Source file CCHashTrie.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
(** {1 Hash Tries} *)
type 'a sequence = ('a -> unit) -> unit
type 'a gen = unit -> 'a option
type 'a printer = Format.formatter -> 'a -> unit
type 'a ktree = unit -> [`Nil | `Node of 'a * 'a ktree list]
(** {2 Transient IDs} *)
module Transient = struct
type t = { mutable frozen: bool }
let empty = {frozen=true}
let equal a b = Stdlib.(==) a b
let create () = {frozen=false}
let active st =not st.frozen
let frozen st = st.frozen
let freeze st = st.frozen <- true
let with_ f =
let r = create() in
try
let x = f r in
freeze r;
x
with e ->
freeze r;
raise e
exception Frozen
end
module type S = sig
type key
type 'a t
val empty : 'a t
val is_empty : _ t -> bool
val singleton : key -> 'a -> 'a t
val add : key -> 'a -> 'a t -> 'a t
val mem : key -> _ t -> bool
val get : key -> 'a t -> 'a option
val get_exn : key -> 'a t -> 'a
(** @raise Not_found if key not present *)
val remove : key -> 'a t -> 'a t
(** Remove the key, if present. *)
val update : key -> f:('a option -> 'a option) -> 'a t -> 'a t
(** [update k ~f m] calls [f (Some v)] if [get k m = Some v], [f None]
otherwise. Then, if [f] returns [Some v'] it binds [k] to [v'],
if [f] returns [None] it removes [k] *)
val add_mut : id:Transient.t -> key -> 'a -> 'a t -> 'a t
(** [add_mut ~id k v m] behaves like [add k v m], except it will mutate
in place whenever possible. Changes done with an [id] might affect all
versions of the structure obtained with the same [id] (but not
other versions).
@raise Transient.Frozen if [id] is frozen *)
val remove_mut : id:Transient.t -> key -> 'a t -> 'a t
(** Same as {!remove}, but modifies in place whenever possible
@raise Transient.Frozen if [id] is frozen *)
val update_mut : id:Transient.t -> key -> f:('a option -> 'a option) -> 'a t -> 'a t
(** Same as {!update} but with mutability
@raise Transient.Frozen if [id] is frozen *)
val cardinal : _ t -> int
val choose : 'a t -> (key * 'a) option
val choose_exn : 'a t -> key * 'a
(** @raise Not_found if not pair was found *)
val iter : f:(key -> 'a -> unit) -> 'a t -> unit
val fold : f:('b -> key -> 'a -> 'b) -> x:'b -> 'a t -> 'b
(** {6 Conversions} *)
val to_list : 'a t -> (key * 'a) list
val add_list : 'a t -> (key * 'a) list -> 'a t
val add_list_mut : id:Transient.t -> 'a t -> (key * 'a) list -> 'a t
(** @raise Frozen if the ID is frozen *)
val of_list : (key * 'a) list -> 'a t
val add_seq : 'a t -> (key * 'a) sequence -> 'a t
val add_seq_mut : id:Transient.t -> 'a t -> (key * 'a) sequence -> 'a t
(** @raise Frozen if the ID is frozen *)
val of_seq : (key * 'a) sequence -> 'a t
val to_seq : 'a t -> (key * 'a) sequence
val add_gen : 'a t -> (key * 'a) gen -> 'a t
val add_gen_mut : id:Transient.t -> 'a t -> (key * 'a) gen -> 'a t
(** @raise Frozen if the ID is frozen *)
val of_gen : (key * 'a) gen -> 'a t
val to_gen : 'a t -> (key * 'a) gen
(** {6 IO} *)
val pp : key printer -> 'a printer -> 'a t printer
val as_tree : 'a t -> [`L of int * (key * 'a) list | `N ] ktree
(** For debugging purpose: explore the structure of the tree,
with [`L (h,l)] being a leaf (with shared hash [h])
and [`N] an inner node *)
end
module type KEY = sig
type t
val equal : t -> t -> bool
val hash : t -> int
end
module I64 = struct
type t = Int64.t
let (+) = Int64.add
let (-) = Int64.sub
let (lsl) = Int64.shift_left
let (lsr) = Int64.shift_right_logical
