package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.18.0.tar.gz
md5=8d852367b54f095d9fbabd000304d450
sha512=46922d5f2eb6802a148a52fd3e7f0be8370c93e7bc33cee05cf4a2044290845b10ccddbaa306f29c808e7c5019700763e37e45ff6deb507b874a4348010fed50
doc/src/coq-core.engine/uState.ml.html
Source file uState.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Util open Names open Univ type universes_entry = | Monomorphic_entry of Univ.ContextSet.t | Polymorphic_entry of Univ.UContext.t module UNameMap = Names.Id.Map type uinfo = { uname : Id.t option; uloc : Loc.t option; } type quality = QVar of Sorts.QVar.t | QProp | QSProp | QType let sort_inconsistency ?explain cst l r = let explain = Option.map (fun p -> UGraph.Other p) explain in raise (UGraph.UniverseInconsistency (cst, l, r, explain)) let pr_quality = function | QVar v -> Sorts.QVar.pr v | QProp -> Pp.str "Prop" | QSProp -> Pp.str "SProp" | QType -> Pp.str "Type" module QState : sig type t type elt = Sorts.QVar.t val empty : t val union : fail:(t -> quality -> quality -> t) -> t -> t -> t val add : elt -> t -> t val repr : elt -> t -> quality val unify_quality : fail:(unit -> t) -> Conversion.conv_pb -> quality -> quality -> t -> t val is_above_prop : elt -> t -> bool val collapse : t -> t val pr : t -> Pp.t end = struct module QSet = Set.Make(Sorts.QVar) module QMap = Map.Make(Sorts.QVar) type t = { qmap : quality option QMap.t; (* TODO: use a persistent union-find structure *) above : QSet.t; (** Set of quality variables known to be either in Prop or Type. If q ∈ above then it must map to None in qmap. *) } type elt = Sorts.QVar.t let empty = { qmap = QMap.empty; above = QSet.empty } let quality_eq a b = match a, b with | QProp, QProp | QSProp, QSProp | QType, QType -> true | QVar q1, QVar q2 -> Sorts.QVar.equal q1 q2 | (QVar _ | QProp | QSProp | QType), _ -> false let rec repr q m = match QMap.find q m.qmap with | None -> QVar q | Some (QVar q) -> repr q m | Some (QProp | QSProp | QType as q) -> q | exception Not_found -> (* let () = assert !Flags.in_debugger in *) (* FIXME *) QVar q let is_above_prop q m = QSet.mem q m.above let set q qv m = let q = repr q m in let q = match q with QVar q -> q | QProp | QSProp | QType -> assert false in let qv = match qv with QVar qv -> repr qv m | (QSProp | QProp | QType as qv) -> qv in match q, qv with | q, QVar qv -> if Sorts.QVar.equal q qv then Some m else let above = if QSet.mem q m.above then QSet.add qv (QSet.remove q m.above) else m.above in Some { qmap = QMap.add q (Some (QVar qv)) m.qmap; above } | q, (QProp | QSProp | QType as qv) -> if qv == QSProp && QSet.mem q m.above then None else Some { qmap = QMap.add q (Some qv) m.qmap; above = QSet.remove q m.above } let set_above_prop q m = let q = repr q m in let q = match q with QVar q -> q | QProp | QSProp | QType -> assert false in { qmap = m.qmap; above = QSet.add q m.above } let unify_quality ~fail c q1 q2 local = match q1, q2 with | QType, QType | QProp, QProp | QSProp, QSProp -> local | QProp, QVar q when c == Conversion.CUMUL -> set_above_prop q local | QVar q, (QType | QProp | QSProp | QVar _ as qv) | (QType | QProp | QSProp as qv), QVar q -> begin match set q qv local with | Some local -> local | None -> fail () end | (QType, (QProp | QSProp)) -> fail () | (QProp, QType) -> begin match c with | CONV -> fail () | CUMUL -> local end | (QSProp, (QType | QProp)) -> fail () | (QProp, QSProp) -> fail () let nf_quality m = function | QSProp | QProp | QType as q -> q | QVar q -> repr q m let union ~fail s1 s2 = let extra = ref [] in let qmap = QMap.union (fun qk q1 q2 -> match q1, q2 with | Some q, None | None, Some q -> Some (Some q) | None, None -> Some None | Some q1, Some q2 -> let () = if not (quality_eq q1 q2) then extra := (q1,q2) :: !extra in Some (Some q1)) s1.qmap s2.qmap in let extra = !extra in let filter q = match QMap.find q qmap with | None -> true | Some _ -> false | exception Not_found -> false in let above = QSet.filter filter @@ QSet.union s1.above s2.above in let s = { qmap; above } in List.fold_left (fun s (q1,q2) -> let q1 = nf_quality s q1 and q2 = nf_quality s q2 in unify_quality ~fail:(fun () -> fail s q1 q2) CONV q1 q2 s) s extra let add q m = { qmap = QMap.add q None m.qmap; above = m.above } let collapse m = let map q v = match v with | None -> Some QType | Some _ -> v in { qmap = QMap.mapi map m.qmap; above = QSet.empty } let pr { qmap; above } = let open Pp in let prbody u = function | None -> if QSet.mem u above then str " >= Prop" else mt () | Some q -> let q = pr_quality q in str " := " ++ q in h (prlist_with_sep fnl (fun (u, v) -> Sorts.QVar.pr u ++ prbody u v) (QMap.bindings qmap)) end module UPairSet = UnivMinim.UPairSet type univ_names = UnivNames.universe_binders * uinfo Level.Map.t (* 2nd part used to check consistency on the fly. *) type t = { names : univ_names; (** Printing/location information *) local : ContextSet.t; (** The local graph of universes (variables and constraints) *) seff_univs : Level.Set.t; (** Local universes used through private constants *) univ_variables : UnivSubst.universe_opt_subst; (** The local universes that are unification variables *) univ_algebraic : Level.Set.t; (** The subset of unification variables that can be instantiated with algebraic universes as they appear in inferred types only. *) sort_variables : QState.t; (** Local quality variables. *) universes : UGraph.t; (** The current graph extended with the local constraints *) universes_lbound : UGraph.Bound.t; (** The lower bound on universes (e.g. Set or Prop) *) initial_universes : UGraph.t; (** The graph at the creation of the evar_map *) minim_extra : UnivMinim.extra; } let empty = { names = UNameMap.empty, Level.Map.empty; local = ContextSet.empty; seff_univs = Level.Set.empty; univ_variables = Level.Map.empty; univ_algebraic = Level.Set.empty; sort_variables = QState.empty; universes = UGraph.initial_universes; universes_lbound = UGraph.Bound.Set; initial_universes = UGraph.initial_universes; minim_extra = UnivMinim.empty_extra; } let make ~lbound univs = { empty with universes = univs; universes_lbound = lbound; initial_universes = univs} let is_empty uctx = ContextSet.is_empty uctx.local && Level.Map.is_empty uctx.univ_variables let uname_union s t = if s == t then s else UNameMap.merge (fun k l r -> match l, r with | Some _, _ -> l | _, _ -> r) s t let union uctx uctx' = if uctx == uctx' then uctx else if is_empty uctx' then uctx else let local = ContextSet.union uctx.local uctx'.local in let seff = Level.Set.union uctx.seff_univs uctx'.seff_univs in let names = uname_union (fst uctx.names) (fst uctx'.names) in let names_rev = Level.Map.lunion (snd uctx.names) (snd uctx'.names) in let newus = Level.Set.diff (ContextSet.levels uctx'.local) (ContextSet.levels uctx.local) in let newus = Level.Set.diff newus (Level.Map.domain uctx.univ_variables) in let extra = UnivMinim.extra_union uctx.minim_extra uctx'.minim_extra in let declarenew g = Level.Set.fold (fun u g -> UGraph.add_universe u ~lbound:uctx.universes_lbound ~strict:false g) newus g in let fail_union s q1 q2 = if UGraph.type_in_type uctx.universes then s else CErrors.user_err Pp.(str "Could not merge universe contexts: could not unify" ++ spc() ++ pr_quality q1 ++ strbrk " and " ++ pr_quality q2 ++ str ".") in { names = (names, names_rev); local = local; seff_univs = seff; univ_variables = Level.Map.subst_union uctx.univ_variables uctx'.univ_variables; univ_algebraic = Level.Set.union uctx.univ_algebraic uctx'.univ_algebraic; sort_variables = QState.union ~fail:fail_union uctx.sort_variables uctx'.sort_variables; initial_universes = declarenew uctx.initial_universes; universes = (if local == uctx.local then uctx.universes else let cstrsr = ContextSet.constraints uctx'.local in UGraph.merge_constraints cstrsr (declarenew uctx.universes)); universes_lbound = uctx.universes_lbound; minim_extra = extra} let context_set uctx = uctx.local let constraints uctx = snd uctx.local let compute_instance_binders rbinders inst = let map lvl = try Name (Option.get (Level.Map.find lvl rbinders).uname) with Option.IsNone | Not_found -> Anonymous in Array.map map (Instance.to_array inst) let context uctx = let (_, rbinders) = uctx.names in ContextSet.to_context (compute_instance_binders rbinders) uctx.local type named_universes_entry = universes_entry * UnivNames.universe_binders let univ_entry ~poly uctx = let (binders, _) = uctx.names in let entry = if poly then Polymorphic_entry (context uctx) else Monomorphic_entry (context_set uctx) in entry, binders let of_context_set local = { empty with local } type universe_opt_subst = UnivSubst.universe_opt_subst let subst uctx = uctx.univ_variables let ugraph uctx = uctx.universes let initial_graph uctx = uctx.initial_universes let algebraics uctx = uctx.univ_algebraic let add_names ?loc s l (names, names_rev) = if UNameMap.mem s names then user_err ?loc Pp.