let shelve evd l = match evd.shelf with | [] -> anomaly Pp.(str"shelf stack should not be empty") | hd :: tl -> { evd with shelf = (hd@l) :: tl } let unshelve evd l = { evd with shelf = List.map (List.filter (fun ev -> not (CList.mem_f Evar.equal ev l))) evd.shelf } let given_up evd = evd.given_up let shelf evd = List.flatten evd.shelf let pr_shelf evd = let open Pp in if List.is_empty evd.shelf then str"(empty stack)" else prlist_with_sep (fun () -> str"||") (prlist_with_sep spc Evar.print) evd.shelf let new_pure_evar ?(src=default_source) ?(filter = Filter.identity) ?(relevance = Sorts.Relevant) ?(abstract_arguments = Abstraction.identity) ?candidates ?name ?typeclass_candidate ?(principal=false) sign evd typ = let evi = { evar_hyps = sign; evar_concl = Undefined typ; evar_body = Evar_empty; evar_filter = filter; evar_abstract_arguments = Undefined abstract_arguments; evar_source = src; evar_candidates = Undefined candidates; evar_relevance = relevance; } in let typeclass_candidate = if principal then Some false else typeclass_candidate in let newevk = new_untyped_evar () in let evd = add_with_name evd ?name ?typeclass_candidate newevk evi in let evd = if principal then declare_principal_goal newevk evd else declare_future_goal newevk evd in (evd, newevk) let define_aux def undef evk body = let oldinfo = try EvMap.find evk undef with Not_found -> if EvMap.mem evk def then anomaly ~label:"Evd.define" (Pp.str "cannot define an evar twice.") else anomaly ~label:"Evd.define" (Pp.str "cannot define undeclared evar.") in let () = assert (oldinfo.evar_body == Evar_empty) in let newinfo = { oldinfo with evar_body = Evar_defined body; evar_concl = Defined; evar_candidates = Defined; evar_abstract_arguments = Defined; } in EvMap.add evk newinfo def, EvMap.remove evk undef (* define the existential of section path sp as the constr body *) let define_gen evk body evd evar_flags = let future_goals = FutureGoals.remove evk evd.future_goals in let evd = { evd with future_goals } in let (defn_evars, undf_evars) = define_aux evd.defn_evars evd.undf_evars evk body in let last_mods = match evd.conv_pbs with | [] -> evd.last_mods | _ -> Evar.Set.add evk evd.last_mods in let evar_names = EvNames.remove_name_defined evk evd.evar_names in { evd with defn_evars; undf_evars; last_mods; evar_names; evar_flags } (** By default, the obligation and evar tag of the evar is removed *) let define evk body evd = let evar_flags = remove_evar_flags evk evd.evar_flags in define_gen evk body evd evar_flags (** In case of an evar-evar solution, the flags are inherited *) let define_with_evar evk body evd = let evk' = fst (destEvar body) in let evar_flags = inherit_evar_flags evd.evar_flags evk evk' in let evd = unshelve evd [evk] in define_gen evk body evd evar_flags (* In case of restriction, we declare the aliasing and inherit the obligation and typeclass flags. *) let restrict evk filter ?candidates ?src evd = let evk' = new_untyped_evar () in let evar_info = EvMap.find evk evd.undf_evars in let len = Range.length evar_info.evar_hyps.env_named_idx in let id_inst = Filter.filter_slist filter (SList.defaultn len SList.empty) in let evar_info' = { evar_info with evar_filter = filter; evar_candidates = Undefined candidates; evar_source = (match src with None -> evar_info.evar_source | Some src -> src); } in let last_mods = match evd.conv_pbs with | [] -> evd.last_mods | _ -> Evar.Set.add evk evd.last_mods in let evar_names = EvNames.reassign_name_defined evk evk' evd.evar_names in let body = mkEvar(evk',id_inst) in let (defn_evars, undf_evars) = define_aux evd.defn_evars evd.undf_evars evk body in let evar_flags = inherit_evar_flags evd.evar_flags evk evk' in let evd = { evd with undf_evars = EvMap.add evk' evar_info' undf_evars; defn_evars; last_mods; evar_names; evar_flags } in (* Mark new evar as future goal, removing previous one, circumventing Proofview.advance but making Proof.run_tactic catch these. *) let evd = unshelve evd [evk] in let evd = remove_future_goal evd evk in let evd = declare_future_goal evk' evd in (evd, evk') let update_source evd evk src = let evar_info = EvMap.find evk evd.undf_evars in let evar_info' = { evar_info with evar_source = src } in { evd with undf_evars = EvMap.add evk evar_info' evd.undf_evars } (**********************************************************) (* Accessing metas *) (** We use this function to overcome OCaml compiler limitations and to prevent the use of costly in-place modifications. *) let set_metas evd metas = { defn_evars = evd.defn_evars; undf_evars = evd.undf_evars; universes = evd.universes; conv_pbs = evd.conv_pbs; last_mods = evd.last_mods; evar_flags = evd.evar_flags; metas; effects = evd.effects; evar_names = evd.evar_names; future_goals = evd.future_goals; given_up = evd.given_up; shelf = evd.shelf; extras = evd.extras; } let meta_list evd = evd.metas let map_metas_fvalue f evd = let map = function | Clval(id,(c,s),typ) -> Clval(id,(mk_freelisted (f c.rebus),s),typ) | x -> x in set_metas evd (Metamap.Smart.map map evd.metas) let map_metas f evd = let map cl = map_clb f cl in set_metas evd (Metamap.Smart.map map evd.metas) let meta_opt_fvalue evd mv = match Metamap.find mv evd.metas with | Clval(_,b,_) -> Some b | Cltyp _ -> None let meta_value evd mv = match meta_opt_fvalue evd mv with | Some (body, _) -> body.rebus | None -> raise Not_found let meta_ftype evd mv = match Metamap.find mv evd.metas with | Cltyp (_,b) -> b | Clval(_,_,b) -> b let meta_declare mv v ?(name=Anonymous) evd = let metas = Metamap.add mv (Cltyp(name,mk_freelisted v)) evd.metas in set_metas evd metas (* If the meta is defined then forget its name *) let meta_name evd mv = try fst (clb_name (Metamap.find mv evd.metas)) with Not_found -> Anonymous let evar_source_of_meta mv evd = match meta_name evd mv with | Anonymous -> Loc.tag Evar_kinds.GoalEvar | Name id -> Loc.tag @@ Evar_kinds.VarInstance id let use_meta_source evd mv v = match Constr.kind v with | Evar (evk,_) -> let f = function | None -> None | Some evi as x -> match evi.evar_source with | None, Evar_kinds.GoalEvar -> Some { evi with evar_source = evar_source_of_meta mv evd } | _ -> x in { evd with undf_evars = EvMap.update evk f evd.undf_evars } | _ -> evd let meta_assign mv (v, pb) evd = let modify _ = function | Cltyp (na, ty) -> Clval (na, (mk_freelisted v, pb), ty) | _ -> anomaly ~label:"meta_assign" (Pp.str "already defined.") in let metas = Metamap.modify mv modify evd.metas in let evd = use_meta_source evd mv v in set_metas evd metas let meta_reassign mv (v, pb) evd = let modify _ = function | Clval(na, _, ty) -> Clval (na, (mk_freelisted v, pb), ty) | _ -> anomaly ~label:"meta_reassign" (Pp.str "not yet defined.") in let metas = Metamap.modify mv modify evd.metas in set_metas evd metas let clear_metas evd = {evd with metas = Metamap.empty} let meta_merge metas sigma = let metas = Metamap.fold Metamap.add metas sigma.metas in { sigma with metas } type metabinding = metavariable * constr * instance_status let retract_coercible_metas evd = let mc = ref [] in let map n v = match v with | Clval (na, (b, (Conv, CoerceToType as s)), typ) -> let () = mc := (n, b.rebus, s) :: !mc in Cltyp (na, typ) | v -> v in let metas = Metamap.Smart.mapi map evd.metas in !mc, set_metas evd metas let dependent_evar_ident ev evd = let EvarInfo evi = find evd ev in match evi.evar_source with | (_,Evar_kinds.VarInstance id) -> id | _ -> anomaly (str "Not an evar resulting of a dependent binding.") (**********************************************************) (* Extra data *) let get_extra_data evd = evd.extras let set_extra_data extras evd = { evd with extras } (*******************************************************************) type open_constr = evar_map * constr (*******************************************************************) (* The type constructor ['a sigma] adds an evar map to an object of type ['a] *) type 'a sigma = { it : 'a ; sigma : evar_map } let sig_it x = x.it let sig_sig x = x.sigma let on_sig s f = let sigma', v = f s.sigma in { s with sigma = sigma' }, v (*******************************************************************) (* The state monad with state an evar map. *) module MonadR = Monad.Make (struct type +'a t = evar_map -> evar_map * 'a let return a = fun s -> (s,a) let (>>=) x f = fun s -> let (s',a) = x s in f a s' let (>>) x y = fun s -> let (s',()) = x s in y s' let map f x = fun s -> on_snd f (x s) end) module Monad = Monad.Make (struct type +'a t = evar_map -> 'a * evar_map let return a = fun s -> (a,s) let (>>=) x f = fun s -> let (a,s') = x s in f a s' let (>>) x y = fun s -> let ((),s') = x s in y s' let map f x = fun s -> on_fst f (x s) end) (**********************************************************) (* Failure explanation *) type unsolvability_explanation = SeveralInstancesFound of int module MiniEConstr = struct module ESorts = struct type t = Sorts.t let make s = s let kind = normalize_sort let unsafe_to_sorts s = s end module EInstance = struct type t = Univ.Instance.t let make i = i let kind sigma i = if Univ.Instance.is_empty i then i else normalize_universe_instance sigma i let empty = Univ.Instance.empty