Source file CCFQueue.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
(** {1 Functional queues (fifo)} *)
type 'a sequence = ('a -> unit) -> unit
type 'a klist = unit -> [`Nil | `Cons of 'a * 'a klist]
type 'a equal = 'a -> 'a -> bool
type 'a printer = Format.formatter -> 'a -> unit
(** {2 Basics} *)
[@@@warning "-37"]
type zero = Zero
type 'x succ = Succ
type one = zero succ
type two = zero succ succ
type three = zero succ succ succ
type (+'a, 'l) digit =
| Zero : ('a, zero) digit
| One : 'a -> ('a, one) digit
| Two : 'a * 'a -> ('a, two) digit
| Three : 'a * 'a * 'a -> ('a, three) digit
type +'a t =
| Shallow : ('a, _) digit -> 'a t
| Deep : int * ('a, _ succ) digit * ('a * 'a) t lazy_t * ('a, _ succ) digit -> 'a t
let empty : type a. a t = Shallow Zero
exception Empty
let _empty = Shallow Zero
let _single x = Shallow (One x)
let _double x y = Shallow (Two (x,y))
let _deep
: type l0 l1. int -> ('a, l0 succ) digit -> ('a * 'a) t lazy_t -> ('a, l1 succ) digit -> 'a t
= fun n hd middle tl ->
Deep (n, hd, middle, tl)
let is_empty = function
| Shallow Zero -> true
| _ -> false
let singleton x = _single x
let doubleton x y = _double x y
let rec cons : type a. a -> a t -> a t
= fun x q -> match q with
| Shallow Zero -> _single x
| Shallow (One y) -> Shallow (Two (x,y))
| Shallow (Two (y,z)) -> Shallow (Three (x,y,z))
| Shallow (Three (y,z,z')) ->
_deep 4 (Two (x,y)) (lazy _empty) (Two (z,z'))
| Deep (n,One y, middle, tl) -> _deep (n+1) (Two (x,y)) middle tl
| Deep (n,Two (y,z), middle, tl) -> _deep (n+1)(Three (x,y,z)) middle tl
| Deep (n,Three (y,z,z'), lazy q', tail) ->
_deep (n+1) (Two (x,y)) (lazy (cons (z,z') q')) tail
let rec snoc : type a. a t -> a -> a t
= fun q x -> match q with
| Shallow Zero -> _single x
| Shallow (One y) -> Shallow (Two (y,x))
| Shallow (Two (y,z)) -> Shallow (Three (y,z,x))
| Shallow (Three (y,z,z')) ->
_deep 4 (Two (y,z)) (lazy _empty) (Two (z',x))
| Deep (n,hd, middle, One y) -> _deep (n+1) hd middle (Two(y,x))
| Deep (n,hd, middle, Two (y,z)) -> _deep (n+1) hd middle (Three(y,z,x))
| Deep (n,hd, lazy q', Three (y,z,z')) ->
_deep (n+1) hd (lazy (snoc q' (y,z))) (Two(z',x))
let rec take_front_exn : 'a. 'a t -> ('a *'a t)
= fun q -> match q with
| Shallow Zero -> raise Empty
| Shallow (One x) -> x, empty
| Shallow (Two (x,y)) -> x, Shallow (One y)
| Shallow (Three (x,y,z)) -> x, Shallow (Two (y,z))
| Deep (n,One x, lazy q', tail) ->
if is_empty q'
then x, Shallow tail
else
let (y,z), q' = take_front_exn q' in
x, _deep (n-1)(Two (y,z)) (Lazy.from_val q') tail
| Deep (n,Two (x,y), middle, tail) ->
x, _deep (n-1) (One y) middle tail
| Deep (n,Three (x,y,z), middle, tail) ->
x, _deep (n-1) (Two(y,z)) middle tail
let take_front q =
try Some (take_front_exn q)
with Empty -> None
let take_front_l n q =
if n<0 then (
invalid_arg "take_back_l: cannot take negative number of arguments"
);
let rec aux acc q n =
if n=0 || is_empty q then List.rev acc, q
else
let x,q' = take_front_exn q in
aux (x::acc) q' (n-1)
in aux [] q n
let take_front_while p q =
let rec aux acc q =
if is_empty q then List.rev acc, q