(str "Universe " ++ Names.Id.print s ++ str" already bound."); (UNameMap.add s l names, Level.Map.add l { uname = Some s; uloc = loc } names_rev) let add_loc l loc (names, names_rev) = match loc with | None -> (names, names_rev) | Some _ -> (names, Level.Map.add l { uname = None; uloc = loc } names_rev) let of_names (ubind,revubind) = let revubind = Level.Map.map (fun id -> { uname = Some id; uloc = None }) revubind in {empty with names = (ubind,revubind)} let universe_of_name uctx s = UNameMap.find s (fst uctx.names) let name_level level id uctx = assert(not(Names.Id.Map.mem id (fst uctx.names))); { uctx with names = (Names.Id.Map.add id level (fst uctx.names), Univ.Level.Map.add level { uname = Some id; uloc = None } (snd uctx.names)) } let universe_binders uctx = let named, _ = uctx.names in named let nf_qvar uctx q = QState.repr q uctx.sort_variables let instantiate_variable l (b : Universe.t) v = try v := Level.Map.set l (Some b) !v with Not_found -> assert false exception UniversesDiffer let { Goptions.get = drop_weak_constraints } = Goptions.declare_bool_option_and_ref ~key:["Cumulativity";"Weak";"Constraints"] ~value:false () let level_inconsistency cst l r = let mk u = Sorts.sort_of_univ @@ Universe.make u in raise (UGraph.UniverseInconsistency (cst, mk l, mk r, None)) let subst_univs_sort normalize qnormalize s = match s with | Sorts.Set | Sorts.Prop | Sorts.SProp -> s | Sorts.Type u -> Sorts.sort_of_univ (UnivSubst.subst_univs_universe normalize u) | Sorts.QSort (q, u) -> match qnormalize q with | QSProp -> Sorts.sprop | QProp -> Sorts.prop | QType -> Sorts.sort_of_univ (UnivSubst.subst_univs_universe normalize u) | QVar q -> Sorts.qsort q (UnivSubst.subst_univs_universe normalize u) let nf_sort uctx s = let normalize u = UnivSubst.normalize_univ_variable_opt_subst uctx.univ_variables u in let qnormalize q = QState.repr q uctx.sort_variables in subst_univs_sort normalize qnormalize s let nf_relevance uctx r = match r with | Sorts.Relevant | Sorts.Irrelevant -> r | Sorts.RelevanceVar q -> match nf_qvar uctx q with | QSProp -> Sorts.Irrelevant | QProp | QType -> Sorts.Relevant | QVar q' -> if QState.is_above_prop q' uctx.sort_variables then Relevant else if Sorts.QVar.equal q q' then r else Sorts.RelevanceVar q' let nf_universes uctx c = let lsubst = uctx.univ_variables in let level_value l = UnivSubst.level_subst_of (fun l -> UnivSubst.normalize_univ_variable_opt_subst lsubst l) l in let sort_value s = nf_sort uctx s in let rel_value r = nf_relevance uctx r in UnivSubst.nf_evars_and_universes_opt_subst (fun _ -> None) level_value sort_value rel_value c type small_universe = USet | UProp | USProp let is_uset = function USet -> true | UProp | USProp -> false type sort_classification = | USmall of small_universe (* Set, Prop or SProp *) | ULevel of Level.t (* Var or Global *) | UMax of Universe.t * Level.Set.t (* Max of Set, Var, Global without increments *) | UAlgebraic of Universe.t (* Arbitrary algebraic expression *) let classify s = match s with | Sorts.Prop -> USmall UProp | Sorts.SProp -> USmall USProp | Sorts.Set -> USmall USet | Sorts.Type u | Sorts.QSort (_, u) -> if Universe.is_levels u then match Universe.level u with | None -> UMax (u, Universe.levels u) | Some u -> ULevel u else UAlgebraic u type local = { local_cst : Constraints.t; local_above_prop : Level.Set.t; local_weak : UPairSet.t; local_sorts : QState.t; } let add_local cst local = { local with local_cst = Constraints.add cst local.local_cst } (* Constraint with algebraic on the left and a single level on the right *) let enforce_leq_up u v local = { local with local_cst = UnivSubst.enforce_leq u (Universe.make v) local.local_cst } let quality_of_sort = function | Sorts.Set | Sorts.Type _ -> QType | Sorts.Prop -> QProp | Sorts.SProp -> QSProp | Sorts.QSort (q, _) -> QVar q let get_constraint = function | Conversion.CONV -> Eq | Conversion.CUMUL -> Le let unify_quality univs c s1 s2 l = let fail () = if UGraph.type_in_type univs then l.local_sorts else sort_inconsistency (get_constraint c) s1 s2 in { l with local_sorts = QState.unify_quality ~fail c (quality_of_sort s1) (quality_of_sort s2) l.local_sorts; } let process_universe_constraints uctx cstrs = let open UnivSubst in let open UnivProblem in let univs = uctx.universes in