package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.18.0.tar.gz
md5=8d852367b54f095d9fbabd000304d450
sha512=46922d5f2eb6802a148a52fd3e7f0be8370c93e7bc33cee05cf4a2044290845b10ccddbaa306f29c808e7c5019700763e37e45ff6deb507b874a4348010fed50
doc/src/coq-core.engine/univSubst.ml.html
Source file univSubst.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Sorts open Util open Constr open Univ type 'a universe_map = 'a Level.Map.t type universe_subst = Universe.t universe_map type universe_subst_fn = Level.t -> Universe.t option type universe_level_subst_fn = Level.t -> Level.t let subst_instance fn i = Instance.of_array (Array.Smart.map fn (Instance.to_array i)) let subst_univs_universe fn ul = let addn n u = iterate Universe.super n u in let subst, nosubst = List.fold_right (fun (u, n) (subst,nosubst) -> match fn u with | Some u' -> let a' = addn n u' in (a' :: subst, nosubst) | None -> (subst, (u, n) :: nosubst)) (Universe.repr ul) ([], []) in match subst with | [] -> ul | u :: ul -> let substs = List.fold_left Universe.sup u subst in List.fold_left (fun acc (u, n) -> Universe.sup acc (addn n (Universe.make u))) substs nosubst let enforce_eq u v c = if Universe.equal u v then c else match Universe.level u, Universe.level v with | Some u, Some v -> enforce_eq_level u v c | _ -> CErrors.anomaly (Pp.str "A universe comparison can only happen between variables.") let constraint_add_leq v u c = let eq (x, n) (y, m) = Int.equal m n && Level.equal x y in (* We just discard trivial constraints like u<=u *) if eq v u then c else match v, u with | (x,n), (y,m) -> let j = m - n in if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then Constraints.add (x,Lt,y) c else if j <= -1 (* n = m+k, v+k <= u and k>0 *) then if Level.equal x y then (* u+k <= u with k>0 *) Constraints.add (x,Lt,x) c else CErrors.anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints.") else if j = 0 then Constraints.add (x,Le,y) c else (* j >= 1 *) (* m = n + k, u <= v+k *) if Level.equal x y then c (* u <= u+k, trivial *) else if Level.is_set x then c (* Prop,Set <= u+S k, trivial *) else Constraints.add (x,Le,y) c (* u <= v implies u <= v+k *) let check_univ_leq_one u v = let leq (u,n) (v,n') = let cmp = Level.compare u v in if Int.equal cmp 0 then n <= n' else false in Universe.exists (leq u) v let check_univ_leq u v = Universe.for_all (fun u -> check_univ_leq_one u v) u let enforce_leq u v c = List.fold_left (fun c v -> (List.fold_left (fun c u -> constraint_add_leq u v c) c u)) c v let enforce_leq u v c = if check_univ_leq u v then c else enforce_leq (Universe.repr u) (Universe.repr v) c let get_algebraic = function | Prop | SProp | QSort _ -> assert false | Set -> Universe.type0 | Type u -> u let enforce_eq_sort s1 s2 cst = match s1, s2 with | (SProp, SProp) | (Prop, Prop) | (Set, Set) -> cst | (((Prop | Set | Type _ | QSort _) as s1), (Prop | SProp as s2)) | ((Prop | SProp as s1), ((Prop | Set | Type _ | QSort _) as s2)) -> raise (UGraph.UniverseInconsistency (Eq, s1, s2, None)) | (Set | Type _), (Set | Type _) -> enforce_eq (get_algebraic s1) (get_algebraic s2) cst | QSort (q1, u1), QSort (q2, u2) -> if QVar.equal q1 q2 then enforce_eq u1 u2 cst else raise (UGraph.UniverseInconsistency (Eq, s1, s2, None)) | (QSort _, (Set | Type _)) | ((Set | Type _), QSort _) -> raise (UGraph.UniverseInconsistency (Eq, s1, s2, None)) let enforce_leq_sort s1 s2 cst = match s1, s2 with | (SProp, SProp) | (Prop, Prop) | (Set, Set) -> cst | (Prop, (Set | Type _)) -> cst | (((Prop | Set | Type _ | QSort _) as s1), (Prop | SProp as s2)) | ((SProp as s1), ((Prop | Set | Type _ | QSort _) as s2)) -> raise (UGraph.UniverseInconsistency (Le, s1, s2, None)) | (Set | Type _), (Set | Type _) -> enforce_leq (get_algebraic s1) (get_algebraic s2) cst | QSort (q1, u1), QSort (q2, u2) -> if QVar.equal q1 q2 then enforce_leq u1 u2 cst else raise (UGraph.UniverseInconsistency (Eq, s1, s2, None)) | (QSort _, (Set | Type _)) | ((Prop | Set | Type _), QSort _) -> raise (UGraph.UniverseInconsistency (Eq, s1, s2, None)) let enforce_leq_alg_sort s1 s2 g = match s1, s2 with | (SProp, SProp) | (Prop, Prop) | (Set, Set) -> Constraints.empty, g | (Prop, (Set | Type _)) -> Constraints.empty, g | (((Prop | Set | Type _ | QSort _) as s1), (Prop | SProp as s2)) | ((SProp as s1), ((Prop | Set | Type _ | QSort _) as s2)) -> raise (UGraph.UniverseInconsistency (Le, s1, s2, None)) | (Set | Type _), (Set | Type _) -> UGraph.enforce_leq_alg (get_algebraic s1) (get_algebraic s2) g | QSort (q1, u1), QSort (q2, u2) -> if QVar.equal q1 q2 then UGraph.enforce_leq_alg u1 u2 g else raise (UGraph.UniverseInconsistency (Eq, s1, s2, None)) | (QSort _, (Set | Type _)) | ((Prop | Set | Type _), QSort _) -> raise (UGraph.UniverseInconsistency (Eq, s1, s2, None)) let enforce_univ_constraint (u,d,v) = match d with | Eq -> enforce_eq u v | Le -> enforce_leq u v | Lt -> enforce_leq (Universe.super u) v let subst_univs_constraint fn (u,d,v as c) cstrs = let u' = fn u in let v' = fn v in match u', v' with | None, None -> Constraints.add c cstrs | Some u, None -> enforce_univ_constraint (u,d,Universe.make v) cstrs | None, Some v -> enforce_univ_constraint (Universe.make u,d,v) cstrs | Some u, Some v -> enforce_univ_constraint (u,d,v) cstrs let subst_univs_constraints subst csts = Constraints.fold (fun c cstrs -> subst_univs_constraint subst c cstrs) csts Constraints.empty let level_subst_of f = fun l -> match f l with | None -> l | Some u -> match Universe.level u with | None -> assert false | Some l -> l let normalize_univ_variable ~find = let rec aux cur = find cur |> Option.map (fun b -> let b' = subst_univs_universe aux b in if Universe.equal b' b then b else b') in aux type universe_opt_subst = Universe.t option universe_map let normalize_univ_variable_opt_subst ectx = let find l = Option.flatten (Univ.Level.Map.find_opt l ectx) in normalize_univ_variable ~find let normalize_universe_opt_subst subst = let normlevel = normalize_univ_variable_opt_subst subst in subst_univs_universe normlevel let normalize_opt_subst ctx = let normalize = normalize_universe_opt_subst ctx in Univ.Level.Map.mapi (fun u -> function | None -> None | Some v -> Some (normalize v)) ctx let normalize_univ_variables ctx = let ctx = normalize_opt_subst ctx in let def, subst = Univ.Level.Map.fold (fun u v (def, subst) -> match v with | None -> (def, subst) | Some b -> (Univ.Level.Set.add u def, Univ.Level.Map.add u b subst)) ctx (Univ.Level.Set.empty, Univ.Level.Map.empty) in ctx, def, subst let subst_univs_fn_puniverses f (c, u as cu) = let u' = subst_instance f u in if u' == u then cu else (c, u') let nf_binder_annot frel na = let open Context in let rel' = frel na.binder_relevance in if rel' == na.binder_relevance then na else { binder_name = na.binder_name; binder_relevance = rel' } let nf_evars_and_universes_opt_subst fevar flevel fsort frel c = let rec aux c = match kind c with | Evar (evk, args) -> let args' = SList.Smart.map aux args in (match try fevar (evk, args') with Not_found -> None with | None -> if args == args' then c else mkEvar (evk, args') | Some c -> aux c) | Const pu -> let pu' = subst_univs_fn_puniverses flevel pu in if pu' == pu then c else mkConstU pu' | Ind pu -> let pu' = subst_univs_fn_puniverses flevel pu in if pu' == pu then c else mkIndU pu' | Construct pu -> let pu' = subst_univs_fn_puniverses flevel pu in if pu' == pu then c else mkConstructU pu' | Sort s -> let s' = fsort s in if s' == s then c else mkSort s' | Case (ci,u,pms,p,iv,t,br) -> let u' = subst_instance flevel u in let ci' = let rel' = frel ci.ci_relevance in if rel' == ci.ci_relevance then ci else { ci with ci_relevance = rel' } in let pms' = Array.Smart.map aux pms in let p' = aux_ctx p in let iv' = map_invert aux iv in let t' = aux t in let br' = Array.Smart.map aux_ctx br in if ci' == ci && u' == u && pms' == pms && p' == p && iv' == iv && t' == t && br' == br then c else mkCase (ci', u', pms', p', iv', t', br') | Array (u,elems,def,ty) -> let u' = subst_instance flevel u in let elems' = CArray.Smart.map aux elems in let def' = aux def in let ty' = aux ty in if u == u' && elems == elems' && def == def' && ty == ty' then c else mkArray (u',elems',def',ty') | Prod (na, t, u) -> let na' = nf_binder_annot frel na in let t' = aux t in let u' = aux u in if na' == na && t' == t && u' == u then c else mkProd (na', t', u') | Lambda (na, t, u) -> let na' = nf_binder_annot frel na in let t' = aux t in let u' = aux u in if na' == na && t' == t && u' == u then c else mkLambda (na', t', u') | LetIn (na, b, t, u) -> let na' = nf_binder_annot frel na in let b' = aux b in let t' = aux t in let u' = aux u in if na' == na && b' == b && t' == t && u' == u then c else mkLetIn (na', b', t', u') | Fix (i, rc) -> let rc' = aux_rec rc in if rc' == rc then c else mkFix (i, rc') | CoFix (i, rc) -> let rc' = aux_rec rc in if rc' == rc then c else mkCoFix (i, rc') | _ -> Constr.map aux c and aux_rec ((nas, tys, bds) as rc) = let nas' = Array.Smart.map (fun na -> nf_binder_annot frel na) nas in let tys' = Array.Smart.map aux tys in let bds' = Array.Smart.map aux bds in if nas' == nas && tys' == tys && bds' == bds then rc else (nas', tys', bds') and aux_ctx ((nas, c) as p) = let nas' = Array.Smart.map (fun na -> nf_binder_annot frel na) nas in let c' = aux c in if nas' == nas && c' == c then p else (nas', c') in aux c let pr_universe_subst prl = let open Pp in Level.Map.pr prl (fun u -> str" := " ++ Universe.pr prl u ++ spc ())
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>