let (land) = Int64.logand
let (lor) = Int64.logor
let lnot = Int64.lognot
end
let popcount (b:I64.t) : int =
let open I64 in
let b = b - ((b lsr 1) land 0x5555555555555555L) in
let b = (b land 0x3333333333333333L) + ((b lsr 2) land 0x3333333333333333L) in
let b = (b + (b lsr 4)) land 0x0f0f0f0f0f0f0f0fL in
let b = b + (b lsr 8) in
let b = b + (b lsr 16) in
let b = b + (b lsr 32) in
Int64.to_int (b land 0x7fL)
module A_SPARSE = struct
type 'a t = {
bits: int64;
arr: 'a array;
id: Transient.t;
}
let length_log = 6
let length = 1 lsl length_log
let () = assert (length = 64)
let create ~id = { bits=0L; arr= [| |]; id; }
let owns ~id a =
Transient.active id && Transient.equal id a.id
let get ~default a i =
let open I64 in
let idx = 1L lsl i in
if a.bits land idx = 0L then (
default
) else (
let real_idx = popcount (a.bits land (idx - 1L)) in
a.arr.(real_idx)
)
let set ~mut a i x =
let open I64 in
let idx = 1L lsl i in
let real_idx = popcount (a.bits land (idx - 1L)) in
if (a.bits land idx = 0L) then (
let bits = a.bits lor idx in
let n = Array.length a.arr in
let arr = Array.make Stdlib.(n+1) x in
arr.(real_idx) <- x;
if real_idx>0 then (
Array.blit a.arr 0 arr 0 real_idx;
);
if real_idx<n then (
let open Stdlib in
Array.blit a.arr real_idx arr (real_idx+1) (n-real_idx);
);
{a with bits; arr}
) else (
if mut then (
a.arr.(real_idx) <- x;
a
) else (
let arr = if mut then a.arr else Array.copy a.arr in
arr.(real_idx) <- x;
{a with arr}
)
)
let update ~mut ~default a i f =
let open I64 in
let idx = 1L lsl i in
let real_idx = popcount (a.bits land (idx - 1L)) in
if a.bits land idx = 0L then (
let x = f default in
let bits = a.bits lor idx in
let n = Array.length a.arr in
let arr = Array.make Stdlib.(n+1) x in
if real_idx>0 then (
Array.blit a.arr 0 arr 0 real_idx;
);
if real_idx<n then (
let open Stdlib in
Array.blit a.arr real_idx arr (real_idx+1) (n-real_idx);
);
{a with bits; arr}
) else (
let x = f a.arr.(real_idx) in
let arr = if mut then a.arr else Array.copy a.arr in
arr.(real_idx) <- x;
{a with arr}
)
let remove a i =
let open I64 in
let idx = 1L lsl i in
let real_idx = popcount (a.bits land (idx - 1L)) in
if a.bits land idx = 0L then (
a
) else (
let bits = a.bits land (lnot idx) in
let n = Array.length a.arr in
let arr = if n=1 then [||] else Array.make Stdlib.(n-1) a.arr.(0) in
let open Stdlib in
if real_idx > 0 then (
Array.blit a.arr 0 arr 0 real_idx;
);
if real_idx+1 < n then (
Array.blit a.arr (real_idx+1) arr real_idx (n-real_idx-1);
);
{a with bits; arr}
)
let iter f a = Array.iter f a.arr
let fold f acc a = Array.fold_left f acc a.arr
end
(** {2 Functors} *)
module Make(Key : KEY)
: S with type key = Key.t
= struct
module A = A_SPARSE
let () = assert (A.length = 1 lsl A.length_log)
module Hash : sig
type t = private int
val make : Key.t -> t
val zero : t
val is_0 : t -> bool
val equal : t -> t -> bool
val rem : t -> int
val quotient : t -> t
end = struct
type t = int
let make = Key.hash
let zero = 0
let is_0 h = h = 0
let equal : int -> int -> bool = Stdlib.(=)
let rem h = h land (A.length - 1)
let quotient h = h lsr A.length_log
end
let hash_ = Hash.make
type key = Key.t
type 'a leaf =
| Nil
| One of key * 'a
| Two of key * 'a * key * 'a
| Cons of key * 'a * 'a leaf
type 'a t =
| E
| S of Hash.t * key * 'a
| L of Hash.t * 'a leaf
| N of 'a leaf * 'a t A.t
let empty = E
let is_empty = function
| E -> true
| L (_, Nil) -> assert false