let vars = ref uctx.univ_variables in let normalize u = normalize_univ_variable_opt_subst !vars u in let normalize_sort sorts s = let qnormalize q = QState.repr q sorts in subst_univs_sort normalize qnormalize s in let nf_constraint sorts = function | ULub (u, v) -> ULub (level_subst_of normalize u, level_subst_of normalize v) | UWeak (u, v) -> UWeak (level_subst_of normalize u, level_subst_of normalize v) | UEq (u, v) -> UEq (normalize_sort sorts u, normalize_sort sorts v) | ULe (u, v) -> ULe (normalize_sort sorts u, normalize_sort sorts v) in let is_local l = Level.Map.mem l !vars in let equalize_small l s local = let ls = match l with | USProp -> Sorts.sprop | UProp -> Sorts.prop | USet -> Sorts.set in if UGraph.check_eq_sort univs ls s then local else if is_uset l then match classify s with | USmall _ -> sort_inconsistency Eq Sorts.set s | ULevel r -> if is_local r then let () = instantiate_variable r Universe.type0 vars in add_local (Level.set, Eq, r) local else sort_inconsistency Eq Sorts.set s | UMax (u, _)| UAlgebraic u -> if univ_level_mem Level.set u then let inst = univ_level_rem Level.set u u in enforce_leq_up inst Level.set local else sort_inconsistency Eq ls s else sort_inconsistency Eq ls s in let equalize_variables fo l' r' local = if Level.equal l' r' then local else let () = if is_local l' then instantiate_variable l' (Universe.make r') vars else if is_local r' then instantiate_variable r' (Universe.make l') vars else if not (UnivProblem.check_eq_level univs l' r') then (* Two rigid/global levels, none of them being local, one of them being Prop/Set, disallow *) if Level.is_set l' || Level.is_set r' then level_inconsistency Eq l' r' else if fo then raise UniversesDiffer in add_local (l', Eq, r') local in let equalize_algebraic l ru local = let alg = Level.Set.mem l uctx.univ_algebraic in let inst = univ_level_rem l ru ru in if alg && not (Level.Set.mem l (Universe.levels inst)) then let () = instantiate_variable l inst vars in local else if univ_level_mem l ru then enforce_leq_up inst l local else sort_inconsistency Eq (Sorts.sort_of_univ (Universe.make l)) (Sorts.sort_of_univ ru) in let equalize_universes l r local = match classify l, classify r with | USmall l', (USmall _ | ULevel _ | UMax _ | UAlgebraic _) -> equalize_small l' r local | (ULevel _ | UMax _ | UAlgebraic _), USmall r' -> equalize_small r' l local | ULevel l', ULevel r' -> equalize_variables false l' r' local | ULevel l', (UAlgebraic r | UMax (r, _)) | (UAlgebraic r | UMax (r, _)), ULevel l' -> equalize_algebraic l' r local | (UAlgebraic _ | UMax _), (UAlgebraic _ | UMax _) -> (* both are algebraic *) if UGraph.check_eq_sort univs l r then local else sort_inconsistency Eq l r in let unify_universes cst local = let cst = nf_constraint local.local_sorts cst in if UnivProblem.is_trivial cst then local else match cst with | ULe (l, r) -> let local = unify_quality univs CUMUL l r local in let l = normalize_sort local.local_sorts l in let r = normalize_sort local.local_sorts r in begin match classify r with | UAlgebraic _ | UMax _ -> if UGraph.check_leq_sort univs l r then local else sort_inconsistency Le l r ~explain:(Pp.str "(cannot handle algebraic on the right)") | USmall r' -> (* Invariant: there are no universes u <= Set in the graph. Except for template levels, Set <= u anyways. Otherwise, for template levels, any constraint u <= Set is turned into u := Set. *) if UGraph.type_in_type univs then local else begin match classify l with | UAlgebraic _ -> (* l contains a +1 and r=r' small so l <= r impossible *) sort_inconsistency Le l r | USmall l' -> if UGraph.check_leq_sort univs l r then local else sort_inconsistency Le l r | ULevel l' -> if is_uset r' && is_local l' then (* Unbounded universe constrained from above, we equalize it *) let () = instantiate_variable l' Universe.type0 vars in add_local (l', Eq, Level.set) local else sort_inconsistency Le l r | UMax (_, levels) -> if is_uset r' then let fold l' local = let l = Sorts.sort_of_univ @@ Universe.make l' in if Level.is_set l' || is_local l' then equalize_variables false l' Level.set local else sort_inconsistency Le l r in Level.Set.fold fold levels local else sort_inconsistency Le l r end | ULevel r' -> (* We insert the constraint in the graph even if the graph already contains it. Indeed, checking the existence of the constraint is costly when the constraint does not