else
let x,q' = take_front_exn q in
if p x then aux (x::acc) q' else List.rev acc, q
in aux [] q
let rec take_back_exn : 'a. 'a t -> 'a t * 'a
= fun q -> match q with
| Shallow Zero -> raise Empty
| Shallow (One x) -> empty, x
| Shallow (Two (x,y)) -> _single x, y
| Shallow (Three (x,y,z)) -> Shallow (Two(x,y)), z
| Deep (n, hd, lazy q', One x) ->
if is_empty q'
then Shallow hd, x
else
let q'', (y,z) = take_back_exn q' in
_deep (n-1) hd (Lazy.from_val q'') (Two (y,z)), x
| Deep (n, hd, middle, Two(x,y)) -> _deep (n-1) hd middle (One x), y
| Deep (n, hd, middle, Three(x,y,z)) -> _deep (n-1) hd middle (Two (x,y)), z
let take_back q =
try Some (take_back_exn q)
with Empty -> None
let take_back_l n q =
if n<0 then (
invalid_arg "take_back_l: cannot take negative number of arguments"
);
let rec aux acc q n =
if n=0 || is_empty q then q, acc
else
let q',x = take_back_exn q in
aux (x::acc) q' (n-1)
in aux [] q n
let take_back_while p q =
let rec aux acc q =
if is_empty q then q, acc
else
let q',x = take_back_exn q in
if p x then aux (x::acc) q' else q, acc
in aux [] q
(** {2 Individual extraction} *)
let first q =
try Some (fst (take_front_exn q))
with Empty -> None
let first_exn q = fst (take_front_exn q)
let last q =
try Some (snd (take_back_exn q))
with Empty -> None
let last_exn q = snd (take_back_exn q)
let _size_digit : type l. ('a, l) digit -> int = function
| Zero -> 0
| One _ -> 1
| Two _ -> 2
| Three _ -> 3
let size : 'a. 'a t -> int
= function
| Shallow d -> _size_digit d
| Deep (n, _, _, _) -> n
let _nth_digit : type l. int -> ('a, l) digit -> 'a = fun i d -> match i, d with
| _, Zero -> raise Not_found
| 0, One x -> x
| 0, Two (x,_) -> x
| 1, Two (_,x) -> x
| 0, Three (x,_,_) -> x
| 1, Three (_,x,_) -> x
| 2, Three (_,_,x) -> x
| _, _ -> raise Not_found
let rec nth_exn : 'a. int -> 'a t -> 'a
= fun i q -> match i, q with
| _, Shallow Zero -> raise Not_found
| 0, Shallow (One x) -> x
| 0, Shallow (Two (x,_)) -> x
| 1, Shallow (Two (_,x)) -> x
| 0, Shallow (Three (x,_,_)) -> x
| 1, Shallow (Three (_,x,_)) -> x
| 2, Shallow (Three (_,_,x)) -> x
| _, Shallow _ -> raise Not_found
| _, Deep (_, l, q, r) ->
if i<_size_digit l
then _nth_digit i l
else
let i' = i - _size_digit l in
let q' = Lazy.force q in
if i'<2*size q'
then
let (x,y) = nth_exn (i'/2) q' in
if i' mod 2 = 0 then x else y
else
_nth_digit (i'-2*size q') r
let nth i q =
try Some (nth_exn i q)
with Failure _ -> None
let init q =
try fst (take_back_exn q)
with Empty -> q
let tail q =
try snd (take_front_exn q)
with Empty -> q
let add_seq_front seq q =
let l = ref [] in
seq (fun x -> l := x :: !l);
List.fold_left (fun q x -> cons x q) q !l
let add_seq_back q seq =
let q = ref q in
seq (fun x -> q := snoc !q x);
!q
let _digit_to_seq : type l. ('a, l) digit -> 'a sequence = fun d k -> match d with
| Zero -> ()
| One x -> k x
| Two (x,y) -> k x; k y
| Three (x,y,z) -> k x; k y; k z
let rec to_seq : 'a. 'a t -> 'a sequence
= fun q k -> match q with
| Shallow d -> _digit_to_seq d k
| Deep (_, hd, lazy q', tail) ->
_digit_to_seq hd k;