let is_empty = Univ.Instance.is_empty let unsafe_to_instance t = t end type t = econstr let rec whd_evar sigma c = match Constr.kind c with | Evar ev -> begin match existential_opt_value sigma ev with | Some c -> whd_evar sigma c | None -> c end | App (f, args) when isEvar f -> (* Enforce smart constructor invariant on applications *) let ev = destEvar f in begin match existential_opt_value sigma ev with | None -> c | Some f -> whd_evar sigma (mkApp (f, args)) end | Cast (c0, k, t) when isEvar c0 -> (* Enforce smart constructor invariant on casts. *) let ev = destEvar c0 in begin match existential_opt_value sigma ev with | None -> c | Some c -> whd_evar sigma (mkCast (c, k, t)) end | _ -> c let mkLEvar = mkLEvar let replace_vars = replace_vars let kind sigma c = Constr.kind (whd_evar sigma c) let kind_upto = kind let of_kind = Constr.of_kind let of_constr c = c let of_constr_array v = v let unsafe_to_constr c = c let unsafe_to_constr_array v = v let unsafe_eq = Refl let to_constr_nocheck sigma c = let evar_value ((evk, args) as ev) = match EvMap.find_opt evk sigma.defn_evars with | None -> (* Hack: we fully expand the evar instance *) let rec has_default = function | SList.Nil -> false | SList.Cons (_, l) -> has_default l | SList.Default _ -> true in if has_default args then let args = expand_existential sigma ev in Some (mkEvar (evk, SList.of_full_list args)) else None | Some info -> let Evar_defined c = evar_body info in Some (instantiate_evar_array sigma info c args) in let lsubst = universe_subst sigma in let level_value l = UnivSubst.level_subst_of (fun l -> UnivSubst.normalize_univ_variable_opt_subst lsubst l) l in let sort_value s = UState.nf_sort (evar_universe_context sigma) s in let rel_value r = UState.nf_relevance (evar_universe_context sigma) r in UnivSubst.nf_evars_and_universes_opt_subst evar_value level_value sort_value rel_value c let to_constr_gen sigma c = let saw_evar = ref false in let evar_value ev = let v = existential_opt_value sigma ev in saw_evar := !saw_evar || Option.is_empty v; v in let lsubst = universe_subst sigma in let level_value l = UnivSubst.level_subst_of (fun l -> UnivSubst.normalize_univ_variable_opt_subst lsubst l) l in let sort_value s = UState.nf_sort (evar_universe_context sigma) s in let rel_value r = UState.nf_relevance (evar_universe_context sigma) r in let c = UnivSubst.nf_evars_and_universes_opt_subst evar_value level_value sort_value rel_value c in let saw_evar = if not !saw_evar then false else let exception SawEvar in let rec iter c = match Constr.kind c with | Evar _ -> raise SawEvar | _ -> Constr.iter iter c in try iter c; false with SawEvar -> true in saw_evar, c let to_constr ?(abort_on_undefined_evars=true) sigma c = if not abort_on_undefined_evars then to_constr_nocheck sigma c else let saw_evar, c = to_constr_gen sigma c in if saw_evar then anomaly ~label:"econstr" Pp.(str "grounding a non evar-free term"); c let to_constr_opt sigma c = let saw_evar, c = to_constr_gen sigma c in if saw_evar then None else Some c let of_named_decl d = d let unsafe_to_named_decl d = d let of_rel_decl d = d let unsafe_to_rel_decl d = d let to_rel_decl sigma d = match d with | RelDecl.LocalAssum (na, t) -> let na = UnivSubst.nf_binder_annot (fun r -> UState.nf_relevance sigma.universes r) na in RelDecl.LocalAssum (na, to_constr sigma t) | RelDecl.LocalDef (na, c, t) -> let na = UnivSubst.nf_binder_annot (fun r -> UState.nf_relevance sigma.universes r) na in RelDecl.LocalDef (na, to_constr sigma c, to_constr sigma t) let of_named_context d = d let of_rel_context d = d let unsafe_to_case_invert x = x let of_case_invert x = x end (** The following functions return the set of evars immediately contained in the object *) (* excluding defined evars *) let evars_of_term evd c = let rec evrec acc c = let c = MiniEConstr.whd_evar evd c in match kind c with | Evar (n, l) -> Evar.Set.add n (SList.Skip.fold evrec acc l) | _ -> Constr.fold evrec acc c in evrec Evar.Set.empty c let evars_of_named_context evd nc = Context.Named.fold_outside (NamedDecl.fold_constr (fun constr s -> Evar.Set.union s (evars_of_term evd constr))) nc ~init:Evar.Set.empty let evars_of_filtered_evar_info (type a) evd (evi : a evar_info) = let concl = match evi.evar_concl with | Undefined c -> evars_of_term evd c | Defined -> Evar.Set.empty in Evar.Set.union concl (Evar.Set.union (match evi.evar_body with | Evar_empty -> Evar.Set.empty | Evar_defined b -> evars_of_term evd b) (evars_of_named_context evd (evar_filtered_context evi)))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>