already exist directly as a single edge in the graph, but adding an edge in the graph which is implied by others is cheap. Hence, by doing this, we avoid a costly check here, and make further checks of this constraint easier since it will exist directly in the graph. *) match classify l with | USmall UProp -> { local with local_above_prop = Level.Set.add r' local.local_above_prop } | USmall USProp -> if UGraph.type_in_type univs then local else sort_inconsistency Le l r | USmall USet -> add_local (Level.set, Le, r') local | ULevel l' -> add_local (l', Le, r') local | UAlgebraic l -> enforce_leq_up l r' local | UMax (_, l) -> Univ.Level.Set.fold (fun l' accu -> add_local (l', Le, r') accu) l local end | ULub (l, r) -> equalize_variables true l r local | UWeak (l, r) -> if not (drop_weak_constraints ()) then { local with local_weak = UPairSet.add (l, r) local.local_weak } else local | UEq (l, r) -> let local = unify_quality univs CONV l r local in let l = normalize_sort local.local_sorts l in let r = normalize_sort local.local_sorts r in equalize_universes l r local in let unify_universes cst local = if not (UGraph.type_in_type univs) then unify_universes cst local else try unify_universes cst local with UGraph.UniverseInconsistency _ -> local in let local = { local_cst = Constraints.empty; local_weak = uctx.minim_extra.UnivMinim.weak_constraints; local_above_prop = uctx.minim_extra.UnivMinim.above_prop; local_sorts = uctx.sort_variables; } in let local = UnivProblem.Set.fold unify_universes cstrs local in let extra = { UnivMinim.above_prop = local.local_above_prop; UnivMinim.weak_constraints = local.local_weak } in !vars, extra, local.local_cst, local.local_sorts let add_constraints uctx cstrs = let univs, old_cstrs = uctx.local in let cstrs' = Constraints.fold (fun (l,d,r) acc -> let l = Universe.make l and r = Sorts.sort_of_univ @@ Universe.make r in let cstr' = let open UnivProblem in match d with | Lt -> ULe (Sorts.sort_of_univ @@ Universe.super l, r) | Le -> ULe (Sorts.sort_of_univ l, r) | Eq -> UEq (Sorts.sort_of_univ l, r) in UnivProblem.Set.add cstr' acc) cstrs UnivProblem.Set.empty in let vars, extra, cstrs', sorts = process_universe_constraints uctx cstrs' in { uctx with local = (univs, Constraints.union old_cstrs cstrs'); univ_variables = vars; universes = UGraph.merge_constraints cstrs' uctx.universes; sort_variables = sorts; minim_extra = extra; } let add_universe_constraints uctx cstrs = let univs, local = uctx.local in let vars, extra, local', sorts = process_universe_constraints uctx cstrs in { uctx with local = (univs, Constraints.union local local'); univ_variables = vars; universes = UGraph.merge_constraints local' uctx.universes; sort_variables = sorts; minim_extra = extra; } let constrain_variables diff uctx = let univs, local = uctx.local in let univs, vars, local = Level.Set.fold (fun l (univs, vars, cstrs) -> try match Level.Map.find l vars with | Some u -> (Level.Set.add l univs, Level.Map.remove l vars, Constraints.add (l, Eq, Option.get (Universe.level u)) cstrs) | None -> (univs, vars, cstrs) with Not_found | Option.IsNone -> (univs, vars, cstrs)) diff (univs, uctx.univ_variables, local) in { uctx with local = (univs, local); univ_variables = vars } let id_of_level uctx l = try Some (Option.get (Level.Map.find l (snd uctx.names)).uname) with Not_found | Option.IsNone -> None let qualid_of_level_names (map, map_rev) l = try Some (Libnames.qualid_of_ident (Option.get (Level.Map.find l map_rev).uname)) with Not_found | Option.IsNone -> UnivNames.qualid_of_level map l let qualid_of_level uctx l = qualid_of_level_names uctx.names l let pr_uctx_level_names names l = match qualid_of_level_names names l with | Some qid -> Libnames.pr_qualid qid | None -> Level.raw_pr l let pr_uctx_level uctx l = pr_uctx_level_names uctx.names l type ('a, 'b) gen_universe_decl = { univdecl_instance : 'a; (* Declared universes *) univdecl_extensible_instance : bool; (* Can new universes be added *) univdecl_constraints : 'b; (* Declared constraints *) univdecl_extensible_constraints : bool (* Can new constraints be added *) } type universe_decl = (Level.t list, Constraints.t) gen_universe_decl let default_univ_decl = { univdecl_instance = []; univdecl_extensible_instance = true; univdecl_constraints = Constraints.empty; univdecl_extensible_constraints = true } let pr_error_unbound_universes left names = let open