to_seq q' (fun (x,y) -> k x; k y);
_digit_to_seq tail k
let append q1 q2 =
match q1, q2 with
| Shallow Zero, _ -> q2
| _, Shallow Zero -> q1
| _ -> add_seq_back q1 (to_seq q2)
let _map_digit : type l. ('a -> 'b) -> ('a, l) digit -> ('b, l) digit = fun f d -> match d with
| Zero -> Zero
| One x -> One (f x)
| Two (x,y) -> Two (f x, f y)
| Three (x,y,z) -> Three (f x, f y, f z)
let rec map : 'a 'b. ('a -> 'b) -> 'a t -> 'b t
= fun f q -> match q with
| Shallow d -> Shallow (_map_digit f d)
| Deep (size, hd, lazy q', tl) ->
let q'' = map (fun (x,y) -> f x, f y) q' in
_deep size (_map_digit f hd) (Lazy.from_val q'') (_map_digit f tl)
let (>|=) q f = map f q
let _fold_digit : type l. ('acc -> 'a -> 'acc) -> 'acc -> ('a, l) digit -> 'acc = fun f acc d -> match d with
| Zero -> acc
| One x -> f acc x
| Two (x,y) -> f (f acc x) y
| Three (x,y,z) -> f (f (f acc x) y) z
let rec fold : 'a 'b. ('b -> 'a -> 'b) -> 'b -> 'a t -> 'b
= fun f acc q -> match q with
| Shallow d -> _fold_digit f acc d
| Deep (_, hd, lazy q', tl) ->
let acc = _fold_digit f acc hd in
let acc = fold (fun acc (x,y) -> f (f acc x) y) acc q' in
_fold_digit f acc tl
let iter f q = to_seq q f
let of_list l = List.fold_left snoc empty l
let to_list q =
let l = ref [] in
to_seq q (fun x -> l := x :: !l);
List.rev !l
let of_seq seq = add_seq_front seq empty
let rev q =
let q' = ref empty in
iter (fun x -> q' := cons x !q') q;
!q'
let _nil () = `Nil
let _single x cont () = `Cons (x, cont)
let _double x y cont () = `Cons (x, _single y cont)
let _triple x y z cont () = `Cons (x, _double y z cont)
let _digit_to_klist : type l. ('a, l) digit -> 'a klist -> 'a klist = fun d cont -> match d with
| Zero -> _nil
| One x -> _single x cont
| Two (x,y) -> _double x y cont
| Three (x,y,z) -> _triple x y z cont
let rec _flat_klist : 'a. ('a * 'a) klist -> 'a klist -> 'a klist
= fun l cont () -> match l () with
| `Nil -> cont ()
| `Cons ((x,y),l') -> _double x y (_flat_klist l' cont) ()
let to_klist q =
let rec aux : 'a. 'a t -> 'a klist -> 'a klist
= fun q cont () -> match q with
| Shallow d -> _digit_to_klist d cont ()
| Deep (_, hd, lazy q', tl) ->
_digit_to_klist hd
(_flat_klist
(aux q' _nil)
(_digit_to_klist tl cont))
()
in
aux q _nil
let of_klist l =
let rec seq l k = match l() with
| `Nil -> ()
| `Cons(x,l') -> k x; seq l' k
in
add_seq_front (seq l) empty
let rec _equal_klist eq l1 l2 = match l1(), l2() with
| `Nil, `Nil -> true
| `Nil, _
| _, `Nil -> false
| `Cons(x1,l1'), `Cons(x2,l2') ->
eq x1 x2 && _equal_klist eq l1' l2'
let equal eq q1 q2 = _equal_klist eq (to_klist q1) (to_klist q2)
let (--) a b =
let rec up_to q a b = if a = b
then snoc q a
else up_to (snoc q a) (a+1) b
and down_to q a b = if a = b then snoc q a
else down_to (snoc q a) (a-1) b
in
if a <= b then up_to empty a b else down_to empty a b
let (--^) a b =
if a=b then empty
else if a<b then a -- (b-1)
else a -- (b+1)
let pp pp_x out d =
let first = ref true in
Format.fprintf out "@[<hov2>queue {";
iter
(fun x ->
if !first then first:= false else Format.fprintf out ";@ ";
pp_x out x
) d;
Format.fprintf out "}@]"