| S _ | L _ | N _
-> false
let leaf_ k v ~h = L (h, Cons(k,v,Nil))
let singleton k v = leaf_ k v ~h:(hash_ k)
let rec get_exn_list_ k l = match l with
| Nil -> raise Not_found
| One (k', v') -> if Key.equal k k' then v' else raise Not_found
| Two (k1, v1, k2, v2) ->
if Key.equal k k1 then v1
else if Key.equal k k2 then v2
else raise Not_found
| Cons (k', v', tail) ->
if Key.equal k k' then v' else get_exn_list_ k tail
let rec get_exn_ k ~h m = match m with
| E -> raise Not_found
| S (_, k', v') -> if Key.equal k k' then v' else raise Not_found
| L (_, l) -> get_exn_list_ k l
| N (leaf, a) ->
if Hash.is_0 h then get_exn_list_ k leaf
else (
let i = Hash.rem h in
let h' = Hash.quotient h in
get_exn_ k ~h:h' (A.get ~default:E a i)
)
let get_exn k m = get_exn_ k ~h:(hash_ k) m
let get k m =
try Some (get_exn_ k ~h:(hash_ k) m)
with Not_found -> None
let mem k m =
try ignore (get_exn_ k ~h:(hash_ k) m); true
with Not_found -> false
let rec add_list_ k v l = match l with
| Nil -> One (k,v)
| One (k1, v1) ->
if Key.equal k k1 then One (k, v) else Two (k,v,k1,v1)
| Two (k1, v1, k2, v2) ->
if Key.equal k k1 then Two (k, v, k2, v2)
else if Key.equal k k2 then Two (k, v, k1, v1)
else Cons (k, v, l)
| Cons (k', v', tail) ->
if Key.equal k k'
then Cons (k, v, tail)
else Cons (k', v', add_list_ k v tail)
let node_ leaf a = N (leaf, a)
let rec add_ ~id k v ~h m = match m with
| E -> S (h, k, v)
| S (h', k', v') ->
if Hash.equal h h' then (
if Key.equal k k'
then S (h, k, v)
else L (h, Cons (k, v, Cons (k', v', Nil)))
) else (
make_array_ ~id ~leaf:(Cons (k', v', Nil)) ~h_leaf:h' k v ~h
)
| L (h', l) ->
if Hash.equal h h'
then L (h, add_list_ k v l)
else
make_array_ ~id ~leaf:l ~h_leaf:h' k v ~h
| N (leaf, a) ->
if Hash.is_0 h
then node_ (add_list_ k v leaf) a
else (
let mut = A.owns ~id a in
node_ leaf (add_to_array_ ~id ~mut k v ~h a)
)
and make_array_ ~id ~leaf ~h_leaf:h' k v ~h =
let a = A.create ~id in
let a, leaf =
if Hash.is_0 h' then a, leaf else (
let i = Hash.rem h' in
let h'' = Hash.quotient h' in
A.set ~mut:true a i (L (h'', leaf)), Nil
)
in
let a, leaf =
if Hash.is_0 h then a, add_list_ k v leaf
else add_to_array_ ~id ~mut:true k v ~h a, leaf
in
N (leaf, a)
and add_to_array_ ~id ~mut k v ~h a =
let i = Hash.rem h in
let h' = Hash.quotient h in
A.update ~default:E ~mut a i (fun x -> add_ ~id k v ~h:h' x)
let add k v m = add_ ~id:Transient.empty k v ~h:(hash_ k) m
let add_mut ~id k v m =
if Transient.frozen id then raise Transient.Frozen;
add_ ~id k v ~h:(hash_ k) m
exception LocalExit
let is_empty_arr_ a =
try
A.iter (fun t -> if not (is_empty t) then raise LocalExit) a;
true
with LocalExit -> false
let is_empty_list_ = function
| Nil -> true
| One _
| Two _
| Cons _ -> false
let rec remove_list_ k l = match l with
| Nil -> Nil
| One (k', _) ->
if Key.equal k k' then Nil else l
| Two (k1, v1, k2, v2) ->
if Key.equal k k1 then One (k2, v2)
else if Key.equal k k2 then One (k1, v1)
else l
| Cons (k', v', tail) ->
if Key.equal k k'
then tail
else Cons (k', v', remove_list_ k tail)
let rec remove_rec_ ~id k ~h m = match m with
| E -> E
| S (_, k', _) ->
if Key.equal k k' then E else m
| L (h, l) ->
let l = remove_list_ k l in
if is_empty_list_ l then E else L (h, l)
| N (leaf, a) ->
let leaf, a =
if Hash.is_0 h
then remove_list_ k leaf, a
else (
let i = Hash.rem h in
let h' = Hash.quotient h in
let new_t = remove_rec_ ~id k ~h:h' (A.get ~default:E a i) in