Pp in let n = Level.Set.cardinal left in let prlev u = let info = Level.Map.find_opt u (snd names) in h (pr_uctx_level_names names u ++ (match info with | None | Some {uloc=None} -> mt () | Some {uloc=Some loc} -> spc() ++ str"(" ++ Loc.pr loc ++ str")")) in (hv 0 (str (CString.plural n "Universe") ++ spc () ++ (prlist_with_sep spc prlev (Level.Set.elements left)) ++ spc () ++ str (CString.conjugate_verb_to_be n) ++ str" unbound.")) exception UnboundUnivs of Level.Set.t * univ_names (* Deliberately using no location as the location of the univs doesn't correspond to the failing command. *) let error_unbound_universes left uctx = raise (UnboundUnivs (left,uctx)) let _ = CErrors.register_handler (function | UnboundUnivs (left,uctx) -> Some (pr_error_unbound_universes left uctx) | _ -> None) let universe_context_inst ~prefix ~extensible levels names = let left = List.fold_left (fun acc l -> Level.Set.remove l acc) levels prefix in if not extensible && not (Level.Set.is_empty left) then error_unbound_universes left names else let left = ContextSet.sort_levels (Array.of_list (Level.Set.elements left)) in let inst = Array.append (Array.of_list prefix) left in let inst = Instance.of_array inst in inst let check_universe_context_set ~prefix levels names = let left = List.fold_left (fun left l -> Level.Set.remove l left) levels prefix in if not (Level.Set.is_empty left) then error_unbound_universes left names let check_implication uctx cstrs cstrs' = let gr = initial_graph uctx in let grext = UGraph.merge_constraints cstrs gr in let cstrs' = Constraints.filter (fun c -> not (UGraph.check_constraint grext c)) cstrs' in if Constraints.is_empty cstrs' then () else CErrors.user_err Pp.(str "Universe constraints are not implied by the ones declared: " ++ pr_constraints (pr_uctx_level uctx) cstrs') let check_mono_univ_decl uctx decl = let levels, csts = uctx.local in let () = let prefix = decl.univdecl_instance in if not decl.univdecl_extensible_instance then check_universe_context_set ~prefix levels uctx.names in if decl.univdecl_extensible_constraints then uctx.local else begin check_implication uctx decl.univdecl_constraints csts; levels, decl.univdecl_constraints end let check_poly_univ_decl uctx decl = let prefix = decl.univdecl_instance in let extensible = decl.univdecl_extensible_instance in let levels, csts = uctx.local in let inst = universe_context_inst ~prefix ~extensible levels uctx.names in let nas = compute_instance_binders (snd uctx.names) inst in let csts = if decl.univdecl_extensible_constraints then csts else begin check_implication uctx decl.univdecl_constraints csts; decl.univdecl_constraints end in let uctx = UContext.make nas (inst, csts) in uctx let check_univ_decl ~poly uctx decl = let entry = if not poly then let ctx = check_mono_univ_decl uctx decl in Monomorphic_entry ctx else let ctx = check_poly_univ_decl uctx decl in Polymorphic_entry ctx in entry, fst uctx.names let is_bound l lbound = match lbound with | UGraph.Bound.Prop -> false | UGraph.Bound.Set -> Level.is_set l let restrict_universe_context ~lbound (univs, csts) keep = let removed = Level.Set.diff univs keep in if Level.Set.is_empty removed then univs, csts else let allunivs = Constraints.fold (fun (u,_,v) all -> Level.Set.add u (Level.Set.add v all)) csts univs in let g = UGraph.initial_universes in let g = Level.Set.fold (fun v g -> if Level.is_set v then g else UGraph.add_universe v ~lbound ~strict:false g) allunivs g in let g = UGraph.merge_constraints csts g in let allkept = Level.Set.union (UGraph.domain UGraph.initial_universes) (Level.Set.diff allunivs removed) in let csts = UGraph.constraints_for ~kept:allkept g in let csts = Constraints.filter (fun (l,d,r) -> not (is_bound l lbound && d == Le)) csts in (Level.Set.inter univs keep, csts) let restrict uctx vars = let vars = Level.Set.union vars uctx.seff_univs in let vars = Names.Id.Map.fold (fun na l vars -> Level.Set.add l vars) (fst uctx.names) vars in let uctx' = restrict_universe_context ~lbound:uctx.universes_lbound uctx.local vars in { uctx with local = uctx' } let restrict_even_binders uctx vars = let vars = Level.Set.union vars uctx.seff_univs in let uctx' = restrict_universe_context ~lbound:uctx.universes_lbound uctx.local vars in { uctx with local = uctx' } type rigid = | UnivRigid | UnivFlexible of bool (** Is substitution by an algebraic ok? *) let univ_rigid = UnivRigid let univ_flexible = UnivFlexible false let univ_flexible_alg = UnivFlexible true (** ~sideff indicates that it is ok to redeclare a universe. ~extend also merges the universe context in the local constraint structures and not only in the graph. This depends if the context we merge comes from a side effect that is already inlined or defined separately. In the later case, there is no extension, see [emit_side_effects] for example. *) let merge ?loc ~sideff rigid uctx uctx' = let levels = ContextSet.levels uctx' in let uctx = match rigid with | UnivRigid -> uctx | UnivFlexible b -> let fold u accu = if Level.Map.mem u accu then accu else Level.Map.add u None accu in let uvars' = Level.Set.fold fold levels uctx.univ_variables in if b then { uctx with univ_variables = uvars'; univ_algebraic = Level.Set.union uctx.univ_algebraic levels } else { uctx with univ_variables = uvars' } in let local = ContextSet.append uctx' uctx.local in let declare g = Level.Set.fold (fun u g -> try UGraph.add_universe ~lbound:uctx.universes_lbound ~strict:false u g with UGraph.AlreadyDeclared when sideff -> g) levels g in let names = let fold u accu = let modify _ info = match info.uloc with | None -> { info with uloc = loc } | Some _ -> info in try Level.Map.modify u modify accu with Not_found -> Level.Map.add u { uname = None; uloc = loc } accu in (fst uctx.names, Level.Set.fold fold levels (snd uctx.names)) in let initial = declare uctx.initial_universes in let univs = declare uctx.universes in let universes = UGraph.merge_constraints (ContextSet.constraints uctx') univs in { uctx with names; local; universes; initial_universes = initial } (* Check bug_4363 and bug_6323 when changing this code *) let demote_seff_univs univs uctx = let seff = Level.Set.union uctx.seff_univs univs in { uctx with seff_univs = seff } let demote_global_univs env uctx = let env_ugraph = Environ.universes env in let global_univs = UGraph.domain env_ugraph in let global_constraints, _ = UGraph.constraints_of_universes env_ugraph in let promoted_uctx = ContextSet.(of_set global_univs |> add_constraints global_constraints) in { uctx with local = ContextSet.diff uctx.local promoted_uctx } let merge_seff uctx uctx' = let levels = ContextSet.levels uctx' in let declare g = Level.Set.fold (fun u g -> try UGraph.add_universe ~lbound:uctx.universes_lbound ~strict:false u g with UGraph.AlreadyDeclared -> g) levels g in let initial_universes = declare uctx.initial_universes in let univs = declare uctx.universes in let universes = UGraph.merge_constraints (ContextSet.constraints uctx') univs in { uctx with universes; initial_universes } let emit_side_effects eff u = let uctx = Safe_typing.universes_of_private eff in let u = demote_seff_univs (fst uctx) u in merge_seff u uctx let update_sigma_univs uctx univs = let eunivs = { uctx with initial_universes = univs; universes = univs } in merge_seff eunivs eunivs.local let add_universe ?loc name strict lbound uctx u = let initial_universes = UGraph.add_universe ~lbound ~strict u uctx.initial_universes in let universes = UGraph.add_universe ~lbound ~strict u uctx.universes in let local = ContextSet.add_universe u uctx.local in let names = match name with | Some n -> add_names ?loc n u uctx.names | None -> add_loc u loc uctx.names in { uctx with names; local; initial_universes; universes } let new_sort_variable uctx = let q = UnivGen.new_sort_global () in let sort_variables = QState.add q uctx.sort_variables in { uctx with sort_variables }, q let new_univ_variable ?loc rigid name uctx = let u = UnivGen.fresh_level () in let uctx = match rigid with | UnivRigid -> uctx | UnivFlexible allow_alg -> let univ_variables = Level.Map.add u None uctx.univ_variables in if allow_alg then let univ_algebraic = Level.Set.add u uctx.univ_algebraic in { uctx with univ_variables; univ_algebraic } else { uctx with univ_variables } in let uctx = add_universe ?loc name false uctx.universes_lbound uctx u in uctx, u let add_global_univ uctx u = add_universe None true UGraph.Bound.Set uctx u let make_with_initial_binders ~lbound univs us = let uctx = make ~lbound univs in List.fold_left (fun uctx { CAst.loc; v = id } -> fst (new_univ_variable ?loc univ_rigid (Some id) uctx)) uctx us let from_env ?