if is_empty new_t
then leaf, A.remove a i
else (
let mut = A.owns ~id a in
leaf, A.set ~mut a i new_t
)
)
in
if is_empty_list_ leaf && is_empty_arr_ a
then E
else N (leaf, a)
let remove k m = remove_rec_ ~id:Transient.empty k ~h:(hash_ k) m
let remove_mut ~id k m =
if Transient.frozen id then raise Transient.Frozen;
remove_rec_ ~id k ~h:(hash_ k) m
let update_ ~id k f m =
let h = hash_ k in
let opt_v = try Some (get_exn_ k ~h m) with Not_found -> None in
begin match opt_v, f opt_v with
| None, None -> m
| Some _, Some v
| None, Some v -> add_ ~id k v ~h m
| Some _, None -> remove_rec_ ~id k ~h m
end
let update k ~f m = update_ ~id:Transient.empty k f m
let update_mut ~id k ~f m =
if Transient.frozen id then raise Transient.Frozen;
update_ ~id k f m
let iter ~f t =
let rec aux = function
| E -> ()
| S (_, k, v) -> f k v
| L (_,l) -> aux_list l
| N (l,a) -> aux_list l; A.iter aux a
and aux_list = function
| Nil -> ()
| One (k,v) -> f k v
| Two (k1,v1,k2,v2) -> f k1 v1; f k2 v2
| Cons (k, v, tl) -> f k v; aux_list tl
in
aux t
let fold ~f ~x:acc t =
let rec aux acc t = match t with
| E -> acc
| S (_,k,v) -> f acc k v
| L (_,l) -> aux_list acc l
| N (l,a) -> let acc = aux_list acc l in A.fold aux acc a
and aux_list acc l = match l with
| Nil -> acc
| One (k,v) -> f acc k v
| Two (k1,v1,k2,v2) -> f (f acc k1 v1) k2 v2
| Cons (k, v, tl) -> let acc = f acc k v in aux_list acc tl
in
aux acc t
let cardinal m = fold ~f:(fun n _ _ -> n+1) ~x:0 m
let to_list m = fold ~f:(fun acc k v -> (k,v)::acc) ~x:[] m
let add_list_mut ~id m l =
List.fold_left (fun acc (k,v) -> add_mut ~id k v acc) m l
let add_list m l =
Transient.with_ (fun id -> add_list_mut ~id m l)
let of_list l = add_list empty l
let add_seq_mut ~id m seq =
let m = ref m in
seq (fun (k,v) -> m := add_mut ~id k v !m);
!m
let add_seq m seq =
Transient.with_ (fun id -> add_seq_mut ~id m seq)
let of_seq s = add_seq empty s
let to_seq m yield = iter ~f:(fun k v -> yield (k,v)) m
let rec add_gen_mut ~id m g = match g() with
| None -> m
| Some (k,v) -> add_gen_mut ~id (add_mut ~id k v m) g
let add_gen m g =
Transient.with_ (fun id -> add_gen_mut ~id m g)
let of_gen g = add_gen empty g
let to_gen m =
let st = Stack.create() in
Stack.push m st;
let rec next() =
if Stack.is_empty st then None
else match Stack.pop st with
| E -> next ()
| S (_,k,v) -> Some (k,v)
| L (_, Nil) -> next()
| L (_, One (k,v)) -> Some (k,v)
| L (h, Two (k1,v1,k2,v2)) ->
Stack.push (L (h, One (k2,v2))) st;
Some (k1,v1)
| L (h, Cons(k,v,tl)) ->
Stack.push (L (h, tl)) st;
Some (k,v)
| N (l, a) ->
A.iter
(fun sub -> Stack.push sub st)
a;
Stack.push (L (Hash.zero, l)) st;
next()
in
next
let choose m = to_gen m ()
let choose_exn m = match choose m with
| None -> raise Not_found
| Some (k,v) -> k, v
let pp ppk ppv out m =
let first = ref true in
iter m
~f:(fun k v ->
if !first then first := false else Format.fprintf out ";@ ";
ppk out k;
Format.pp_print_string out " -> ";
ppv out v
)
let rec as_tree m () = match m with
| E -> `Nil
| S (h,k,v) -> `Node (`L ((h:>int), [k,v]), [])
| L (h,l) -> `Node (`L ((h:>int), list_as_tree_ l), [])
| N (l,a) -> `Node (`N, as_tree (L (Hash.zero, l)) :: array_as_tree_ a)
and list_as_tree_ l = match l with
| Nil -> []
| One (k,v) -> [k,v]
| Two (k1,v1,k2,v2) -> [k1,v1; k2,v2]
| Cons (k, v, tail) -> (k,v) :: list_as_tree_ tail
and array_as_tree_ a = A.fold (fun acc t -> as_tree t :: acc) [] a
end