(binders=[]) env = make_with_initial_binders ~lbound:(Environ.universes_lbound env) (Environ.universes env) binders let make_flexible_variable uctx ~algebraic u = let {local = cstrs; univ_variables = uvars; univ_algebraic = avars; universes=g; } = uctx in assert (try Level.Map.find u uvars == None with Not_found -> true); match UGraph.choose (fun v -> not (Level.equal u v) && (algebraic || not (Level.Set.mem v avars))) g u with | Some v -> let uvars' = Level.Map.add u (Some (Universe.make v)) uvars in { uctx with univ_variables = uvars'; } | None -> let uvars' = Level.Map.add u None uvars in let avars' = if algebraic then let uu = Universe.make u in let substu_not_alg u' v = Option.cata (fun vu -> Universe.equal uu vu && not (Level.Set.mem u' avars)) false v in let has_upper_constraint () = Constraints.exists (fun (l,d,r) -> d == Lt && Level.equal l u) (ContextSet.constraints cstrs) in if not (Level.Map.exists substu_not_alg uvars || has_upper_constraint ()) then Level.Set.add u avars else avars else avars in { uctx with univ_variables = uvars'; univ_algebraic = avars' } let make_nonalgebraic_variable uctx u = { uctx with univ_algebraic = Level.Set.remove u uctx.univ_algebraic } let make_flexible_nonalgebraic uctx = { uctx with univ_algebraic = Level.Set.empty } let is_sort_variable uctx s = match s with (* FIXME: normalize here *) | Sorts.Type u -> (match Universe.level u with | Some l as x -> if Level.Set.mem l (ContextSet.levels uctx.local) then x else None | None -> None) | Sorts.QSort (q, u) -> let q = nf_qvar uctx q in (match q, Universe.level u with | QType, Some l -> if Level.Set.mem l (ContextSet.levels uctx.local) then Some l else None | (_, Some _ | _, None) -> None) | _ -> None let subst_univs_context_with_def def usubst (uctx, cst) = (Level.Set.diff uctx def, UnivSubst.subst_univs_constraints usubst cst) let refresh_constraints univs (ctx, cstrs) = let cstrs', univs' = Constraints.fold (fun c (cstrs', univs) -> (Constraints.add c cstrs', UGraph.enforce_constraint c univs)) cstrs (Constraints.empty, univs) in ((ctx, cstrs'), univs') let normalize_variables uctx = let normalized_variables, def, subst = UnivSubst.normalize_univ_variables uctx.univ_variables in let make_subst subst l = Level.Map.find_opt l subst in let uctx_local = subst_univs_context_with_def def (make_subst subst) uctx.local in let uctx_local', univs = refresh_constraints uctx.initial_universes uctx_local in { uctx with local = uctx_local'; univ_variables = normalized_variables; universes = univs } let abstract_undefined_variables uctx = let vars' = Level.Map.fold (fun u v acc -> if v == None then Level.Set.remove u acc else acc) uctx.univ_variables uctx.univ_algebraic in { uctx with local = ContextSet.empty; univ_algebraic = vars' } let fix_undefined_variables uctx = let algs', vars' = Level.Map.fold (fun u v (algs, vars as acc) -> if v == None then (Level.Set.remove u algs, Level.Map.remove u vars) else acc) uctx.univ_variables (uctx.univ_algebraic, uctx.univ_variables) in { uctx with univ_variables = vars'; univ_algebraic = algs' } let collapse_sort_variables uctx = { uctx with sort_variables = QState.collapse uctx.sort_variables } let minimize uctx = let open UnivMinim in let lbound = uctx.universes_lbound in let ((vars',algs'), us') = normalize_context_set ~lbound uctx.universes uctx.local uctx.univ_variables uctx.univ_algebraic uctx.minim_extra in if ContextSet.equal us' uctx.local then uctx else let us', universes = refresh_constraints uctx.initial_universes us' in { names = uctx.names; local = us'; seff_univs = uctx.seff_univs; (* not sure about this *) univ_variables = vars'; univ_algebraic = algs'; sort_variables = uctx.sort_variables; universes = universes; universes_lbound = lbound; initial_universes = uctx.initial_universes; minim_extra = UnivMinim.empty_extra; (* weak constraints are consumed *) } (* XXX print above_prop too *) let pr_weak prl {minim_extra={UnivMinim.weak_constraints=weak}} = let open Pp in prlist_with_sep fnl (fun (u,v) -> prl u ++ str " ~ " ++ prl v) (UPairSet.elements weak) let pr_universe_body prl = function | None -> Pp.mt () | Some x -> Pp.(str " := " ++ Univ.Universe.pr prl x) let pr_universe_opt_subst prl = Univ.Level.Map.pr prl (pr_universe_body prl) let pr_sort_opt_subst uctx = QState.pr uctx.sort_variables module Internal = struct let reboot env uctx = let uctx_global = from_env env in { uctx_global with univ_variables = uctx.univ_variables; sort_variables = uctx.sort_variables } end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>